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Outline of the talk

 ● Precision Physics with the Drell-Yan processes at hadron colliders

 ● Precision predictions for the Drell-Yan processes in the Standard Model

2



3

V

Xa

b

p

p

l

l̄

         ·Test of perturbative QCD

         ·Determination of the proton structure

         ·Discovery of  W and Z bosons (1983)

         ·High-precision determination of W and Z properties

         ·Background to New Physics searches

Lepton-pair Drell-Yan production at hadron colliders
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Lepton-pair transverse momentum distribution
 ·A crucial role in QCD tests and precision EW measurements (  in particular) is played by the  distribution

 ·The impressive experimental precision is a formidable test of the theory predictions, QCD in first place

 ·At per mille level higher-order QCD resummation matched with fixed order corrections

                             non-perturbative QCD effects and heavy quarks corrections                       are relevant

                             EW corrections
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Fig. 2 The distribution of events passing the selection requirements
in the electron channel (left) and muon channel (right) as a function
of dilepton transverse momentum (upper row) and φ∗

η (lower row). The
MC signal sample is simulated using Powheg+Pythia8. The statistical

uncertainties of the data points are generally smaller than the size of the
markers. The predictions are normalized to the integral of the data and
the total experimental uncertainty of the predicted values is shown as a
grey band in the ratio of the prediction to data

ties are considered correlated between bins of p##
T and φ∗

η .
An exception are the components of the reconstruction and
identification efficiencies which have a significant statistical
component due to the limited number of events in the data
samples used to derive the efficiency corrections. Uncertain-
ties related to electron or muon reconstruction and identifica-
tion are always assumed to be uncorrelated with each other.
They dominate the uncertainty in the fiducial cross-section
measurement.

The uncertainties in the MC background estimates are
obtained by independently varying the theory cross-sections
used to normalize the corresponding samples and observing
the effect on the measured p##

T and φ∗
η cross-sections. These

background uncertainties are considered correlated between
bins of p##

T and φ∗
η and between the electron and muon chan-

nels. As described in Sect. 3.4, the uncertainty in the multijet
background in the electron channel is obtained by changing
the input range of the template used to estimate the multijet

background. For the muon channel, the measurement is per-
formed again with a modified isolation variable used in the
normalization procedure. The differences between the nomi-
nal and modified measurements are used as uncertainty. The
estimated multijet backgrounds are assumed to be uncorre-
lated between the channels.

An uncertainty is derived to cover the mis-modelling of
the simulated pile-up activity following the measurement of
the cross-section of inelastic pp collisions [68]. Also, the
uncertainty in modelling the distribution of the longitudinal
position of the primary vertex is considered. These uncertain-
ties are treated as correlated between the electron channel and
muon channel.

The uncertainty from the unfolding method is determined
by repeating the procedure with a different simulation where
the nominal particle-level spectrum is reweighted so that the
simulated detector-level spectrum is in good agreement with
the data. The modified detector-level distribution is unfolded
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Fig. 3 The systematic uncertainties for the electron channel measure-
ment (left) and muon channel measurement (right) for the normalized
p!!

T (upper row) and normalized φ∗
η (lower row). The statistical uncer-

tainties are a combination of the uncertainties due to limited data and

MC sample sizes. The p!!
T distribution is split into linear and logarithmic

scales at 30 GeV. Some uncertainties are larger than 2% for p!!
T > 200

GeV and hence cannot be displayed. The corresponding uncertainties
are also summarized in Table 4

Table 3 Measured integrated
cross-section in the fiducial
volume in the electron and muon
decay channels at Born level
and their combination as well as
the theory prediction at NNLO
in αS using the CT14 PDF set

Channel Measured cross-section × B(Z/γ ∗ → !!) Predicted cross-section × B(Z/γ ∗ → !!)
(value ± stat. ± syst. ± lumi.) (value ± PDF ± αS ± scale ± intrinsic)

Z/γ ∗ → ee 738.3 ± 0.2 ± 7.7 ± 15.5 pb

Z/γ ∗ → µµ 731.7 ± 0.2 ± 11.3 ± 15.3 pb

Z/γ ∗ → !! 736.2 ± 0.2 ± 6.4 ± 15.5 pb 703+19
−24

+6
−8

+4
−6

+5
−5 pb [72]

nels.3 The combined precision is between 0.1% and 0.5%
for p!!

T < 100 GeV, rising to 10% towards the high end
of the spectrum, where the overall precision is limited by
the data and MC sample size. The combined results for
both distributions are presented in Table 4 including sta-
tistical and bin-to-bin uncorrelated and correlated system-
atic uncertainties. The measurement results are reported at
Born level and factors kdr, the binwise ratio of dressed and

3 The χ2/Ndof is still good when taking into account only bins with
p!!

T > 50 GeV.

born level results, are given to transfer to the dressed particle
level.

5.2 Comparison with predictions

The integrated fiducial cross-section is compared with a
fixed-order theory prediction that is computed in the same
way as in Ref. [76]. The speed-optimized DYTurbo [77]
version of the DYNNLO 1.5 [10] program with the CT14
NNLO set of PDFs [78] is used to obtain a prediction at
next-to-next-to-leading order (NNLO) in αS in the Gµ EW
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Charge asymmetry in charged-current Drell-Yan

·An important role in the determination of the proton structure is played by the charge-asymmetry rapidity distribution

      ▻ needed to improve the flavour separation

      ▻ precise results at parton level for this quantity make its contribution to the PDF fit more significant

           → importance of NNLO and N3LO calculations

      ▻ in a fiducial volume the rapidity and transverse momentum dependencies are connected by kinematics  

           →  impact on the  determinationmW

5

mean zero, but a reduced uncertainty after the likelihood
profiling procedure, i.e., width smaller than unity. Finally,
the points representing the observed postfit values of the
parameters may have a mean different from zero, indicating
a pull of the associated systematic uncertainty, and a width
smaller than 1.

Such a result can be obtained in both the helicity and the
double-differential cross section fits, and they indeed
provide a consistent set of PDF nuisance parameter values.
The ones reported in this section, shown in Fig. 20, come
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FIG. 17. Absolute differential cross section as a function of jηlj
for the Wþ → lþν (left) and W− → l−ν̄ channel (right). The
measurement is the result of the combination of the muon and
electron channels. The lower panel in each plot shows the ratio of
observed and expected cross sections. The colored bands re-
present the prediction from MadGraph5_aMC@NLO with the ex-
pected uncertainty from the quadrature sum of the PDF ⊕ αS
variations (blue) and the μF and μR scales (bordeaux).
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FIG. 18. Absolute differential W boson charge asymmetry as a
function of jηlj. The measurement is the result of the combination
of the muon and electron channels. The lower panel shows the
difference of observed and expected charge asymmetry. The
colored bands represent the prediction from MadGraph5_aMC@NLO

with the expected uncertainty from the quadrature sum of the
PDF ⊕ αS variations (blue) and the μF and μR scales (bordeaux).
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FIG. 19. Ratio of the measured over predicted absolute in-
clusive cross section in the fiducial region 26 < pl

T < 56 GeV
and jηlj < 2.5, charge-integrated, charge-dependent, and the
ratio for Wþ and W−. The measurement is the result of the
combination of the muon and electron channels. The colored
bands represent the prediction from MadGraph5_aMC@NLO

with the expected uncertainty from the quadrature sum of the
PDF ⊕ αS variations (blue) and the μF and μR scales (bordeaux).
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Figure 3: Comparison of the LHC measurements of: (a)– W-boson mass <, , (b)– sine of Wienberg
e�ective weak mixing angle B8=

2
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4 5 5 with previous measurements and global electroweak fit values [19].
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Figure 4: Absolute di�erential W-boson charge asymmetry as a function of |[ | measured by ATLAS (a)
[21] and CMS (b) [22]. The lower panel in each plot shows the ratio (di�erence for (b)) of observation and
expectation for the asymmetry and the relative uncertainty.

