Gravitational microlensing with (extended) dark matter structures

Djuna Lize Croon (IPPP Durham)

EREP 2024, July 2024

djuna.l.croon@durham.ac.uk | djunacroon.com

Dark matter substructure

Two things we may agree upon…

- All of our evidence for Dark Matter is gravitational
- Many dark matter models feature substructure

PBHs | Boson stars | Subhalos | Miniclusters | Mirror stars

Dark matter substructure

Two things we may agree upon…

- All of our evidence for Dark Matter is gravitational
- Many dark matter models feature substructure

• Microlensing can be used to probe such models

Lensing equation

The lensing tube

• Magnification: $\mu =$ *θ β dθ dβ* $=$ $\sum \mu_i$

The lensing tube • Magnification: $\mu =$ *θ β dθ dβ* $=$ $\sum \mu_i =$ $u^2 + 2$ $u\sqrt{u^2+4}$ \rightarrow 1.34 point-like lens $u \to 1$ normalised impact parameter $u \equiv \beta/\theta_E$

- θ_E defines a lensing tube with radius $r_E = \theta_E D_L$
- Defining $\tau \equiv \theta/\theta_E$, $m(\tau) \equiv M(\theta_E \tau)/M$,

$$
u = \tau - \frac{m(\tau)}{\tau} \quad \text{with} \quad \mu = \left[1 - \frac{m(\tau)}{\tau^2}\right]^{-1} \left[1 + \frac{m(\tau)}{\tau^2} - \frac{1}{\tau} \frac{dm(\tau)}{d\tau}\right]^{-1}
$$

Lensing equation rewritten **Corresponding magnification**

DC, D. McKeen, N. Raj, PRD, arXiv:2002.08962 [astro-ph.CO]

- θ_E defines a lensing tube with radius $r_E = \theta_E D_L$
- Defining $\tau \equiv \theta/\theta_E$, $m(\tau) \equiv M(\theta_E \tau)/M$,

$$
u = \tau - \frac{m(\tau)}{\tau} \quad \text{with} \quad \mu = \left| 1 - \frac{m(\tau)}{\tau^2} \right|^{-1} \left| 1 + \frac{m(\tau)}{\tau^2} - \frac{1}{\tau} \frac{dm(\tau)}{d\tau} \right|^{-1}
$$
\n
$$
\int_{\text{mass distribution}}^{\tau^2} \text{Projected lens} \quad m(\tau) \equiv M(\theta_E \tau) / M = \frac{\int_0^{\tau} d\sigma \int_0^{\infty} d\lambda \rho (r_E \sqrt{\sigma^2 + \lambda^2})}{\int_0^{\infty} d\gamma \gamma^2 \rho (r_E \gamma)}
$$

DC, D. McKeen, N. Raj, PRD, arXiv:2002.08962 [astro-ph.CO]

- θ_E defines a lensing tube with radius $r_E = \theta_E D_L$
- Defining $\tau \equiv \theta/\theta_E$, $m(\tau) \equiv M(\theta_E \tau)/M$,

τ DC, D. McKeen, N. Raj, PRD, arXiv:2002.08962 [astro-ph.CO]

Threshold impact parameter

Define $u_{1,34}$ *by* $\mu_{tot}(u \le u_{1,34}) > 1.34$ All smaller impact parameters produce

a magnification above $\mu > 1.34$

DC, D. McKeen, N. Raj, PRD, arXiv:2002.08962 [astro-ph.CO]

Threshold impact parameter

Define $u_{1,34}$ *by* $\mu_{tot}(u \le u_{1,34}) > 1.34$ All smaller impact parameters produce

a magnification above $\mu > 1.34$

DC, D. McKeen, N. Raj, PRD, arXiv:2002.08962 [astro-ph.CO]

Threshold impact parameter

Define $u_{1,34}$ *by* $\mu_{tot}(u \le u_{1,34}) > 1.34$ All smaller impact parameters produce

a magnification above $\mu > 1.34$

DC, D. McKeen, N. Raj, PRD, arXiv:2002.08962 [astro-ph.CO]

What's going on here?

Point-like:

2.0

11.34

 1.0

 0.5

 $0.0¹$

 10^{-1}

∼two images

Boson star

What's going on here?

