Outline	Preliminaries	ACDM and wCDM	Dark Energy Parameterisations	CPL	Quintessence	Thawing	Tracking
0	000	0	000	0	0	00	000

New Dark-Energy parameterisations and applications to Quintessence (arXiv:2407.14378 [gr-qc])

Artur Alho (in collaboration with C. Uggla)

Center for Mathematical Analysis, Geometry and Dynamical Systems (CAMGSD), IST University of Lisbon

EREP2024 Universidade de Coimbra, July 22, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outline	Preliminaries	ACDM and wCDM	Dark Energy Parameterisations	CPL	Quintessence	Thawing	Tracking
•	000	0	000	0	0	00	000

Outline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- Exact Relations for Dark-Energy (DE)
- ACDM and wCDM models
- New DE parameterisations
- Chevallier-Polarski-Linder (CPL) parameterisation
- Quintessence: Thawing and Tracking models

Outline	Preliminaries	ACDM and wCDM	Dark Energy Parameterisations	CPL	Quintessence	Thawing	Tracking
0	•00	0	000	0	0	00	000

Preliminaries

• Spatially flat homogeneous and isotropic cosmology:

$$ds^{2} = -dt^{2} + a^{2}(t)\delta_{ij}dx^{i}dx^{j}$$

= $(1+z)^{-2} \left[H^{-2}(z)dz^{2} + a_{0}^{2}\delta_{ij}dx^{i}dx^{j}\right]$

- Scale factor: *a*(*t*) > 0;
- Hubble variable: $H = \frac{d}{dt} \ln (a);$
- Cosmological redshift $z = \frac{a_0}{a} 1$
- **Observables:** H(z); $q(z) = -1 + (1 + z) \frac{d \ln(H)}{dz}$; Distance measures:

Hubble distance: $D_H = \frac{1}{H(z)}$, Coordinate distance: $D_M = \int_0^z H^{-1}(\tilde{z})d\tilde{z}$, Luminosity distance: $D_L = (1+z)\int_0^z H^{-1}(\tilde{z})d\tilde{z}$, Angular diameter distance: $D_A = (1+z)^{-1}\int_0^z H^{-1}(\tilde{z})d\tilde{z}$.

Outline	Preliminaries	ACDM and wCDM	Dark Energy Parameterisations	CPL	Quintessence	Thawing	Tracking
0	000	0	000	0	0	00	000

• Parameterisations of H(z), or $D_L(z)$, etc.. More common is to start from the equation of state of DE

$$w_{\rm DE} = \frac{p_{DE}}{\rho_{DE}}$$

- However w_{DE} is not an observable!
- Computing H from w_{DE} requires EFEs + Conservation Equations.
- Computational purposes use e-fold time: $e^{-N} = 1 + z$
- Conservation equations:

$$\begin{split} \rho'_{\rm m} &= -3\rho_{\rm m} \qquad \Rightarrow \quad \rho_{\rm m} = \rho_{\rm m0} \exp(-3N), \\ \rho'_{\rm DE} &= -3(1+w_{\rm DE})\rho_{\rm DE} \quad \Rightarrow \quad \rho_{\rm DE} = \rho_{\rm DE0} \exp(-3N)f(N), \end{split}$$

where

$$f(N) = \exp\left(-3\int_0^N w_{\rm DE}(\tilde{N})d\tilde{N}
ight).$$

Outline	Preliminaries	ACDM and wCDM	Dark Energy Parameterisations	CPL	Quintessence	Thawing	Tracking
0	000	0	000	0	0	00	000

• Dimensionless bounded Hubble normalized variables

$$\Omega_{\mathrm{m}} := rac{
ho_{\mathrm{m}}}{3H^2}, \qquad \Omega_{\mathrm{DE}} := rac{
ho_{\mathrm{DE}}}{3H^2}$$

• Gauss constraint:

$$\Omega_{\rm m} + \Omega_{\rm DE} = 1 \quad \Rightarrow \quad \Omega_{\rm m0} + \Omega_{\rm DE0} = 1.$$

• The present time normalized Hubble parameter

$$E = \frac{H}{H_0}$$

is given by

$$E_{
m DE}^2 = \Omega_{
m m0} \exp(-3N) + \Omega_{
m DE0} \exp(-3N) f(N).$$

• For the Hubble normalised variables:

$$\Omega_{\rm DE} = \frac{\Omega_{\rm DE0}}{[\Omega_{\rm m0}/f(N)] + \Omega_{\rm DE0}}, \qquad \Omega_{\rm m} = \frac{\Omega_{\rm m0}}{\Omega_{\rm m0} + \Omega_{\rm DE0}f(N)}.$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

• The above expressions involve f(N), which is computed from the integral of $w_{DE}(N)$.

