Searching for Fifth Forces and Modifications of Gravity

Clare Burrage University of Nottingham

Outline:

Light scalar fields and fifth forces Non-linearities and screening F(R) screening in galaxies Chameleon screening in the lab

Why Introduce Light Scalar Fields?

New matter: dark energy

- Light scalars can drive accelerated expansion
- Can be a consequence of mechanisms that solve the cosmological constant problem

New matter: dark matter

 Light scalars, produced non-thermally, can provide a nonrelativistic matter component

A modification of gravity

• New physics in the gravitational sector can introduce new degrees of freedom, often Lorentz scalars

Why Introduce Light Scalar Fields?

New matter: dark energy

- Light scalars can drive accelerated expansion
- Can be a consequence of mechanisms that solve the cosmological constant problem

Why Introduce Light Scalar Fields?

New matter: dark energy

- Light scalars can drive accelerated expansion
- Can be a consequence of mechanisms that solve the cosmological constant problem

New matter: dark matter

 Light scalars, produced non-thermally, can provide a nonrelativistic matter component

A modification of gravity

• New physics in the gravitational sector can introduce new degrees of freedom, often Lorentz scalars

Can start from an f(R) modification of gravity, which has an extra (hidden) scalar degree of freedom

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left[R + f(R) \right] + S_m[g] \,,$$

Can start from an f(R) modification of gravity, which has an extra (hidden) scalar degree of freedom

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left[R + f(R) \right] + S_m[g] \,,$$

$$\phi = -\sqrt{\frac{3}{2}}M_{\rm pl}\ln(1+f_R), \qquad V(\phi) = \frac{M_{\rm pl}^2}{2}\frac{\phi f_R - f(R)}{(1+f_R)^2}$$

$$\tilde{g}_{\mu\nu} = e^{2\phi/\sqrt{6}}g_{\mu\nu}$$

Can start from an f(R) modification of gravity, which has an extra (hidden) scalar degree of freedom

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left[R + f(R) \right] + S_m[g] \,,$$

$$\phi = -\sqrt{\frac{3}{2}}M_{\rm pl}\ln(1+f_R), \qquad V(\phi) = \frac{M_{\rm pl}^2}{2}\frac{\phi f_R - f(R)}{(1+f_R)^2}$$

$$\tilde{g}_{\mu\nu} = e^{2\phi/\sqrt{6}}g_{\mu\nu}$$

$$S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} - \frac{1}{2} \nabla_\mu \phi \nabla^\mu \phi - V(\phi) \right] + S_m \left[\tilde{g}_{\mu\nu}, \psi_i^{SM} \right] \,,$$

At leading order this is a Higgs portal model

$$\begin{split} \tilde{\mathcal{L}} &= -\frac{1}{2} \, \tilde{g}^{\mu\nu} \, \partial_{\mu} \tilde{H} \, \partial_{\nu} \tilde{H} \, + \, \tilde{g}^{\mu\nu} \, \tilde{H} \, \partial_{\mu} \tilde{H} \, \partial_{\nu} \ln A(\phi) \\ &- \frac{1}{2} \, \tilde{g}^{\mu\nu} \, \tilde{H}^2 \, \partial_{\mu} \ln A(\phi) \, \partial_{\nu} \ln A(\phi) \\ &+ \frac{1}{2} \, \mu_H^2 \, A^2(\phi) \, \tilde{H}^2 \, - \, \frac{\lambda_H}{4!} \, \tilde{H}^4 \, - \, \frac{3}{2} \, A^4(\phi) \, \frac{\mu_H^4}{\lambda_H} \\ &- \, \bar{\tilde{\psi}} i \, \tilde{\tilde{\phi}} \, \tilde{\psi} \, - \, y \, \bar{\tilde{\psi}} \tilde{H} \, \tilde{\psi} \, , \end{split}$$

CB, Copeland, Millington, Spannowsky. JCAP 11 (2018) 036.