This phenomena is called W-boson charge asymmetry and could be defined asA = f
+
[�f�

[/f+
[+f�

[ ,

where f
+(�)
[ = 3f+(�)

3[ – pseudorapidity di�erential cross section of ,+(�) -boson production. This
variable provide an important constraints on the ratio of u- and d-quark distributions in the extended
region of the Bjorken x scaling variable and could be used for extraction of B8=2

\
;
4 5 5 value. The

W boson charge asymmetry was measured as a function of the lepton pseudorapidity by ATLAS atp
B = 8 TeV [21] and by CMS at

p
B = 13 TeV [22] (Fig. 4. The measured asymmetry is in a good

agreement with calculations at NLO and NNLO.

The spatial characteristics of Z-boson decay (@@̄ ! W
¢//0 ! ;

+
;
�) [23] products also can

be used for studying the parton distribution functions. The double di�erential cross section of this
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Figure 5.14: Same as Fig. 5.13, now for the absolute W+, W� and Z cross-sections. All predictions are
normalized to the experimental central value.

5.6 Higgs production

We finally study the PDF dependence of predictions for inclusive Higgs production at LHC
13 TeV, and for Higgs pair production, which could also be within reach of the LHC in the
near future [142,143]. We study single Higgs in gluon fusion, associated production with gauge
bosons and top pairs and vector boson fusion, and double Higgs production in gluon fusion.
In each case, we show predictions normalized to the NNPDF3.1 result, and only show PDF
uncertainties. All calculations (including ABMP16) are performed with ↵s = 0.118.

The settings are the following. For gluon fusion we perform the calculation at N3LO using
ggHiggs [144–146]. Renormalization and factorization scales are set to µF = µR = mh/2 and
the computation is performed using rescaled e↵ective theory. For associate production with a
tt̄ pair we use MadGraph5 aMC@NLO [147], with default factorization and renormalization scales
µR = µF = HT /2, where HT is the sum of the transverse masses. For associate production with
an electroweak gauge boson we use vh@nnlo code [148] at NNLO with default scale settings.
For vector boson fusion we perform the calculation at N3LO using proVBFH [149, 150] with the
default scale settings. Finally, for double Higgs production at the FCC 100 TeV the calculation
is performed using MadGraph aMC@NLO.

Results are shown in Figs. 5.15-5.16. For gluon fusion and tt̄h, which are both driven by the
gluon PDF, the former for x ⇠ 10�2, and the latter for large x, results from the various PDF
sets agree within uncertainties; NNPDF3.0 and NNPDF3.1 are also in good agreement, with
the new prediction exhibiting reduced uncertainties. The spread of results is somewhat larger
for associate production with gauge bosons. The NNPDF3.1 prediction is about 3% higher than
the NNPDF3.0 one, with uncertainties reduced by a factor 2, so the two cross-sections barely
agree within uncertainties. Also, of the three PDF sets entering the PDF4LHC15 combination,
NNPDF3.0 gave the smallest cross-section, but NNPDF3.1 now gives the highest one: V H

production is driven by the quark-antiquark luminosity, and this enhancement for MX ' 200
GeV between 3.0 and 3.1 could indeed be observed already in Fig 5.8. For VBF we also find that
the NNPDF3.1 result is larger, by about 2%, than the NNPDF3.0 one, with smaller uncertainties,
and it is in better agreement with other PDF sets. Finally, for double Higgs production in gluon
fusion the central value with NNPDF3.1 increases slightly but is otherwise consistent with the
NNPDF3.0 prediction, and here there is also good agreement for all the PDF sets.
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NNPDF collaboration, arXiv:1706.00428


on-shell gauge boson production

as a PDF benchmark
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Relevance of Neutral Current  Drell-Yan measurements: searches for New Physics signals

High invariant masses (before our calculations)

4
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arXiv:2103.02708

• Modelling of the SM background crucial for 
new physics searches 

• Measurement  of the dilepton invariant mass 
spectrum expected at  at !(1%) mℓℓ ∼ 1 TeV
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Is the SM prediction under control at the O(0.5%) level
in the TeV region of the  distribution ?

Do we precisely know what is the SM, 
so that we can significantly claim to observe a discrepancy ?

mℓℓ
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At the end of High-Luminosity LHC we will be able 
to test the TeV region with data at per mille level
i.e.
to test the SM at the level of its quantum corrections



Testing the Standard Model with the W-boson mass

The W boson mass can be predicted 

in terms of the input parameters of the model, 

including the quantum effects Standard Model or beyond

m2
W =

m2
Z

2
1 + 1 −

4πα

Gμ 2 m2
Z

(1+Δr)
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A discrepancy between the Standard Model and experimental values 

may hint about the presence of New Physics:  

new BSM particles contributing to  could explain the differenceΔr

William Barter (Edinburgh) Slide 4mW combination and comparison 23/8/23

Existing Measurements

• Challenging measurements – 
typically take multiple years to 
deliver.
• Three recent measurements:

• LHCb (2021) – uses 2016 dataset.
• CDF (2022) – uses Tevatron 

legacy dataset.
• ATLAS (2023) – reanalysis of 2011 

dataset [not used here].
• Clear tension between the existing 

measurements. 
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A discrepancy between the Standard Model and experimental values 

may hint about the presence of New Physics:  

new particles contributing to  could explain the differenceΔr

William Barter (Edinburgh) Slide 4mW combination and comparison 23/8/23

Existing Measurements

• Challenging measurements – 
typically take multiple years to 
deliver.
• Three recent measurements:

• LHCb (2021) – uses 2016 dataset.
• CDF (2022) – uses Tevatron 

legacy dataset.
• ATLAS (2023) – reanalysis of 2011 

dataset [not used here].
• Clear tension between the existing 

measurements. 

Challenging theoretical calculations are needed for both:

the theoretical predictions and the distributions used to fit the data
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The W boson mass: theoretical prediction
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combination of the W and Z mass counterterms in eq. (3.22) once the 1/ε poles in δ(1)m2
W

and δ(1)m2
Z are expressed in terms of MS quantities.

The two-loop counterterm δ(2)m2
Z includes also the contribution from the mixed γ Z

self-energy or

δ(2)m2
Z = Re



A(1)
ZZ(m

2
Z) +A(2)

ZZ(m
2
Z) +

(
A(1)

γZ (m
2
Z)

m2
Z

)2


 (3.25)

so that YMS up to the two-loop level reads

YMS = Y (1)

MS
+ Y (2)

MS
, (3.26)

Y (1)

MS
= Re

[
A(1)

WW (m2
W )

m2
W

− ĉ2
A(1)

ZZ(m
2
Z)

m2
W

]

MS

, (3.27)

Y (2)

MS
= Re



A
(2)
WW (m2

W )

m2
W

− A(2)
ZZ(m

2
Z)

m2
Z

+

(
A(1)

γZ

m2
Z

)2




MS

. (3.28)

The one-loop contribution to YMS is reported in eq. (A.4) of the appendix. As before

we give the higher order terms via a simple formula:

Y h.o.
MS

(mZ) = 10−4 (y0 + y1ds+ y2dt+ y3dH + y4das) (3.29)

where dt = [(Mt/173.34GeV)2 − 1] and

y0 = −18.616753 y1 = 15.972019, y2 = −16.216781, y3 = 0.0152367, y4 = −13.633472 .