Three

images

One image of the

point-like case

 $10^0\,$

 $r_{90}/r_{\rm E}(x)$

Too diffuse

 $10¹$

One boson

star image

Sufficiently flat density profiles can give more or fewer lens images (solutions to the lens equation) compared to a point-like lens

 \rightarrow Objects such as boson stars may give unique microlensing signals

 \rightarrow Constraints on the dark matter subfraction may be stronger or weaker than for point-like lenses

point-like

3 solutions, one with negligible μ_i 3 solutions, all contributing μ_i 1 solution of the point-like case 1 solution, larger μ_i than point-like 1 solution, $\mu_i \rightarrow 0$

 \overline{a} + \overline{a} at u_{caustic} , number of solutions jumps from 1 to 3

Example light curve

Boson star with $\tau_m = 1$ PBH (or $\tau_m = 0$)

τ = *θ*/*θ^E* $\tau_m \equiv \theta_{\text{lens}}/\theta_E = r_{\text{lens}}/r_E$

The differential event rate contains all the essential physics

$$
x = \frac{D_{\rm L}}{D_{\rm S}}
$$

$$
\frac{d^2 \Gamma}{dx dt_{\rm E}} = \varepsilon(t_{\rm E}) \frac{2D_{\rm S}}{v_0^2 M} f_{\rm DM} \rho_{\rm DM}(x) v_{\rm E}^4(x) e^{-v_{\rm E}^2(x)/v_0^2}
$$

The differential event rate contains all the essential physics

The total number of expected events depends on the experiment

$$
N_{\text{events}} = N_{\star} T_{\text{obs}} \int_{0}^{1} dx \int_{t_{\text{E,min}}}^{t_{\text{E,max}}} dt_{\text{E}} \frac{d^2 \Gamma}{dx dt_{\text{E}}}
$$

The total number of expected events depends on the experiment

The total number of expected events depends on the experiment

Constraints on DM fraction

Generally, constraints on extended objects are weaker...

DC, D. McKeen, N. Raj, PRD, arXiv:2002.08962 [astro-ph.CO]

Constraints on DM fraction

But for sufficiently flat density profiles, caustics change the constraints

DC, D. McKeen, N. Raj, PRD, arXiv:2002.08962 [astro-ph.CO]

$\overline{\text{Extended sources: } r_E = \theta_E D_L} \sim r_S$

Same procedure as before, but now $u_{1,34}$ *is a function of both* r_{90} and r_S DC, D. McKeen, N. Raj, Z. Wang, PRD, arXiv:2007.12697 [astro-ph.CO]

$\textsf{Extended}$ sources: $r_E = \theta_E D_L \sim r_S$

Same procedure as before, but now u_1 a_3 *is a function of both* r_{90} *and* r_S *DC, D. McKeen, N. Raj, Z. Wang, PRD, arXiv:2007.12697 [astro-ph.CO]*

$\overline{Extended sources: r_E = \theta_E D_L \sim r_S}$

Same procedure as before, but now $u_{1,34}$ *is a function of both* r_{90} and r_S DC, D. McKeen, N. Raj, Z. Wang, PRD, arXiv:2007.12697 [astro-ph.CO]

DC, D. McKeen, N. Raj, Z. Wang, PRD, arXiv:2007.12697 [astro-ph.CO]

DC, Sevillano Muñoz arXiv:2403.13072

Different shape light curves

Can we look for these explicitly?

M. Crispim-Romao, DC, PRD, arXiv:2402.00107

ML + ML

Microlensing + Machine Learning

- Microlensing data is time series data
- Challenge: low-cadence data, lower signal-to-noise ratios

ML + ML

Microlensing + Machine Learning

- Microlensing data is time series data
- Challenge: low-cadence data, lower signal-to-noise ratios
- MicroLIA: use a Random Forest (RF) algorithm to find microlensing event (and distinguish from other events)

Godines et al, arXiv:2004.14347

ML + ML

Microlensing + Machine Learning

- Microlensing data is time series data
- Challenge: low-cadence data, lower signal-to-noise ratios
- MicroLIA: use a Random Forest (RF) algorithm to find microlensing event (and distinguish from other events)

Our adaptations:

- Implement boson star and NFW light curves with $0.5 < \tau_m < 5$
- Instead of an RF, we use a histogram-based gradient boosted classifier (HBGC) to improve speed
- Add criterium $\mu \geq 1.34$

(… and a few fixes)

Complete datasets not available

 \bullet

Table 1 Selection Criteria for High-quality Microlensing Events in OGLE GVS Fields

So for now... generating and injecting events

Miguel Crispim-Romao, DC, arXiv:2402.00107

Teamed up with MicroLIA's main author Daniel Godines (and Miguel)

- 10-year survey by the Vera C. Rubin Observatory
- Large field of view and rapid survey speed
- Relatively high cadence observations, allowing frequent monitoring of millions of stars

• Sensitivity to DM? Estimate using event rate...