Baker, Psaltis, Skordis. ApJ 802 63, 2015

Non-linearities and Screening

$$V(r) = -\frac{G\alpha m_1 m_2}{r} e^{-m_{\phi} r}$$

• Locally weak coupling Symmetron and varying dilaton models

Pietroni (2005). Olive, Pospelov (2008). Hinterbichler, Khoury (2010). Brax et al. (2011).

• Locally large mass Chameleon models

Khoury, Weltman (2004).

Locally large kinetic coefficient Vainshtein mechanism, Galileon and k-mouflage models

Vainshtein (1972). Nicolis, Rattazzi, Trincherini (2008). Babichev, Deffayet, Ziour (2009).

Thin Shell Effect

 $V(r) = -\frac{G\alpha m_1 m_2}{r} e^{-m_{\phi} r}$

Change the way in which matter sources the scalar field

Large objects are 'screened' from the 5th force

Testing the Equivalence Principle

Do large objects and small objects fall at the same rate?

Image credit: Theresa Knott

f(R) SCREENING IN GALAXIES

f(R) with Screening

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left[R + f(R) \right] + S_m[\tilde{g}] \,,$$

Use Hu-Sawicki model that recovers ACDM above a curvature threshold

$$f(R) = -\frac{am^2}{1 + (R/m^2)^{-b}}$$

$$a = -\frac{4\Omega_{\Lambda}^2}{(\Omega_m + 4\Omega_{\Lambda})^2} \frac{1}{f_{R0}} \qquad m^2 = -\frac{3H_0^2(\Omega_m + 4\Omega_{\Lambda})^2}{2\Omega_{\Lambda}c^2} f_{R0}$$

Static equation of motion for scalar mode is

$$\nabla^2 f_R = \frac{1}{3} \left(\delta R - \frac{8\pi G}{c^2} \delta \rho \right) \qquad \qquad \delta R = R_0 \left[\sqrt{\frac{f_{R0}}{f_R}} - 1 \right]$$

Hu & Sawicki. Phys. Rev. D 76 (2007) 064004

Understanding Screening

Integrate equation of motion

$$\nabla^2 f_R = \frac{1}{3} \left(\delta R - \frac{8\pi G}{c^2} \delta \rho \right)$$

from infinity to the 'screening radius' where field and its derivatives vanish

$$\chi = -\frac{3}{2}f_{R0} = -\frac{1}{c^2} \left(\Phi_N(r_s) + r_s \Phi'_N(r_s) \right)$$

Object is screened if:

 $\chi\,<\,|\Phi_N|/c^2$

Derivation makes a number of assumptions including: negligible scalar mass, constant coupling function, spherical NFW halo ...

Constraints on f(R)

CB & Sakstein. Living Rev.Rel. 21 (2018) 1, 1

Equivalence principle violating gas-star offsets [ALFALFA & NASA Sloan Atlas (NSA)], and resulting warps of galactic disc [NSA]

Newtonian potential from the virial velocity

Desmond, Ferreira. Phys.Rev.D 102 (2020) 10, 104060. See also: Landim, Desmond, Koyama, Penny arXiv:2407.08825

Image credit: Bradley March

Equivalence principle violating gas-star offsets [ALFALFA & NASA Sloan Atlas (NSA)], and resulting warps of galactic disc [NSA]

Newtonian potential from the virial velocity

Desmond, Ferreira. Phys.Rev.D 102 (2020) 10, 104060. See also: Landim, Desmond, Koyama, Penny arXiv:2407.08825

"We conclude that this model can have no relevance to astrophysics or cosmology."

Desmond, Ferreira. Phys.Rev.D 102 (2020) 10, 104060. See also: Landim, Desmond, Koyama, Penny arXiv:2407.08825

Fifth Force Screening on Galactic Scales

CB, March, Naik. JCAP 04 (2024) 004

CHAMELEON SCREENING IN THE LABORATORY

The Chameleon

A scalar field with canonical kinetic terms, non-linear potential, and direct coupling to matter

$$S_{\phi} = \int d^4 x \sqrt{-g} \left(-\frac{1}{2} (\partial \phi)^2 - V(\phi) - A(\phi) \rho_{\rm m} \right)$$
$$V(\phi) = \frac{\Lambda^5}{\phi}, \quad A(\phi) = \frac{\phi}{M} ,$$

