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Outline

• Exact Relations for Dark-Energy (DE)

• ΛCDM and wCDM models

• New DE parameterisations

• Chevallier-Polarski-Linder (CPL) parameterisation

• Quintessence: Thawing and Tracking models
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Preliminaries

• Spatially flat homogeneous and isotropic cosmology:

ds2 = −dt2 + a2(t)δijdx
idx j

= (1 + z)−2
[
H−2(z)dz2 + a2

0δijdx
idx j

]
• Scale factor: a(t) > 0;

• Hubble variable: H = d
dt

ln (a);

• Cosmological redshift z = a0
a
− 1

• Observables: H(z); q(z) = −1 + (1 + z) d ln (H)
dz

; Distance measures:

Hubble distance: DH =
1

H(z)
,

Coordinate distance: DM =

∫ z

0
H−1(z̃)dz̃,

Luminosity distance: DL = (1 + z)

∫ z

0
H−1(z̃)dz̃,

Angular diameter distance: DA = (1 + z)−1
∫ z

0
H−1(z̃)dz̃.
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• Parameterisations of H(z), or DL(z), etc.. More common is to start from the
equation of state of DE

wDE =
pDE

ρDE

• However wDE is not an observable!

• Computing H from wDE requires EFEs + Conservation Equations.

• Computational purposes use e-fold time: e−N = 1 + z

• Conservation equations:

ρ′m = −3ρm ⇒ ρm = ρm0 exp(−3N),

ρ′DE = −3(1 + wDE)ρDE ⇒ ρDE = ρDE0 exp(−3N)f (N),

where

f (N) = exp

(
−3

∫ N

0
wDE(Ñ)dÑ

)
.
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• Dimensionless bounded Hubble normalized variables

Ωm :=
ρm

3H2
, ΩDE :=

ρDE

3H2

• Gauss constraint:

Ωm + ΩDE = 1 ⇒ Ωm0 + ΩDE0 = 1.

• The present time normalized Hubble parameter

E =
H

H0
.

is given by
E2
DE = Ωm0 exp(−3N) + ΩDE0 exp(−3N)f (N).

• For the Hubble normalised variables:

ΩDE =
ΩDE0

[Ωm0/f (N)] + ΩDE0
, Ωm =

Ωm0

Ωm0 + ΩDE0f (N)
.

• The above expressions involve f (N), which is computed from the integral of
wDE(N).
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ΛCDM and wCDM models

• ΛCDM model: Simplest hypothesis compatible with observations DE is a positive
cosmological constant Λ > 0,

ρDE = ρΛ = Λ, pDE = pΛ = −Λ, ΩDE = ΩΛ :=
Λ

3H2

,
• Equation of state

wDE = wΛ = −1,

• This leads to
fΛ = e3N

and

ΩΛ =
ΩΛ0

ΩΛ0 + (1− ΩΛ0) e−3N
, E2

Λ = (1− ΩΛ0)e−3N + ΩΛ0.

• wCDM model:

wDE = w = const., −1 < w < 0.

:
• This leads to

fΛ(N) = e−3wN

and

Ωw =
Ωw0

Ωw0 + (1− Ωw0) e3wN
, E2

w = (1− Ωw0)e3wN + Ωw0e
−3(1+w)N .
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Past DE series expansions

• Letting wDE → w∞ ∈ [−1, 0) and ΩDE → 0 when N → −∞ results in

Ω′DE ≈ −3w∞ΩDE

and hence
ΩDE ≈ Ce−3w∞N .

• Improve approximation by series expansion in

T = T0e
−3w∞N ,

where T → 0 when N → −∞.

wDE = w∞
[
1− (γ − 1)T + (γ − 1)βT 2 + . . .

]
ΩDE = T

(
1− γT +

[
1 +

1

2
(γ − 1) (3 + γ + β)

]
T 2 + . . .

)
.
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DE Padé approximants

• Padé for wDE :

wDE ≈ [0/1]wDE (T ) =
w∞

1 + (γ − 1)T
,

wDE ≈ [1/1]wDE (T ) = w∞

(
1−

(γ − 1)T

1 + βT

)
.

• Connect with the present time N = 0: solve for T = T0 in terms of wDE0.
However, wDE is not an observable!

• To connect with present time we take the Padé approximant

ΩDE ≈ [1/1]ΩDE
(T ) =

T

1 + γT
,

• At N = 0: ΩDE0 = T0/[1 + γT0], and hence

T0 =
ΩDE0

1− γΩDE0
.
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• Parameterisations of wDE

wDE ≈ w∞

(
1−

(γ − 1)ΩDE0

(γ − 1)ΩDE0 + (1− γΩDE0)e3w∞N

)
,

wDE ≈ w∞

(
1−

(γ − 1)ΩDE0

βΩDE0 + (1− γΩDE0)e3w∞N

)
.

• Present time values

wDE0 ≈ w∞

(
1− γΩDE0

Ωm0

)
,

wDE0 ≈ w∞

(
1−

(γ − 1)ΩDE0

1 + (β − γ)ΩDE0

)
.