(3.30)

Eq. (3.29) includes, besides the Y (2)

MS
contribution from eq. (3.28), the complete O(α̂αs)

corrections, the leading three-loop O(α̂α2
sM

2
t /m

2
W ) contribution [7, 8] and the subleading

O(α̂3M6
t /m

6
W ) and O(α̂2αsM4

t /m
4
W ) [17, 18], and the four-loop O(α̂α3

sM
2
t /m

2
W ) contribu-

tion [19, 20]. It approximates the exact result to better than 0.075% for ŝ2 on the interval

(0.23− 0.232) when the other parameters in eq. (3.29) are varied simultaneously within a

3σ interval around their central values.

4 Results

In this section we report our results for α̂, sin2θ̂W and mW . All results are presented as

simple parameterizations in terms of the relevant quantities whose stated validity refers

to a simultaneous variation of the various parameters within a 3σ interval around their

central values given in table 1. As a general strategy for the evaluation of the two-loop

contributions, where ĉ2 can be identified with c2, we have replaced in all the two-loop terms

mW with mZ ĉ. This choice gives rise to the weakest µ-dependence in mW .

The two-loop computation of the MS electromagnetic coupling from eq. (3.3) and of

sin2θ̂W from eq. (1.4) can be summarized by the following parameterizations

α̂(µ) = a0 + 10−3
(
a1dH + a2dT + a3das + a4da

(5)
)

(4.1)

sin2θ̂W (µ) = s0 + s1dH + s2dt+ s3dHdt+ s4das + s5da
(5) (4.2)
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µ = mZ µ = Mt

a0 (128.13385)−1 (127.73289)−1

a1 -0.00005246 -0.00005267

a2 -0.01688835 0.02087428

a3 0.00014109 0.00168550

a4 0.22909789 0.23057967

µ = mZ µ = Mt

s0 0.2314483 0.2346176

s1 0.0005001 0.0005016

s2 -0.0026004 -0.0001361

s3 0.0000279 0.0000514

s4 0.0005015 0.0004686

s5 0.0097431 0.0098710

Table 2. Coefficients for the parameterization of α̂(µ) (left table, eq. (4.1) in the text) and
sin2θ̂W (µ) (right table, eq. (4.2) in the text).

where da(5) = [∆α(5)
had(m

2
Z)/0.02750−1] and the ai and si coefficients are reported in table 2

for two different values of the scale µ. Eq. (4.1) approximates the exact result to better

than 1.1× 10−7 (1.2× 10−7) for µ = mZ (µ = Mt), while eq. (4.2) approximates the exact

result to better than 5.1× 10−6 (6.2× 10−6) for µ = mZ (µ = Mt).

From our results on α̂ and ŝ2 it is easy to obtain the values of the g and g′ coupling

constants at the weak scale, usually identified with Mt. They can be taken as starting points

in the study of the evolution of the gauge couplings via Renormalization Group Equations

(RGE) in Grand Unified Models and in the analysis of the stability of the Higgs potential

in the SM. Ref. [57] reports the values of the gauge coupling constants at the µ = Mt

scale, g(Mt) = 0.64822 and g′(Mt) = 0.35760, obtained using a complete calculation of

the two-loop threshold corrections in the SM. Here we find g(Mt) = 0.647550 ± 0.000050

and g′(Mt) = 0.358521 ± 0.000091. The difference between the two results, which should

be a three-loop effect, is more sizable than expected. However, the results of ref. [57]

were obtained using as input parameters Gµ and the experimental values of mZ and mW ,

while our result is obtained with a different set of input parameters, i.e. Gµ, α and mZ .

In our calculation mW is a derived quantity calculable from eq. (1.5). Moreover, as shown

below, our prediction for mW is not in perfect agreement with the present experimental

determination and therefore the gauge couplings extracted using the two different sets

of inputs parameters show some discrepancy. Indeed, using our prediction for mW in the

results of ref. [57] instead of the experimental result, we find that the difference between the

g (g′) computed in the two methods is one order of magnitude smaller than the two-loops

correction and two orders smaller than the one-loop correction to g (g′).

The two-loop determination of the W mass in the MS framework from eq. (1.5) can

be parameterized as follows

mW = w0 + w1dH + w2dH
2 + w3dh+ w4dt+ w5dHdt+ w6das + w7da

(5) (4.3)

with dh = [(mH/125.15 GeV)2−1]. The wi coefficients are reported in table 3 for µ = mZ .

Two different cases are considered. In the left column the coefficients refer to the standard

case of a simultaneous variation of all parameters within a 3σ interval around their central

values. The right column applies to the case where all parameters but the Higgs mass

are varied within a 3σ interval while the latter is varied between 50 and 450GeV. In the
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g (g′) computed in the two methods is one order of magnitude smaller than the two-loops
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(5) (4.3)
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Two different cases are considered. In the left column the coefficients refer to the standard

case of a simultaneous variation of all parameters within a 3σ interval around their central

values. The right column applies to the case where all parameters but the Higgs mass

are varied within a 3σ interval while the latter is varied between 50 and 450GeV. In the
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The hadronic contribution can be obtained from the experimental data on the cross section

in e+e− → hadrons by using a dispersion relation. Two recent evaluations of ∆α(5)
had(m

2
Z)

report very consistent results: ∆α(5)
had(m

2
Z) = (275.7 ± 1.0) × 10−4 [52], ∆α(5)

had(m
2
Z) =

(275.0 ± 3.3) × 10−4 [53]. We use the latter as reference value in our calculation. The

Π(p)
γγ term in eq. (3.6) includes the top contribution to the vacuum polarization plus the

two-loop diagrams in which a light quark couples internally to the W and Z bosons. This

contribution, as well as ReΠ(5)
γγ (m2

Z), can be safely analyzed perturbatively.

The one-loop contribution to∆α̂p(mZ) ≡ ∆α̂(mZ)−∆α(5)
had(m

2
Z) is reported in eq. (A.3)

of the appendix. The higher order contributions to ∆α̂p(mZ) are presented here as a sim-

ple formula that parametrizes the full result in terms of the top and the Higgs masses, the

strong coupling, and ŝ2:

∆α̂p, h.o.(mZ) = 10−4 (b0 + b1ds+ b2dT + b3dH + b4das) (3.7)

where

ds =

(
ŝ2

0.231
− 1

)
, dT = ln

(
Mt

173.34GeV

)
,

dH = ln
( mH

125.15GeV

)
, das =

(
αs(mZ)

0.1184
− 1

)
(3.8)

with

b0 = 1.751181 b1 = −0.523813, b2 = −0.662710, b3 = −0.000962, b4 = 0.252884 .

(3.9)

Eq. (3.7) includes the O(α) contribution2 to Π(b)
γγ (0) + Π(l)

γγ(0) + Π(p)
γγ (0) plus the O(αs)

corrections to Π(p)
γγ (0) and the O(αs, α2

s) corrections to ReΠ(5)
γγ (m2

Z) [54]. It approximates

the exact result to better than 0.045% for ŝ2 in the interval (0.23− 0.232) when the other

parameters in eq. (3.7) are varied simultaneously within a 3σ interval around their central

values, given in table 1.