Khoury, Weltman. (2004). Image credit: Nanosanchez

Varying Mass

Dynamics governed by an effective potential

$$V_{\rm eff} = \frac{\Lambda^5}{\phi} + \frac{\phi}{M}\rho$$

Non-linearities in the potential mean that the mass of the field depends on the local energy density

The Scalar Potential

Around a static, spherically symmetric source of constant density

$$\phi = \phi_{\rm bg} - \lambda_A \frac{1}{4\pi R_A} \frac{M_A}{M} \frac{R_A}{r} e^{-m_{\rm bg}r}$$

$$\lambda_{A} = \begin{cases} 1 , & \rho_{A} R_{A}^{2} < 3M\phi_{\rm bg} \\ 1 - \frac{S^{3}}{R_{A}^{3}} \approx 4\pi R_{A} \frac{M}{M_{A}} \phi_{\rm bg} , & \rho_{A} R_{A}^{2} > 3M\phi_{\rm bg} \end{cases}$$

This determines how 'screened' an object is from the chameleon field

Ideal experiments use unscreened test masses e.g. atomic nuclei, neutrons, microspheres, diffuse gas

Why Atom Interferometry?

In a spherical vacuum chamber, radius 10 cm, pressure 10⁻¹⁰ Torr

Atoms are unscreened above black lines (dashed = caesium, dotted = lithium)

CB, Copeland, Hinds. JCAP 03 042 (2015)

Laboratory Searches – EP violation

Jaffe, Haslinger, Xu, Hamilton, Upadhye, Elder, Khoury, Müller. (2017) Rider, Moore, Blakemore, Louis, Lu, Gratta. (2016) Ivanov, Hollwieser, Jenke, Wellenzohen, Abele (2013) For a review see CB & Sakstein (2017). Brax, Casas, Desmond, Elder. (2022)

Laboratory Searches – Short Range Forces

Upadhye (2012). Kapner et al. (2006).Brax et al. (2007). Elder et al. (2019). Yin et al. (2022) **For a review** see CB & Sakstein (2017). Brax, Casas, Desmond, Elder. (2022) ²⁹

Panda, Tao, Ceja, Khoury, Tino, Muller. Nature 631, 515–520 (2024) For a review of constraints see: Brax, Davis, Elder. Phys. Rev. D 107 (2023) 084025

Summary

Explanations for dark energy, dark matter and other modifications of gravity often introduce new scalar fields

Corresponding long range forces are not seen

Screening mechanisms (non-linearities) hide these forces from fifth force searches

Can still be detected in suitably designed experiments and observations

But care needed to make sure theoretical accuracy matches observational precision

Testing the Equivalence Principle

Do large objects and small objects fall at the same rate?

Image credit: Theresa Knott

Can we forbid a coupling to matter?

Yes, through scale invariance! But then all mass scales must arise spontaneously

Soft breaking allowed, but constrained by observations

Suggestions for how to preserve this invariance at the loop level – but renormalisation then becomes challenging

Shaposhnikov, Zenhausern, 2009. Ghilencea, 2016. Ghilenceas, Lalak, Olszewski, 2016. Ferreira, Hill, Ross, 2017.

Chameleon Screening

The increased mass makes it hard for the chameleon field to adjust its value

The chameleon potential well around 'large' objects is shallower than for canonical light scalar fields

CB, Copeland, Stevenson. (2015)

Testing Gravity on Cosmological Scales

For example: Parameterise modifications to the Poisson and lensing equations

Dark Energy Survey Year 3 Results, Phys. Rev. D 107 (2022) 083504

CB, March, Naik. arXiv:2310.19955

Screening Surfaces

Yukawa Fifth Forces

A long-range Yukawa fifth force is excluded to a high degree of precision in the solar system

Scalar Field Inside a Galaxy

NFW dark matter halo, plus double exponential disc Define a galaxy in terms of its virial mass, use known empirical relations to derive other properties