• The integral f (N):

f =
Ωm0e−3w∞N

1− γΩDE0 + (γ − 1)ΩDE0e−3w∞N
,

f = e−3w∞N

(
1 + (β − γ)ΩDE0

1− γΩDE0 + βΩDE0e−3w∞N

) γ−1
β

,
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CPL parameterisation

• Chevallier-Polarski-Linder (CPL) parameterisation:

wDE = wCPL = w0 + wa

(
z

1 + z

)
= w∞ − wae

N ,

where
w∞ = w0 + wa.

• The integral f (N)

f = e−3w∞N · e−3wa(1−eN ) = (1 + z)3w∞ · e−3wa

(
z

1+z

)
,

• The CPL can be regarded as a series expansion in eN , but this is inconsistent
with the past matter dominant requirement, with a natural expansion in e−3w∞N ,
which is particularly pertinent as observations probe increasingly large redshift.
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Quintessence

• Quintessence models: minimally coupled scalar field, ϕ, with a potential
V (ϕ) > 0:

ρϕ =
1

2
ϕ̇2 + V (ϕ), pϕ =

1

2
ϕ̇2 − V (ϕ), (8)

• The dark-energy conservation equation

ϕ̈ = −3Hϕ̇− V,ϕ. (9)

• ΩDE = Ωϕ, wDE = wϕ, with −1 ≤ wϕ ≤ 1.

• Thawing models: Thawing quintessence exist for all potential where

λ(ϕ) = −
V,ϕ

V
.

is bounded. It corresponds to a value of wϕ beginning near −1 increasing with
time, i.e.

w ′ϕ > 0

• Freezing models: freezing quintessence corresponds a decreasing value of wϕ, i.e.

w ′ϕ < 0

.
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Thawing Quintessence

• A. Alho & C. Uggla: Scalar field deformations of ΛCDM cosmology. Phys. Rev.
D 92, 103502 (2015).

• A. Alho & C. Uggla, and John Wainwright : Quintessence from a state space
perspective, Phys. Dark Universe, 39 (2023) 101146.

(a) λ = 0 (b) λ− = 1, λ+ = 0

• λ(ϕ) bounded; line of matter dominated ‘Friedmann-Lemâıtre’ fixed points,
FLϕ∗ , with w∞ = −1, parameterized by the constant values ϕ∗.

• Thawing quintessence is associated with the unstable manifold of FLϕ∗ .
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Thawing Approximations

• Higher-order expansions on the unstable manifold leads to the identifications

γ := 1 +

(
2

3

)3

ε∗, β :=
4

5

(
1 +

η∗

6

)
and ε∗ ≡ ε(ϕ∗), η∗ ≡ η(ϕ∗) are the potential slow-roll parameters

ε(ϕ) =
1

2

(
V,ϕ

V

)2

=
λ2

2
, η(ϕ) =

V,ϕϕ

V
= λ2 − λ,ϕ.

• Example: Quintessential α-attractor EC potential with λ∗ ≈ 0.8, γ ≈ 1.1

(a) E(z)
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Tracking Quintessence

• Prototype model: inverse power-law potential V (ϕ) = V0ϕ
−p , p > 0.

• λ(ϕ) becomes unbounded when ϕ→ 0+.

• A. Alho, C. Uggla, J. Wainwright. Tracking Quintessence. Phys. Dark Universe,
44 (2024) 101433

• Tracker fixed point T: w̃ϕ := wϕ|T = − 2
2+p

.

• Tracking quintessence is associated with the unstable manifold of T (Tracker
orbit).
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Tracker Approximations

• Introduce

Γ :=
V V,ϕϕ

V 2
,ϕ

= 1 + (λ−1),ϕ.

• Higher-order expansions for the unstable manifold leads to the identifications

γ := 1− w̃−1
ϕ (1− w̃2

ϕ)k,

β :=
2w̃2

ϕ(3w̃ϕ − 1) + k
(
12w̃4

ϕ − w̃3
ϕ − 3w̃2

ϕ + 2w̃ϕ − 1
)

+ k(2)

w̃ϕ(12w̃2
ϕ − 3w̃ϕ + 1)

,

and

k :=
w̃ϕ − 2

3
Γ(1)

4w̃2
ϕ − 2w̃ϕ + 1

, k(2) :=
w̃ϕΓ(2)

9(w̃ϕ + 1)k
, Γ(0) = 1 + p−1.

(a) E(z)
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• We have present a new consistent and unified approximation scheme for
Quintessence models having a continuous ΛCDM limit. These are simpler and
accurate as previous approximations.

• Contextualize in a broader DE context

• General procedure which can be applied to a plethora of models: modified gravity,
etc..

1 Identify fixed points whose unstable manifolds are associated with physical ”viable”
solutions:

2 Produce expansions and improve range of convergence with Padés. Connect with
present time initial data.

• Linear perturbations:

• A. Alho, C. Uggla & J. Wainwright: Perturbations of the Lambda-CDM model in a
dynamical systems perspective. J. Cosmol. Astropart. Phys. 2019 (09), 045 .

• A. Alho, C. Uggla & J. Wainwright: Dynamical systems in perturbative scalar field
cosmology. Class. Quantum Grav. 37 225011 (2020).
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