Λ CDM and *w*CDM models

 ΛCDM model: Simplest hypothesis compatible with observations DE is a positive cosmological constant Λ > 0,

$$\rho_{\rm DE} = \rho_{\Lambda} = \Lambda, \quad p_{\rm DE} = p_{\Lambda} = -\Lambda, \quad \Omega_{\rm DE} = \Omega_{\Lambda} := \frac{\Lambda}{3H^2}$$

.

• Equation of state

$$w_{\rm DE} = w_{\Lambda} = -1,$$

• This leads to

$$f_{\Lambda} = e^{3N}$$

and

$$\Omega_{\Lambda} = \frac{\Omega_{\Lambda 0}}{\Omega_{\Lambda 0} + (1 - \Omega_{\Lambda 0}) e^{-3N}}, \quad E_{\Lambda}^2 = (1 - \Omega_{\Lambda 0}) e^{-3N} + \Omega_{\Lambda 0}.$$

• wCDM model:

$$w_{\rm DE} = w = {\rm const.}, -1 < w < 0.$$

• This leads to

$$f_{\Lambda}(N) = e^{-3wN}$$

and

$$\Omega_{w} = \frac{\Omega_{w0}}{\Omega_{w0} + (1 - \Omega_{w0}) e^{3wN}}, \quad E_{w}^{2} = (1 - \Omega_{w0})e^{3wN} + \Omega_{w0}e^{-3(1+w)N}.$$

Outline	Preliminaries	ACDM and wCDM	Dark Energy Parameterisations	CPL	Quintessence	Thawing	Tracking
0	000	0	•00	0	0	00	000

Past DE series expansions

• Letting $w_{\mathrm{DE}} o w_\infty \in [-1,0)$ and $\Omega_{\mathrm{DE}} o 0$ when $N o -\infty$ results in

$$\Omega'_{\rm DE} \approx -3w_{\infty}\Omega_{\rm DE}$$

and hence

$$\Omega_{\rm DE} \approx C e^{-3 w_{\infty} N}$$

• Improve approximation by series expansion in

$$T=T_0e^{-3w_\infty N},$$

where $T \rightarrow 0$ when $N \rightarrow -\infty$.

$$\begin{split} w_{\mathrm{DE}} &= w_{\infty} \left[1 - (\gamma - 1)T + (\gamma - 1)\beta T^{2} + \dots \right] \\ \Omega_{\mathrm{DE}} &= T \left(1 - \gamma T + \left[1 + \frac{1}{2}(\gamma - 1)(3 + \gamma + \beta) \right] T^{2} + \dots \right). \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Outline	Preliminaries	ACDM and wCDM	Dark Energy Parameterisations	CPL	Quintessence	Thawing	Tracking
0	000	0	000	0	0	00	000

DE Padé approximants

Padé for w_{DE}:

$$\begin{split} w_{\rm DE} &\approx [0/1]_{w_{\rm DE}}(T) = \frac{w_{\infty}}{1 + (\gamma - 1)T}, \\ w_{\rm DE} &\approx [1/1]_{w_{\rm DE}}(T) = w_{\infty} \left(1 - \frac{(\gamma - 1)T}{1 + \beta T}\right) \end{split}$$

- Connect with the present time N = 0: solve for T = T₀ in terms of w_{DE0}. However, w_{DE} is not an observable!
- To connect with present time we take the Padé approximant

$$\Omega_{\mathrm{DE}} pprox [1/1]_{\Omega_{\mathrm{DE}}}(T) = rac{T}{1+\gamma T},$$

• At $\mathit{N}=0$: $\Omega_{\mathrm{DE0}}=\mathit{T}_0/[1+\gamma \mathit{T}_0]$, and hence

$$T_0 = rac{\Omega_{
m DE0}}{1 - \gamma \Omega_{
m DE0}}.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Outline	Preliminaries	ACDM and wCDM	Dark Energy Parameterisations	CPL	Quintessence	Thawing	Tracking
0	000	0	000	0	0	00	000