3.2 ∆r̂W

The radiative parameter ∆r̂W enters the relation between the Fermi constant and the

W mass. We recall that the Fermi constant is defined in terms of the muon lifetime τµ as

computed in an effective 4-fermion V −A Fermi theory supplemented by QED interactions:

1

τµ
=

G2
µm

5
µ

192π3
F

(
m2

e

m2
µ

)
(1 +∆q)

(
1 +

3m2
µ

5m2
W

)
, (3.10)

where F (ρ) = 1 − 8ρ + 8ρ3 − ρ4 − 12ρ2 ln ρ = 0.9981295 (for ρ = m2
e/m

2
µ) is the phase

space factor and ∆q = ∆q(1) +∆q(2) = (−4.234 + 0.036) × 10−3 are the QED corrections

computed at one [55] and two loops [56]. The calculation of ∆r̂W requires the subtraction

of the QED corrections, matching the result in the SM with that in the Fermi theory

2We alert the reader that our Πγγ is defined with the e20 coupling extracted, see eqs. (3.1), (3.2); therefore

the O(α) contribution is actually due to two-loop diagrams.
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The best available prediction includes 
 the full 2-loop EW result, leading higher-order EW and QCD corrections,
 resummation of reducible terms
Missing 3-loop and 4-loop terms needed to reduce the uncertainties.

9

on-shell scheme       GeV   (Freitas, Hollik, Walter, Weiglein)

MSbar scheme.        GeV   (Degrassi, Gambino, Giardino)

parametric uncertainties  GeV due to the   values

mos
W = 80.353 ± 0.004

mMS
W = 80.351 ± 0.003

δmpar
W = ± 0.005 (α, Gμ, mZ, mH, mt)

Alessandro Vicini - University of Milano                                                                                                                                                                                                                                                      Roma SM@LHC, May 9th 2024
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Figure 8. Two-dimensional 68% (dark) and 95% (light) probability contours for V and f (from
darker to lighter), obtained from the fit to the Higgs-boson signal strengths and the EWPO.

Result 95% Prob. Correlation Matrix

W 1.00± 0.05 [0.89, 1.10] 1.00

Z 1.07± 0.11 [0.85, 1.27] �0.17 1.00

f 1.01± 0.11 [0.80, 1.22] 0.41 �0.14 1.00

Table 13. SM-like solution in the fit of W , Z , and f to the Higgs-boson signal strengths.

with custodial symmetry. We notice that theoretical predictions are symmetric under

the exchanges {W , f} $ {�W , �f} and/or Z $ �Z , where Z can flip the

sign independent of W , since the interference between the W and Z contributions to the

vector-boson fusion cross section is negligible. Hence we have considered only the parameter

space where both W and Z are positive. In this case, we ignore EWPO in the fit, since

setting W 6= Z generates power divergences in the oblique corrections, indicating that the

detailed information on the UV theory is necessary for calculating the oblique corrections.

We also consider the case in which we only lift fermion universality and introduce

di↵erent rescaling factors for charged leptons (`), up-type quarks (u), and down-type

quarks (d), while keeping a unique parameter V for both HV V couplings. In this case,

from the Higgs-boson signal strengths we obtain the constraints on the scale factors pre-

sented in table 14 and in the top plots of figure 10. By adding the EWPO to the fit, the

constraints become stronger, as shown in table 15 and in the bottom plots of figure 10.

In this case, the Higgs-boson signal strengths are approximately symmetric under the ex-

changes ` $ �`, d $ �d and/or {V , u} $ {�V , �u}. These approximate

symmetries follow from the small e↵ect of the interference between tau and/or bottom-

quark loops with top-quark/W loops in the Higgs-boson decay into two photons, as well

as the relatively small interference between bottom- and top-quark loops in gluon-fusion,

for |V,u,d,`| ⇠ 1. Moreover, we find that negative values of u are disfavoured in the fit.

Hence, in figure 10 we consider only the parameter space where all ’s are positive. Again,

– 17 –

Electroweak precision constraints at present and future colliders Jorge de Blas

b
V

 gδ
0 0.02 0.04

b A
 gδ

0.02−

0

0.02 68% Probability
95% Probability
99% Probability

HEP fit

b
L

 gδ
0.02− 0 0.02 0.04 0.06

b R
 gδ

0.02−

0

0.02

0.04

0.06
all

b
0R
0,b
FBA

bA

HEP fit

 
 

b
L

 gδ
 

b
R

 gδ
 

U
nc

er
ta

in
ty

4−10

3−10

2−10

1−10

 

Today
HL-LHC
ILC
CepC
FCCee (Z,unpolarized)
FCCee (Z+WW+tt)

HEPfit

 

Figure 2: (Left) 68%, 95%, and 99% probability contours for the dg
b

V
, dg

b

A
couplings. (Center) 68%

and 95% probability contours for dg
b

R
, dg

b

L
, together with the constraints from R

0
b
, A

0
FB

and Ab. (Right)
Expected sensitivities to dg

b

R
, dg

b

L
at future colliders. Different shades of the same colour correspond to

results including or neglecting the future theoretical uncertainties.

Result Correlation Matrix

dg
b

R
0.016±0.006 1.00

dg
b

L
0.002±0.001 0.90 1.00

Table 4: Results of the fit for the shifts in the left-
handed and right-handed Zbb̄ couplings.

Result Correlation Matrix

dg
b

V
0.018±0.007 1.00

dg
b

A
�0.013±0.005 �0.98 1.00

Table 5: Results of the fit for the shifts in the vector
and axial-vector Zbb̄ couplings.
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Figure 3: (Left) 1D probability distribution for kV derived from EWPD. (Center) Comparison of the 68%
and 95% probability contours for rescaled Higgs couplings to fermions (k f ) and vector bosons (kV ), from
EWPO and Higgs signal strengths (see [1] for details). (Right) Expected sensitivities to kV at future collid-
ers. Different shades of the same colour correspond to results including or neglecting the future theoretical
uncertainties.

We also find a preference for kV > 1, with 90% of probability. This imposes significant constraints
on composite Higgs models, which generate values of kV < 1, unless extra contributions to the
oblique parameters are present. It is noteworthy that, as can be seen in the central panel of Fig. 3,
the EWPO constraints still dominate the LHC run 1 bounds from Higgs signal strengths [1].

Finally, we consider the general parametrization of NP effects using the SM effective field
theory up to dimension 6. Assuming that the fields and symmetries of nature at energies below
a given cutoff L are those of the SM, the most general Lorentz and SM gauge invariant theory

4

A precise measurement of  and  constrains  several dim-6 operators 
contributing to Higgs and gauge interaction vertices.    
 Today still one of the strongest constraints

mW sin2 θeff

Low Energy observables:

Parity Violation: QW (
133
55 Cs, 205

81 Tl), QW (e)(Møller)

⌫ scatt. : gV,A(⌫µe), g2
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Λ: Cut-off of the EFT

February 16, 2018

EFT analyses with FCC precision

J. de Blasa†

aINFN, Sezione di Roma, Piazzale A. Moro 2, I-00185 Rome, Italy

Abstract

Materials for the talk presented at the FCC physics meeting on Feb. 19 2018.
EFT: E↵ects suppressed by �

q

⇤

�d�4

q = v, E < ⇤

1 Expected precision for EWPO at FCC-ee

Observable Expected uncertainty (Relative uncertainty)

MZ [GeV] 10
�4

(10
�6

)

�Z [GeV] 10
�4

(4 ⇥ 10
�5
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0
had [nb] 5⇥10
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)

Rb 0.00006 (3 ⇥ 10
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)

Rc 0.00026 (15 ⇥ 10
�4

)

Table 1: Expected sensitivities to Z-lineshape parameters and normalized partial decay widths.
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Effects  
suppressed by

Truncate at d=6: 59 types of operators (2499 counting flavor) 
W. Buchmüller, D. Wyler, Nucl. Phys. B268 (1986) 621
C. Arzt, M.B. Einhorn, J. Wudka, Nucl. Phys. B433 (1995) 41 
B.Grzadkowski, M.Iskrynski, M.Misiak, J.Rosiek, JHEP 1010 (2010) 085

First complete basis, aka Warsaw basis
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INFN - University of Padova

FCC Week 2018 
Amsterdam, April 11, 2018

The dimension-6 SMEFT

• The dimension 6 SMEFT: 

