

STANDARD MODEL AT THE LHC Rome, May 7-10, 2024

Carlos Vico Villalba on behalf of the CMS collaboration

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

Introduction. Evolution of measurements at the LHC.

- We learned **a lot of electroweak physics** in Run 2.
 - ~140 fb⁻¹ of data recorded.
- July 2022: the new Run 3 of the LHC started.
 - At a new center of mass energy of 13.6 TeV!
- With new data, we can extend further our knowledge of the standard model.
 - Expected. Stat unc reduced by factor $\sim \sqrt{2}$
 - New strategies have been developed
 → expected improvement in the systematics as well.
 - Possible combinations Run 2 + Run 3

Overview of CMS cross section results

- Of course, most of these improvements will come by the late stages of Run 3, when we will have had collected ~2 times the luminosity of Run 2.
- In the meantime, it's crucial for the LHC physics programme to continue producing scientifically meaningful results, because that way we **test our knowledge on the standard model, as well as our detector performance.**
- Goal for this talk: to update on the current status of CMS in electroweak measurements using Run 3 data.

Z cross section measurement at 13.6 TeV

- Physicists have been looking at the Z boson for decades.
- From a theoretical point of view:
 - Constraining of PDFs.
 - Test perturbative and non perturbative effects of higher order contributions in QCD.
 - Parton shower effects.
 - Anomalous triple gauge couplings.
- From a experimental point of view.
 - Z boson factory ($\sigma_Z \sim nb$).
 - Ideal setup for calibration of many objects.
- So measuring Z (and W) cross sections is important for the LHC programme!
- <u>See Miguel's talk from monday</u>

SMP-22-017Z cross section measurement at 13.6 TeV

- A measurement of the Z boson production cross section was performed by the CMS experiment at the beginning of Run 3.
- Goal: to measure the Z boson production rate at a brand new center of mass energy regime.

- **Object selection:** optimized for $Z \rightarrow \mu^+ \mu^-$
 - Exactly two reconstructed muons passing "tight" quality criteria [JINST 13 (2018) P06015].
 - Opposite sign

SMP-22-017

- p_T > 25 GeV, $|\eta|$ < 2.4
- $m_{\mu\mu} \in [60, 120] \text{ GeV}$
- Inclusive in jets and b tags.
- **Corrections:** particularly delicate in early analyses.
 - Muon efficiency
 - Scale and energy.
 - Trigger prefiring.
 - Pileup
- Strategy:
 - Maximum likelihood fit to the $m_{\mu\mu}$ distribution.

SMP-22-017

- Measurement of the total cross sections times branching ratio are presented.
- In a fiducial volume ($m_{\mu\mu} \in [60, 120]$ GeV) and in a total volume.
- Measurement dominated by systematics.
- Well in agreement with SM.

Courses	I in contain $tr(0/)$
Source	Uncertainty (%)
Muon efficiencies	0.83
PDF, QCD scale and parton shower	0.53
Finite size of MC samples (bin-by-bin)	0.35
tt background	0.16
EWK background	0.12
Pileup	0.08
Muon momentum correction	0.08
Combined syst. uncertainty	0.92
Luminosity	2.3
Stat. uncertainty	0.06

$$\begin{split} (\sigma_{\rm fid}\mathcal{B})_{\rm measured} &= (0.7635 \pm 0.0004({\rm stat}) \pm 0.0069({\rm syst}) \pm 0.0176({\rm lumi}))\,{\rm nb}, \\ (\sigma_{\rm fid}\mathcal{B})_{\rm predicted} &= (0.7666 \pm 0.0065({\rm PDF})^{+0.0021}_{-0.0045}({\rm scale}))\,{\rm nb}, \end{split}$$

$$\begin{split} (\sigma_{\rm tot}\mathcal{B})_{\rm measured} &= (2.010 \pm 0.001({\rm stat}) \pm 0.018({\rm syst}) \pm 0.046({\rm lumi}) \pm 0.007({\rm theo}))\,{\rm nb}, \\ (\sigma_{\rm tot}\mathcal{B})_{\rm predicted} &= (2.018 \pm 0.012({\rm PDF})^{+0.018}_{-0.023}({\rm scale}))\,{\rm nb}, \end{split}$$

SMP-24-001

- Measurement of W-boson pair production cross sections is an important test of the standard model.
- WW production is interesting for various reasons.
- From a theoretical point of view:
 - Self couplings between electroweak bosons.
 - Large background to Higgs measurements.

- From an experimental point of view:
 - Proof that we can already do complex analyses in Run 3 using a wide variety of physics objects and corrections.
 - And with great precission!