• Parameterisations of w_{DE}

$$\begin{split} w_{\rm DE} &\approx w_{\infty} \left(1 - \frac{(\gamma - 1)\Omega_{\rm DE0}}{(\gamma - 1)\Omega_{\rm DE0} + (1 - \gamma\Omega_{\rm DE0})e^{3w_{\infty}N}} \right), \\ w_{\rm DE} &\approx w_{\infty} \left(1 - \frac{(\gamma - 1)\Omega_{\rm DE0}}{\beta\Omega_{\rm DE0} + (1 - \gamma\Omega_{\rm DE0})e^{3w_{\infty}N}} \right). \end{split}$$

• Present time values

$$egin{split} & w_{\mathrm{DE0}} pprox w_{\infty} \left(rac{1-\gamma\Omega_{\mathrm{DE0}}}{\Omega_{\mathrm{m0}}}
ight), \ & w_{\mathrm{DE0}} pprox w_{\infty} \left(1 - rac{(\gamma-1)\Omega_{\mathrm{DE0}}}{1+(eta-\gamma)\Omega_{\mathrm{DE0}}}
ight). \end{split}$$

• The integral f(N):

$$\begin{split} f &= \frac{\Omega_{\rm m0} e^{-3w_{\infty}N}}{1 - \gamma \Omega_{\rm DE0} + (\gamma - 1)\Omega_{\rm DE0} e^{-3w_{\infty}N}}, \\ f &= e^{-3w_{\infty}N} \left(\frac{1 + (\beta - \gamma)\Omega_{\rm DE0}}{1 - \gamma \Omega_{\rm DE0} + \beta \Omega_{\rm DE0} e^{-3w_{\infty}N}}\right)^{\frac{\gamma - 1}{\beta}}, \end{split}$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Outline	Preliminaries	ACDM and wCDM	Dark Energy Parameterisations	CPL	Quintessence	Thawing	Tracking
0	000	0	000	•	0	00	000

CPL parameterisation

• Chevallier-Polarski-Linder (CPL) parameterisation:

$$w_{\rm DE} = w_{\rm CPL} = w_0 + w_a \left(\frac{z}{1+z}\right) = w_\infty - w_a e^N,$$

where

$$w_{\infty} = w_0 + w_a$$
.

• The integral f(N)

$$f = e^{-3w_{\infty}N} \cdot e^{-3w_a(1-e^N)} = (1+z)^{3w_{\infty}} \cdot e^{-3w_a\left(\frac{z}{1+z}\right)}$$

 The CPL can be regarded as a series expansion in e^N, but this is inconsistent with the past matter dominant requirement, with a natural expansion in e^{-3w_∞N}, which is particularly pertinent as observations probe increasingly large redshift.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Outline	Preliminaries	ACDM and wCDM	Dark Energy Parameterisations	CPL	Quintessence	Thawing	Tracking
0	000	0	000	0	•	00	000

Quintessence

• Quintessence models: minimally coupled scalar field, φ , with a potential $V(\varphi) > 0$:

$$\rho_{\varphi} = \frac{1}{2}\dot{\varphi}^2 + V(\varphi), \qquad p_{\varphi} = \frac{1}{2}\dot{\varphi}^2 - V(\varphi), \tag{8}$$

The dark-energy conservation equation

$$\ddot{\varphi} = -3H\dot{\varphi} - V_{,\varphi}.$$
(9)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

•
$$\Omega_{\mathrm{DE}} = \Omega_{\varphi}$$
, $w_{\mathrm{DE}} = w_{\varphi}$, with $-1 \le w_{\varphi} \le 1$.

• Thawing models: Thawing quintessence exist for all potential where

$$\lambda(\varphi) = -rac{V_{,\varphi}}{V}.$$

is bounded. It corresponds to a value of w_φ beginning near -1 increasing with time, i.e.

$$w'_{arphi} > 0$$

• Freezing models: freezing quintessence corresponds a decreasing value of w_{φ} , i.e.

 $w'_{\varphi} < 0$

Outline	Preliminaries	ACDM and wCDM	Dark Energy Parameterisations	CPL	Quintessence	Thawing	Tracking
0	000	0	000	0	0	•0	000

Thawing Quintessence

- A. Alho & C. Uggla: Scalar field deformations of ΛCDM cosmology. Phys. Rev. D 92, 103502 (2015).
- A. Alho & C. Uggla, and John Wainwright : Quintessence from a state space perspective, Phys. Dark Universe, 39 (2023) 101146.