• LO new physics effects “start” at dimension 6  

• With current precision, and assuming Λ~TeV, sensitivity to d>6 is small

Power counting: EFT expansion in canonical dimension of operators
Particles and symmetries of the low-energy theory: SM
Assumes new physics is heavy + decoupling

de Blas et al, arXiv:1608.01509
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𝒪ϕWB = ϕ†σaϕBμνWa
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EWSB

gauge boson masses

h→ZZ, γ γ

Relevance of new high-precision measurement of EW parameters
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Theoretical predictions

for the Drell-Yan processes
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p
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l
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The factorisation theorems guarantee the validity of the above picture up to power correction effects

The interplay of QCD and EW interactions appears both in the partonic cross section and in the proton PDFs

Alessandro Vicini - University of Milano                                                                                                                                                                                                                                                      Roma SM@LHC, May 9th 2024

Lepton-pair Drell-Yan production at hadron colliders



The Drell-Yan cross section in a fixed-order expansion

13

                                                      
                                                                           
                                                                           
                                                                          

σ(h1h2 → ℓℓ̄ + X) = σ(0,0)+
αs σ(1,0) + α σ(0,1)+
α2

s σ(2,0) + α αs σ(1,1)+α2 σ(0,2)+
α3

s σ(3,0) + . . .

C.Duhr, B.Mistlberger, arXiv:2111.10379

Hamberg, Matsuura, van Nerveen, (1991)   
Anastasiou, Dixon, Melnikov, Petriello, (2003)

Catani, Cieri, Ferrera, de Florian, Grazzini (2009)

Baur, Brein, Hollik, Schappacher, Wackeroth (2001)

Altarelli, Ellis, Martinelli (1979)

Drell-Yan (1970)

R.Bonciani, L.Buonocore, M.Grazzini, S.Kallweit, N.Rana, F.Tramontano, AV, (2021)
T.Armadillo, R.Bonciani, S.Devoto, N.Rana, AV, (2022)

F.Buccioni, F.Caola, H.Chawdhry, F.Devoto, M.Heller, A.von Manteuffel, K.Melnikov, R.Röntsch, C.Signorile-Signorile, (2022)

T.Armadillo, R.Bonciani, S.Devoto, N.Rana, AV, (2024)

still missing
Sudakov high-energy approximations

Neutral Current

New!!! Charged-current 2-loop amplitude
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The resummation of QCD and QED corrections is another crucial topic  → see P.Torrielli’s talk



Mixed QCD-EW corrections to the Drell-Yan processes
Strong boost of the activities in the theory community in the last 4 years!  (references not covering the Monte Carlo developments)

 - pole approximation of the NNLO QCD-EW corrections
S.Dittmaier, A.Huss, C.Schwinn, arXiv:1403.3216, 1511.08016, 2401.15682


 - analytical total cross section including NNLO QCD-QED  and NNLO QED corrections
D. de Florian, M.Der, I.Fabre, arXiv:1805.12214


 - ptZ distribution including QCD-QED analytical transverse momentum resummation
L. Cieri, G. Ferrera, G. Sborlini, arXiv:1805.11948


 - fully differential on-shell Z production including exact NNLO QCD-QED corrections
M.Delto, M.Jaquier, K.Melnikov, R.Roentsch, arXiv:1909.08428


 - total Z production cross section in fully analytical form including exact NNLO QCD-EW corrections
R. Bonciani, F. Buccioni, R.Mondini, AV, arXiv:1611.00645, R. Bonciani, F. Buccioni, N.Rana, I.Triscari, AV, arXiv:1911.06200, R. Bonciani, F. Buccioni, N.Rana, AV, arXiv:2007.06518, arXiv:2111.12694


 - fully differential on-shell Z and W production including exact NNLO QCD-EW corrections
F. Buccioni, F. Caola, M.Delto, M.Jaquier, K.Melnikov, R.Roentsch, arXiv:2005.10221, A. Behring, F. Buccioni, F. Caola, M.Delto, M.Jaquier, K.Melnikov, R.Roentsch, arXiv:2009.10386, 2103.02671,


→  on-shell Z and W  production   as a first step towards full Drell-Yan                  

 - 2-loop virtual Master Integrals with internal masses
U. Aglietti, R. Bonciani, arXiv:0304028, arXiv:0401193,  R. Bonciani, S. Di Vita, P. Mastrolia, U. Schubert, arXiv:1604.08581, M.Heller, A.von Manteuffel, R.Schabinger arXiv:1907.00491,   S.Hasan, U.Schubert, arXiv:2004.14908, 

M.Long,R,Zhang,W.Ma,Y,Jiang,L.Han,,Z.Li,S.Wang, arXiv:2111.14130


 - New methods to solve the Master Integrals
M.Hidding, arXiv:2006,05510, D.X.Liu, Y.-Q. Ma, arXiv:2201.11669, T.Armadillo, R.Bonciani, S.Devoto, N.Rana,AV, arXiv: 2205.03345


 - Altarelli-Parisi splitting functions including QCD-QED effects
D. de Florian, G. Sborlini, G. Rodrigo, arXiv:1512.00612


- renormalization
G.Degrassi, AV, hep-ph/0307122,  S.Dittmaier,T.Schmidt,J.Schwarz, arXiv:2009.02229 S.Dittmaier, arXiv:2101.05154

→  mathematical and theoretical developments and computation of universal building blocks

14



Mixed QCD-EW corrections to the Drell-Yan processes

→ complete Drell-Yan
                   - neutrino-pair production including NNLO QCD-QED corrections
                                             L. Cieri, D. de Florian, M.Der, J.Mazzitelli, arXiv:2005.01315


                   - 2-loop NC and CC amplitudes
                                             M.Heller, A.von Manteuffel, R.Schabinger, arXiv:2012.05918 , T.Armadillo, R.Bonciani, S.Devoto, N.Rana,AV, arXiv: 2201.01754, 2405.00612 


                  - NNLO QCD-EW corrections to charged-current DY (2-loop contributions in pole approximation).
                                                 L.Buonocore, M.Grazzini, S.Kallweit, C.Savoini, F.Tramontano, arXiv:2102.12539


                  - NNLO QCD-EW corrections to neutral-current DY 
                                                 R.Bonciani, L.Buonocore, M.Grazzini, S.Kallweit, C.Savoini, N.Rana, F.Tramontano, AV, arXiv:2102.12539,  F. Buccioni, F. Caola, H.A.Chawdhry, F.Devoto, M.Heller, A.V.Manteuffel, K.Melnikov, R.Roentsch, C.Signorile-Signorile, arXiv:2203.11237


15

→ mixed QCD-QED resummation
                   - initial-state corrections
                                             L. Cieri,G.Ferrera, G.Sborlini,, arXiv:1805.11948, A.Autieri, L. Cieri,G.Ferrera, G.Sborlini,, arXiv:2302.05403


                    - initial and final state corrections
                                             L.Buonocore, L’Rottoli, P.Torrielli, arXiv:2404.15112


Strong boost of the activities in the theory community in the last 4 years!  (references not covering the Monte Carlo developments)
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scale variation at NNLO underestimated the true size of the N3LO corrections. We note,

however, that the size of the bands at NNLO was particularly small for the NCDY process,

often at the sub-percent level depending on the invariant masses considered.

In figure 7 we show the dependence of the cross section for Q = 100 GeV on one of the

two perturbative scales with the other held fixed at some value in the interval [Q/2, 2Q].

We observe a very good reduction of the scale dependence as we increase the perturbative

order, with only a very mild scale dependence at N3LO. Just like for the photon-only and

W cases, the bands from NNLO and N3LO do not overlap. 1

Figure 5: The K-factors ⌃N
k
LO

/⌃N
3
LO as a function of invariant masses 10 GeV Q 150

GeV for k  3. The bands are obtained by varying the perturbative scales by a factor of

two around the central µcent. = Q.