Teamed up with MicroLIA's main author Daniel Godines (and Miguel)

Event rate
$$
\frac{d\Gamma}{d\hat{t}} = \frac{32D_L u_T^4}{\hat{t}^4 v_c^2 M} \int_0^1 dx \rho(x) R_E^4(x) e^{-\frac{4R_E^2(x)u_T^2}{\hat{t}^2 v_c^2}} \left[\frac{1}{N} \exp\left(\frac{2\pi\sum_{k=1}^N \hat{t}^2 - \hat{t}^2}{N}\right) \right] = N_{\text{stars}} \int_{t_{\text{min}}} d\hat{t} \frac{d\Gamma}{d\hat{t}}
$$

Teamed up with MicroLIA's main author Daniel Godines (and Miguel)

Event rate
$$
\frac{d\Gamma}{d\hat{t}} = \frac{32D_L u_T^4}{\hat{t}^4 v_c^2 M} \int_0^1 dx \rho(x) R_E^4(x) e^{-\frac{4R_E^2(x)u_T^2}{\hat{t}^2 v_c^2}}
$$
\nFor small mass $\frac{d\Gamma}{d\hat{t}} \approx \frac{512 G^2 M u_T^4 \rho_0 r_c^2 D_L}{3 \hat{t}^4 v_c^2}$
\nMinimum lens mass that gives at least one event:
\n
$$
\frac{M_{\text{min}}}{M_{\odot}} = \frac{9 t_{\text{min}}^3 v_c^2}{512 G^2 u_T^4 \rho_0 r_c^2 D_L N_{\text{stars}} \epsilon t_{\text{obs}}}
$$
\n
$$
= 3.8 \times 10^{-4} \left(\frac{t_{\text{min}}}{10 \text{ days}}\right)^3 \left(\frac{v_c}{220 \text{km/s}}\right)^2 \left(\frac{1}{u_T}\right)^4 \left(\frac{10^8 M_{\odot}}{\rho_0 D_L r_c^2}\right)
$$
\n
$$
\left(\frac{2 \times 10^{10}}{N_{\text{stars}}}\right) \left(\frac{0.1}{\epsilon}\right) \left(\frac{10 \text{year}}{t_{\text{obs}}}\right)
$$

Teamed up with MicroLIA's main author Daniel Godines (and Miguel)

Event rate
$$
\frac{d\Gamma}{d\hat{t}} = \frac{32D_L u_T^4}{\hat{t}^4 v_c^2 M} \int_0^1 dx \rho(x) R_E^4(x) e^{-\frac{4R_E^2(x)u_T^2}{\hat{t}^2 v_c^2}}
$$

\nFor large mass
$$
\frac{d\Gamma}{d\hat{t}} \simeq \frac{\hat{t}^2 v_c^4 \rho_0}{4GM^2 u_T^2}
$$
, such that
\n
$$
\frac{M_{\text{max}}}{M_{\odot}} = \sqrt{\frac{t_{\text{max}}^3 v_c^4 \rho_0 N_{\text{stars}} \epsilon t_{\text{obs}}}{12\,G u_T^2}}
$$

\n= 4.2 × 10² $\left(\frac{t_{\text{max}}}{100 \text{days}}\right)^{3/2} \left(\frac{v_c}{220 \text{km/s}}\right)^2 \left(\frac{\rho_0}{10^8 M_{\odot}/\text{kpc}^3}\right)^{1/2} \left(\frac{N_{\text{stars}}}{2 \times 10^{10}}\right)^{1/2}$
\n
$$
\times \left(\frac{\epsilon}{0.1}\right)^{1/2} \left(\frac{t_{\text{obs}}}{10 \text{years}}\right)^{1/2} \left(\frac{u_T}{1}\right)^{-2}
$$

Teamed up with MicroLIA's main author Daniel Godines (and Miguel)