Run 3 provides standard model with new victory at the energy frontier (physics briefing)

- **Goal:** to provide a competitive result of the inclusive cross section, as well as a report on inclusive and normalized differential cross sections.
- The measurement is performed this time using the whole 2022 dataset recorded by CMS (~35 fb⁻¹).
- Target topology: $W^+W^- \rightarrow e^{\pm}\mu^{\mp}$.
 - One signal region is defined to maximize signal purity.
 - Several control regions are already defined to constraint effect of main backgrounds.
 - TOP, $ZZ \rightarrow \tau\tau$, non prompt, WZ and $ZZ \rightarrow \ell_{light} \ell_{light} \nu\nu$

Quantity	WW SR	One/two b-tags CRs	Z ightarrow au au CR	Same-sign CR	Variable	WZ CR	ZZ CR
Number of tight leptons	Strictly 2			Number of tight leptons	Strictly 3	Strictly 4	
Additional loose leptons		0			Additional loose leptons	-	0
Lepton charges		Opposite		Same	Lepton $p_{\rm T}$	> 25/10/20 GeV	> 25/20/10/10 GeV
$p_{\mathrm{T}}^{\ell \max}$	> 25 GeV		$ m_{\ell\ell} - m_{\mathcal{T}} $	< 15 GeV	< 15 GeV (both pairs)		
$p_{\mathrm{T}}^{\ell\mathrm{min}}$	> 20 GeV		mag	> 100 GeV	-		
$m_{\ell\ell}$	> 85 GeV	$> 85 \mathrm{GeV}$	< 85 GeV	$> 85 \mathrm{GeV}$	m _{3l}	/ 100 801	> 150 CeV
$p_{\mathrm{T}}^{\ell\ell}$	_	_	< 30 GeV	—	$m_{4\ell}$		> 150 Gev
Number of b-tagged jets	0	1/2	0	0	$p_{\rm T}^{\rm mas}$	$> 30 \mathrm{GeV}$	-
NJ	$0/1/2/ \ge 3$		Number of b-tagged jets		0		

Looking into some distributions...

- First **complete** look into an electroweak phase space after Run 2.
- What is meant by complete here: Well understood...
 - ... dataset and corrections.
 - ... montecarlo modelling.
 - ... treatment of systematics.
- Agreement is certainly looking good!
- This is the result of a really great effort from many people in CMS.

SMP-24-001

- The inclusive WW cross section is extracted from a maximum likelihood fit to the observed yields as a function of the number of jets.
- The fit is performed simultaneously to the signal region and all control regions.

SMP-24-001

- The unfolding to particle level is performed using likelihood-based unfolding.
- Fiducial inclusive and normalized cross sections are extracted in a fiducial region that mimics the selection used at detector level.
- First ever comparison with MiNNLO+PS generator.
 - Good agreement with SM is reported.

Observable	Requirement	
Lepton origin	Direct decay of a W boson	
Lepton definition	Dressed-leptons ($e^{\pm}\mu^{\mp}$)	
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}}^{\ell\mathrm{max}} > 25\mathrm{GeV}^{\ell}$	
Trailing lepton $p_{\rm T}$	$p_{\mathrm{T}}^{{ar \ell}\mathrm{min}}>20\mathrm{GeV}$	
$ \eta $ of leptons	$ \eta < 2.5$	
Dilepton mass	$m_{\ell\ell} > 85 \mathrm{GeV}$	
Jet $p_{\rm T}$	$p_{\rm T}^{\rm j} > 30{ m GeV}$	
$ \eta $ of jets	$ \eta^{j} < 2.5$	
Jet-lepton removal	$\Delta R(\mathbf{j}, \ell) > 0.4$	

Observable	Expected	Observed
Cross section (fb)	$812 \pm 34(31, 15)$	$813 \pm 35(32, 15)$
0-jet fraction	$0.648 \pm 0.015 (0.012, 0.009)$	$0.640 \pm 0.016 (0.013, 0.009)$
1-jet fraction	$0.256 \pm 0.013(0.008, 0.010)$	$0.243 \pm 0.013(0.009, 0.010)$
\geq 2-jet fraction	$0.096 \pm 0.011(0.008, 0.008)$	$0.119 \pm 0.011 (0.008, 0.008)$

Conclusions

- A summary on the status of electroweak measurements in CMS during Run 3 has been presented.
 - Z boson production using the first few runs of Run 3
 - Measurements of WW inclusive and differential cross sections using the 2022 dataset.
- **General conclusion**: results are in good agreement with the SM prediction.
 - As expected!
 - This proves that after the long shutdown, CMS is still working at excellent performance.
 - We know our detector.
 - We are able to start measuring at high precission already with 1/10th of the total expected lumi.
- Of course, more results are to come with much data.
- The analyses already allow to expect very promising results for the rest of Run 3.

Stay tuned!

Backup