LO NLO

NNLO N3LO

200 400 600 800 1000 1200 1400 1600
0.95

0.975

1.

1.025

Q [GeV]

�
/�
N
3L
O

LHC 13TeV
PDF4LHC15_nnlo_mc
P P �e+e-+X
�cent.=Q

Figure 6: The K-factors ⌃N
k
LO

/⌃N
3
LO as a function of invariant masses Q 1.800 GeV

for k  3. The bands are obtained by varying the perturbative scales by a factor of two

around the central µcent. = Q.

1The leading order cross section does not depend on the strong coupling constant and consequently does

also not change with variation of the renormalisation scale. As a result the right panel of fig. 7 does not

show any band for the leading order cross section.

– 14 –

C.Duhr, B.Mistlberger, arXiv:2111.10379

Thanks to the N3LO-QCD results for the Drell-Yan cross section, scale variation band at the few per mille level at any Q

The PDFs are not yet at N3LO

This is promising, in view of the program of searches for deviation from the SM in the TeV range

What about NNLO QCD-EW and NNLO-EW corrections ?

QCD results: lepton-pair invariant mass

Alessandro Vicini - University of Milano                                                                                                                                                                                                                                                      Roma SM@LHC, May 9th 2024



Phenomenology of Neutral Current Drell-Yan including exact NNLO QCD-EW corrections
R.Bonciani, L.Buonocore, S.Devoto, M.Grazzini, S.Kallweit, N.Rana, F.Tramontano, AV,   arXiv:2106.11953 , Phys.Rev.Lett. 128 (2022) 1, 012002  and work  in preparation

Non-trivial distortion of the rapidity distribution (absent in the naive factorised approximation)

Large effects below the Z resonance (the factorised approximation fails)  →  impact on the  determination

O(-1.5%) effects above the resonance                                                    → ongoing precision studies in the CERN EW WG

sin2 θeff

Alessandro Vicini - University of Milano                                                                                                                                                                                                                                                      Roma SM@LHC, May 9th 2024
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Phenomenology of Neutral Current Drell-Yan including exact NNLO QCD-EW corrections
R.Bonciani, L.Buonocore, S.Devoto, M.Grazzini, S.Kallweit, N.Rana, F.Tramontano, AV,   arXiv:2106.11953 , Phys.Rev.Lett. 128 (2022) 1, 012002  and work  in preparation

Negative mixed NNLO QCD-EW effects  (-3% or more) at large invariant masses,

absent in any additive combination      →  impact on the searches for new physics

Alessandro Vicini - University of Milano                                                                                                                                                                                                                                                      Roma SM@LHC, May 9th 2024
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Charged Current Drell-Yan: NNLO QCD-EW results with approximated 2-loop virtual corrections
L.Buonocore, M.Grazzini, S.Kallweit, C.Savoini, F.Tramontano, arXiv:2102.12539 
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contribution in the square bracket of Eq. (3), a technical
cutoff rcut is introduced on the dimensionless variable
qT=M, whereM is the invariant mass of the lepton-neutrino
system. The final result in each bin, which corresponds to
the limit rcut → 0, is extracted by computing dσð1;1Þ=dpT at
fixed values of rcut in the range ½0.01%; rmax$. Quadratic
least χ2 fits are performed for different values of
rmax ∈ ½0.5%; 1%$. The extrapolated value is then extracted
from the fit with lowest χ2=degrees-of-freedom, and the
uncertainty is estimated by comparing the results obtained
through the different fits. This procedure is the same as
implemented in MATRIX [45]. The ensuing uncertainties of
the computed correction (not shown in Fig. 3), obtained
combining statistical and systematic errors, are shown in
Fig. 4. They range from the percent level at low pT values
to Oð3%Þ at pT ¼ 500 GeV, with the exception of regions
where dσð1;1Þ=dpT is approximately zero and thus the
relative errors are artificially large. We have checked,
however, that in these regions the error is well below

one permille of the respective cross section and thus
phenomenologically irrelevant.
We finally present our predictions for the fiducial cross

section corresponding to the selection cuts in Eq. (16). In
Table I, we report the contributions σði;jÞ to the cross section
[see Eq. (2)] in the various partonic channels. The numeri-
cal uncertainties are stated in brackets, and for the NNLO
corrections σð2;0Þ and the mixed QCD–EW contributions
σð1;1Þ they include the systematic uncertainties from the
rcut → 0 extrapolation. The contribution from the channels
ud̄, cs̄ is denoted by qq̄. The contributions from the
channels qg, q̄g, and qγ, q̄γ, which enter at NLO QCD
and EW, are labeled by qg and qγ, respectively. The
contribution from all the remaining quark-quark channels
qq0, q̄q̄0, qq̄0 (excluding ud̄, cs̄) to the NNLO QCD and
mixed corrections is labeled by qðq̄Þq0. Finally, the con-
tributions from the gluon-gluon and gluon-photon chan-
nels, which are relevant only at Oðα2SÞ and OðαSαÞ, are
denoted by gg and gγ, respectively.

FIG. 3. Complete OðαSαÞ correction to the differential cross section dσð1;1Þ in the muon pT , and its factorized approximation dσð1;1Þfact ,
defined in Eq. (17). The top panels show the absolute predictions, while the central (bottom) panels display the OðαSαÞ correction
normalized to the LO (NLO QCD) result.

MIXED QCD-ELECTROWEAK CORRECTIONS TO … PHYS. REV. D 103, 114012 (2021)

114012-7

Exact LO,  NLO (QCD+EW),  NNLO QCD corrections

are combined with mixed QCD-EW corrections

Partonic subprocesses with 1 and 2 additional partons 

are evaluated exactly at NLO and LO respectively

The 2-loop virtual corrections to  treated in pole approximationqq̄′￼→ ℓνℓ

Accurate description of the charged lepton  spectrum,

dominated by the (exact) real radiation effects

                      resonant configurations

The factorisation of QCD and EW corrections is not accurate at large 

The lepton-pair transverse mass might receive large non-negligible

2-loop virtual corrections at large mass, poorly described in pole approximation

     → new results !

pℓ
⊥

pℓ
⊥



Evaluation of the exact

NNLO QCD-EW corrections


Neutral-Current Drell-Yan
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The Neutral Current Drell-Yan cross section in the SM: perturbative expansion

21

 
                                   
                                   
                                  

σ(h1h2 → ℓℓ̄ + X) = σ(0,0)+
αs σ(1,0) + α σ(0,1)+
α2

s σ(2,0) + α αs σ(1,1)+α2 σ(0,2)+
α3

s σ(3,0) + . . .