- $\lambda(\varphi)$ bounded; line of matter dominated 'Friedmann-Lemaître' fixed points, FL_{φ_*} , with $w_{\infty} = -1$, parameterized by the constant values φ_* .
- Thawing quintessence is associated with the unstable manifold of FL_{arphi_*}

Outline	Preliminaries	ACDM and wCDM	Dark Energy Parameterisations	CPL	Quintessence	Thawing	Tracking
0	000	0	000	0	0	0.	000

Thawing Approximations

· Higher-order expansions on the unstable manifold leads to the identifications

$$\gamma := 1 + \left(rac{2}{3}
ight)^3 \epsilon_*, \qquad eta := rac{4}{5} \left(1 + rac{\eta_*}{6}
ight)$$

and $\epsilon_*\equiv\epsilon(\varphi_*),\eta_*\equiv\eta(\varphi_*)$ are the potential slow-roll parameters

$$\epsilon(\varphi) = rac{1}{2} \left(rac{V_{,\varphi}}{V}
ight)^2 = rac{\lambda^2}{2}, \qquad \eta(\varphi) = rac{V_{,\varphi\varphi}}{V} = \lambda^2 - \lambda_{,\varphi}$$

• Example: Quintessential α -attractor *EC* potential with $\lambda_* \approx 0.8$, $\gamma \approx 1.1$

Outline	Preliminaries	∧CDM and wCDM	Dark Energy Parameterisations	CPL	Quintessence	Thawing	Tracking
0	000	0	000	0	0	00	000

Tracking Quintessence

- Prototype model: inverse power-law potential $V(\varphi) = V_0 \varphi^{-p}, \qquad p > 0.$
- $\lambda(\varphi)$ becomes unbounded when $\varphi \to 0^+$.
- A. Alho, C. Uggla, J. Wainwright. Tracking Quintessence. Phys. Dark Universe, 44 (2024) 101433

- Tracker fixed point T: $\tilde{w}_{\varphi} := w_{\varphi}|_{T} = -\frac{2}{2+\rho}$.
- Tracking quintessence is associated with the unstable manifold of T (Tracker orbit).

Outline	Preliminaries	ACDM and wCDM	Dark Energy Parameterisations	CPL	Quintessence	Thawing	Tracking
0	000	0	000	0	0	00	000

Tracker Approximations

Introduce

$${\sf \Gamma}:=rac{V\,V_{,arphiarphi}}{V_{,arphi}^2}=1+(\lambda^{-1})_{,arphi}.$$

· Higher-order expansions for the unstable manifold leads to the identifications

$$egin{aligned} &\gamma:=1- ilde{w}_arphi^{-1}(1- ilde{w}_arphi^2)k,\ η:=rac{2 ilde{w}_arphi^2(3 ilde{w}_arphi-1)+k\left(12 ilde{w}_arphi^4- ilde{w}_arphi^3-3 ilde{w}_arphi^2+2 ilde{w}_arphi-1
ight)+k^{(2)}}{ ilde{w}_arphi(12 ilde{w}_arphi^2-3 ilde{w}_arphi+1)}, \end{aligned}$$

and

$$k := \frac{\tilde{w}_{\varphi} - \frac{2}{3}\Gamma^{(1)}}{4\tilde{w}_{\varphi}^2 - 2\tilde{w}_{\varphi} + 1}, \qquad k^{(2)} := \frac{\tilde{w}_{\varphi}\Gamma^{(2)}}{9(\tilde{w}_{\varphi} + 1)k}, \qquad \Gamma^{(0)} = 1 + p^{-1}.$$

Outline	Preliminaries	ACDM and wCDM	Dark Energy Parameterisations	CPL	Quintessence	Thawing	Tracking
0	000	0	000	0	0	00	000

- We have present a new consistent and unified approximation scheme for Quintessence models having a continuous ACDM limit. These are simpler and accurate as previous approximations.
- Contextualize in a broader DE context
- General procedure which can be applied to a plethora of models: modified gravity, etc..
 - 1 Identify fixed points whose unstable manifolds are associated with physical "viable" solutions:
 - 2 Produce expansions and improve range of convergence with Padés. Connect with present time initial data.

• Linear perturbations:

- A. Alho, C. Uggla & J. Wainwright: Perturbations of the Lambda-CDM model in a dynamical systems perspective. J. Cosmol. Astropart. Phys. 2019 (09), 045.
- A. Alho, C. Uggla & J. Wainwright: Dynamical systems in perturbative scalar field cosmology. Class. Quantum Grav. 37 225011 (2020).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●