Simulated, using rubinsim, 7 classes of observations:

- Constant
- Mira long-period variables (LPV)
- RR Lyrae and Cepheid Variables (RRLyrae)
- point-like microlensing (ML)
- binary microlensing
- microlensing by NFW-subhalos
- microlensing by boson stars (BS)

Teamed up with MicroLIA's main author Daniel Godines (and Miguel)

LSST Cadence (baseline v2.0 10yrs)

As expected, caustics can again be used to identify flatter lens profiles

Teamed up with MicroLIA's main author Daniel Godines (and Miguel)

BS Light Curves - LSST Cadence (baseline_v2.0_10yrs)

Teamed up with MicroLIA's main author Daniel Godines (and Miguel)

BS Light Curves - LSST Cadence (baseline_v2.0_10yrs)

To conclude,

- All of our current evidence for Dark Matter is gravitational; many dark matter models feature substructure
- Microlensing provides a way to look for dark matter substructure of a large range of sizes and masses
	- \rightarrow Extended objects may give unique microlensing signatures
	- \rightarrow Non-observation can be used to derive constraints
- Microlensing signatures of extended objects can be distinguished using machine learning
- Future work: LSST microlensing analyses, image data, deep learning on the light curves, ...

Thank you!

…ask me anything you like!

djuna.l.croon@durham.ac.uk | djunacroon.com

Back up slides

Case study 1: NFW-halo mass profile

- Well-known halo profile: $\rho(r)$ = ρ _s $(r/r_s)(1 + r/r_s)^2$
- As the mass inclosed formally diverges, we cut it off at $R_{\text{cut}} = 100 R_{\text{sc}}$
- Enclosed mass $\propto \log(\kappa + 1) (\kappa/(\kappa + 1))$ where $\kappa = R_{\rm cut}/R_{\rm sc}$ 1.0
- Computing $m(\tau)$ is then a trivial exercise:

Case study 2: Boson star mass profile

describes a *spherically symmetric ground state of a free scalar field in the non-relativistic limit*

NFW, Boson star 1.0 0.8 0.6 m 0.4 0.2 $0.0 - 0.0$ 0.0 0.2 0.4 0.6 0.8 1.0 *τ*

Consequence: the Einstein tube is not a tube; not ellipsoidal

 \rightarrow Depending on the source, experiments may be more or less sensitive to extended objects compared to point sources in different locations

Obtaining constraints

To obtain limits, we have to account for the observed events

- $EROS-2: 3.9$ events at 90% CL
- OGLE-IV: $\mathcal{O}(1000)$ astrophysical events, Poissonian 90% CL: $\kappa = 4.61$

Lensing geometry

- Up to this point, we have assumed that the sources are pointlike light sources (a good approximation for EROS/OGLE)
- This approximation breaks down when $r_E = \theta_E D_L \sim r_S$

Star sizes in M31

 $N_{\text{events}} = N_{\star} T_{\text{obs}} \left[d t_{\text{E}} \right] d R_{\star}$ 1 0 *dx* $d^2\Gamma$ $dxdt_{\rm E}$ *dn* dR_{\star}

Opportunities for positive detection

M. Crispim-Romao, DC, PRD, arXiv:2402.00107

Feature importance

Let's dream…

- The OGLE time steps are quite irregular
- Many different factors play a role...
	- Observational Constraints (weather, moon phase, ...)
	- Resource Allocation
	- Target Prioritization
	- Technical Maintenance and Downtime
- But it is interesting what the effect of cadence (ir)regularity is on the observational prospects
- So, let us imagine for a moment that we could achieve perfect daily cadence

NFW Events w/ Regular Daily Cadence

Miguel Crispim-Romao, DC, arXiv:2402.00107

... only observed if regular cadence is achieved

Miguel Crispim-Romao, DC, arXiv:2402.00107

Teamed up with MicroLIA's main author Daniel Godines (and Miguel)

ELAsTiCC dataset (Extended LSST Astronomical Time Series Classification Challenge)

- Multiple sources, galactic and extragalactic
- Science purposed

ELAsTiCC presents the first simulation of LSST alerts, with *millions of synthetic transient light curves and host galaxies.* The data is being used to test *broker alert systems and classifiers, and develop the infrastructure for LSST's Dark Energy Science Collaboration Time-Domain needs.*