σ(h1h2 → ll̄ + X) = ∑
i,j=qq̄,g,γ

∫ dx1 dx2 f h1
i (x1, μF) f h2

j (x2, μF) ̂σ(ij → ll̄ + X)

0 additional partons         ,                    including virtual corrections of 

                                      ,                including virtual corrections of 
1 additional parton
                                      ,                 including virtual corrections of 

2 additional partons          

                                              at tree level

qq̄ → ll̄ γγ → ll̄ 𝒪(αs), 𝒪(α), 𝒪(ααs)

qq̄ → ll̄g qg → ll̄q 𝒪(α)

qq̄ → ll̄γ qγ → ll̄q 𝒪(αs)

qq̄ → ll̄gγ, qg → ll̄qγ, qγ → ll̄qg, gγ → ll̄qq̄
qq̄ → ll̄qq̄, qq̄ → ll̄q′￼̄q′￼, qq′￼→ ll̄qq′￼, qq̄′￼→ ll̄qq̄′￼, qq → ll̄qq

  requires the evaluation of the xsecs of the following processes, including photon-inducedσ(1,1)

Alessandro Vicini - University of Milano                                                                                                                                                                                                                                                      Roma SM@LHC, May 9th 2024



Different kinds of contributions at  and corresponding problems𝒪(ααs)

22

double-real contributions
      amplitudes are easily generated with OpenLoops
      IR subtraction 
      care about the numerical convergence when aiming at 0.1% precision

real-virtual contributions
     amplitudes are easily generated with OpenLoops or Recola
     1-loop UV renormalisation and IR subtraction
     care about the numerical convergence when aiming at 0.1% precision

double-virtual contributions
     generation of the amplitudes
      treatment
     2-loop UV renormalization
     solution and evaluation of the Master Integrals
     subtraction of the IR divergences
     numerical evaluation of the squared matrix element
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General structure of the inclusive cross section and the -subtraction formalismqT

23

dσ =
∞

∑
m,n=0

dσ(m,n) dσ(1,1) = ℋ(1,1) ⊗ dσLO + [dσ(1,1)
R − dσ(1,1)

CT ]qT /Q>rcut

IR structure associated to the QCD-QED part derived from NNLO-QCD results via abelianisation 
(de Florian, Rodrigo, Sborlini, 2016, de Florian, Der , Fabre, 2018)

the -subtraction formalism has been extended to the case of final-state emitters (heavy quarks in QCD, leptons in EW)
(Catani, Torre, Grazzini, 2014, Buonocore,Grazzini, Tramontano 2019.)

qT
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the -subtraction formalism has been extended to the case of final-state emitters (heavy quarks in QCD, leptons in EW)
(Catani, Torre, Grazzini, 2014, Buonocore,Grazzini, Tramontano 2019.)

qT

 subtraction in a nutshellqT

For color singlet production (no FSR)

7

For  , one emission is always 
resolved 

In this region,  corresponds to a 
calculation of Z+jet (Z+ ) at NLO that can 
be handled by a standard NLO subtraction 
method (CS in our case)

qT /Q > rcut

dσ(1,1)
R

γ

Z

For the complete Drell-Yan process

(or photon)

(or photon)

For  , one emission is always 
resolved 

qT /Q > rcut

Z

 subtraction in a nutshellqT

For color singlet production (no FSR)

7

For  , one emission is always 
resolved 

In this region,  corresponds to a 
calculation of Z+jet (Z+ ) at NLO that can 
be handled by a standard NLO subtraction 
method (CS in our case)

qT /Q > rcut

dσ(1,1)
R

γ

Z

For the complete Drell-Yan process

(or photon)

(or photon)

For  , one emission is always 
resolved 

qT /Q > rcut

If charged leptons are massless!

Z

the final state consists of a pair of massive leptons (treated as bare) to regulate the collinear (mass) singularities

the gauge-boson phase space is split into  and  regions               

    for ISR, if  the emitted parton is always resolved                              in the FSR case, with , 
        and the process under study receives only NLO corrections                   the emitted parton is always resolved
        which can be handled with Catani-Seymour dipoles                                only if the emitter is massive

qT = 0 qT > 0 rcut = qcut
T /Q

qT > 0 qT > 0
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The double virtual amplitude: generation of the amplitude

24

ℳ(0,0)(qq̄ → ll̄) =

ℳ(1,1)(qq̄ → ll̄) =
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�O(1000) self-energies + O(300) vertex corrections +O(130) box corrections + 1loop x 1loop 
     (before discarding all those vanishing for colour conservation, e.g. no fermonic triangles)



2Re (ℳ(1,1)(ℳ(0,0))†) =
NMI

∑
i=1

ci(s, t, m; ε) ℐi(s, t, m; ε)

Structure of  the double virtual amplitude
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2Re (ℳ(1,1)(ℳ(0,0))†) =
NMI

∑
i=1

ci(s, t, m; ε) ℐi(s, t, m; ε)

Structure of  the double virtual amplitude

The coefficients  are rational functions of the invariants, masses and of 

Their size can rapidly “explode” in the GB range

    → careful work to identify the patterns of recurring subexpressions, keeping the total size in the O(1-10 MB) range

         Abiss Mathematica package

ci ε
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The coeffi

Their size can rapidly “explode” in the GB range

    → careful work to identify the patterns of recurring subexpressions, keeping the total size in the O(1-10 MB) range

         Abiss Mathematica package
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 The Feynman Integrals  are one of the major challenges in the evaluation of the virtual correctionsℐi

ℐ(pi ⋅ pj; ⃗m ) = ∫
dnk1

(2π)n ∫
dnk2

(2π)n

1
[k2

1 − m2
0]α0 [(k1 + p1)2 − m2

1]α1 … [(k1 + k2 + pj)2 − m2
j ]αj … [(k2 + pl)2 − m2

l ]αl

The complexity of the solution grows with the number of energy scales (masses and invariants) upon which it depends

Structure of  the double virtual amplitude
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Figure 6. Two-loop two-mass MIs T1,...,36. The conventions are as in figure 3.
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The double virtual amplitude: reduction to Master Integrals

The complexity of the MIs depends on the number of energy scales
MIs relevant for the QCD-QED corrections, with massive final state
  Bonciani, Ferroglia,Gehrmann, Maitre, Studerus., arXiv:0806.2301, 0906.3671

MIs with 1or 2 internal mass relevant for the EW form factor
  Aglietti, Bonciani, hep-ph/0304028, hep-ph/0401193

31 MIs  with 1 mass and 36 MIs with 2 masses including boxes,
     relevant for the QCD-weak corrections to the full Drell-Yan
  Bonciani, Di Vita, Mastrolia, Schubert., arXiv:1604.08581

In the 2-mass case, 5 box integrals in Chen-Goncharov representation
 →  problematic numerical evaluation→ need an alternative strategy

2-masses MIs

27

cfr.  also  Heller, von Manteuffel, Schabinger, 
arXiv:1907.00491 for a representation of the MIs in terms of GPLs
arXiv:2012.05918 for a description of the 2-loop virtual amplitude
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28

Evaluation of the Master Integrals by series expansions
T.Armadillo, R.Bonciani, S.Devoto, N.Rana, AV, 2205.03345

The Master Integrals satisfy a system of differential equations. 
The MIs are replaced by formal series with unknown coefficients →  eqs for the unknown coefficients of the series.
The package DiffExp by M.Hidding, arXiv:2006.05510 implements this idea, for real valued masses, with real kinematical vars.
But we need complex-valued masses of  W and Z bosons (unstable particles) → we wrote a new package (SeaSyde)
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The Master Integrals satisfy a system of differential equations. 
The MIs are replaced by formal series with unknown coefficients →  eqs for the unknown coefficients of the series.
The package DiffExp by M.Hidding, arXiv:2006.05510 implements this idea, for real valued masses, with real kinematical vars.
But we need complex-valued masses of  W and Z bosons (unstable particles) → we wrote a new package (SeaSyde)

Complete knowledge about the singular structure of the MI 
can be read directly from the differential equation matrix

The solution can be computed with an arbitrary number of significant digits, 
but not in closed form  → semi-analytical 

We implemented the series expansion approach, for arbitrary complex-valued masses, 
working in the complex plane of each kinematical variable, one variable at a time

°3 °2 °1 0 1 2 3
°3

°2

°1

0

1

2

3

z0

z1

w0

w+

w°
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Complete knowledge about the singular structure of the MI 
can be read directly from the differential equation matrix

The solution can be computed with an arbitrary number of significant digits, 
but not in closed form  → semi-analytical 

We implemented the series expansion approach, for arbitrary complex-valued masses, 
working in the complex plane of each kinematical variable, one variable at a time
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Numerical evaluation of the hard coefficient function

29

in units 
α
π

αs

π
σ0

p
s

0
50

100
150

200
250

co
s µ

°1.0

°0.5

0.0

0.5

int

°250

°150

°50

50

150

250

p s

0

1000

2000

3000

4000cos µ

°1.0
°0.5

0.0
0.5

int

°250

°150

°50

50

150

250

The interference term    contributes to the hard function 

After the subtraction of all the universal IR divergences, it is a finite correction 

It has been published in arXiv:2201.01754 and is available as a Mathematica notebook

Several checks of the MIs performed with Fiesta, PySecDec and AMFlow 

A numerical grid has been prepared for all the 36 MIs, with GiNaC and SeaSyde (T.Armadillo, R.Bonciani, S.Devoto, N.Rana, AV, 2205.03345 ) , 
covering the whole  phase space in (s,t)  (3250 points) , 
in O(12 h) on one 32-cores machine

→  values at arbitrary phase space points obtained with excellent accuracy via interpolation, with negligible evaluation time

2Re⟨ℳ(1,1), fin |ℳ(0,0)⟩ H(1,1)

2 → 2
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Exact 2-loop virtual 

QCD-EW corrections

to

Charged-Current Drell-Yan
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2-loop virtual QCD-EW corrections to the Charged-Current Drell-Yan in the SM

The Charged-Current process is mediated by a W exchange

For a general lepton-pair invariant mass, 
there is no general gauge invariant separation of initial- and final-state
photonic corrections, at variance with the NC DY case

We consider a massive final-state lepton, 
yielding mass logarithms instead of collinear poles in dim.reg.

The presence of two weak bosons with different masses (W and Z)
is a new challenge for the solution of the Feynman integrals

Large number of terms → increased automation level



Subtraction of the IR divergences from the 2-loop amplitude 

32

The analytical check of the cancellation of the IR poles in the QCD-weak sector is one very demanding test of the calculation.

In CC-DY for the first time we achieved a completely numerical check of the cancellation of all the IR poles

we identify   QCD-QED  ( poles up to   )  and QCD-weak  (poles up to  with cumbersome coefficients)   diagrams1/ε4 1/ε2

standard NLO-QCD subtraction

NLO-EW subtraction, with massive leptons

According to qT -subtraction formalism, the NNLO QCD-EW correction can be written

as:

d�(1,1) = H(1,1) ⌦ d�LO +
h
d�(1,1)

R � d�(1,1)
CT

i
. (4.2)

The term in the square brackets represents the real contribution, where extra radiation

accompanies the produced lepton pair, that will thus have a total transverse momentum

qT 6= 0. As a consequence, d�(1,1)
R , while being part of a NNLO QCD-EW correction for

the production of the final state l+l�, is actually part of the NLO-EW correction for the

process in which the final state is l+l�+jets, but also part of the NLO-QCD correction

for the l+l� + �, and can thus be treated with NLO subtraction techniques. Additional

singularities of pure NNLO origin appearing in the qT ! 0 limit are subtracted by the

counterterm d�(1,1)
CT , which is constructed from the knowledge of the low qT behaviour

coming from resummation studies.

The coe�cient H(1,1), on the other hand, contains the contribution to the cross section

at qT = 0, and thus the virtual corrections to the process after a consistent subtraction

of their IR poles. This is achieved via a process-independent subtraction operator I, that
can be constructed by using universality of the IR singualrity structure of the scattering

amplitudes. Thanks to this property, it is in fact possible to predict the IR divergences

for scattering amplitudes, at least up to two-loop level in case of massless gauge theory

[96–99]. An explicit study was performed in [100, 101] to obtain the IR structure of the two-

loop amplitudes for mixed QCD⌦QED corrections to neutral-current Drell-Yan production

considering massless leptons. The IR structure for theories with massive particles also has

been studied in [102–106]. Recently, the IR structure for two-loop QCD corrections to top

quark pair production has been studied in detail in [107–109]. This can be appropriately

abelianised [110] to obtain the IR structure in the present case by replacing top quarks

with massive leptons.

The IR subtraction functions (I) at one-loop are given by

I(1,0) =
⇣↵s

4⇡

⌘✓
s

µ2

◆�✏

CF

✓
� 2

✏2
� 1

✏
(3 + 2i⇡) + ⇣2

◆
, (4.3)

I(0,1) =
⇣ ↵

4⇡

⌘✓
s

µ2

◆�✏ 
Q2

u

✓
� 2

✏2
� 1

✏
(3 + 2i⇡) + ⇣2

◆
+

4

✏
� (0,1)
l

�
, (4.4)

where,

� (0,1)
l = QuQl log

✓
2p1.p3
2p2.p3

◆
+

Q2
l

2

✓
� 1�

1 + x2l
1� x2l

log(xl)

◆
. (4.5)

Ql and Qu are the charges of the lepton and of the up quark, and the Casimir of the

fundamental representation of SU(N), CF , is given by CF = N2�1
2N . The variable xl is

defined as
(1� xl)2

xl
= � s

m2
`

. (4.6)

Using the one-loop subtraction functions, we obtain the finite contributions to the one-loop

QCD and EW amplitudes, respectively, as follows:

|M(1,0),fini = |M(1,0)i � I(1,0)|M(0)i ,
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|M(0,1),fini = |M(0,1)i � I(0,1)|M(0)i . (4.7)

The mixed two-loop subtraction operator is given by

I(1,1) =
⇣↵s

4⇡

⌘⇣ ↵

4⇡

⌘✓
s

µ2

◆�2✏

CFQ
2
u

✓
4

✏4
+

1

✏3
(12 + 8i⇡) +

1

✏2
(9� 28⇣2 + 12i⇡)

+
1

✏

⇣
� 3

2
+ 6⇣2 � 24⇣3 � 4i⇡⇣2

⌘◆
. (4.8)

Using Eq. 4.8, we obtain the finite and subtracted two-loop amplitude as follows

|M(1,1),fini = |M(1,1)i � I(1,1)|M(0)i � Ĩ(0,1)|M(1,0),fini � Ĩ(1,0)|M(0,1),fini . (4.9)

Ĩ(i,j)s are obtained by dropping the finite term i.e. the term proportional to ⇣2 in I(i,j).

We note that the infrared divergences arise only when a gluon or a photon is soft or

collinear to the initial-state. Hence, we can easily identify that the two-loop subtraction

operator I(1,1), along with the relevant one-loop terms, subtract only the mixed QCD-QED

form factor type diagrams. On the other hand, for the ZZ or WW subdivisions, the two-

loop contribution has only the QCD infrared structure, which is subtracted by the QCD

subtraction operator (I(1,0)) with the corresponding one-loop amplitudes.

The approximation of the amplitude in the small lepton mass limit retains all the

terms enhanced by log(ml), divergent in the m` ! 0 limit. The structure of these correc-

tions reflects the universality property of the final-state collinear divergences, and is given,

normalised to the Born squared matrix element, by [I added a l.h.s. (is it correct?)]

lim
m`!0

hM(0)|M(1,1)i
hM(0)|M(0)i

=
⇣↵s

4⇡

⌘⇣ ↵

4⇡

⌘
CFQ

2
l (�8 + 7⇣2 � 3i⇡)


� log

✓
m2

`

s

◆
+ log2

✓
m2

`

s

◆�
.

(4.10)

5 Results

In this Section, we present our results.

5.1 The finite hard functions

Using Eq. (4.9), we obtain the finite IR-subtracted hard function hM(0)|M(1,1),fini from

the UV renormalised matrix element hM(0)|M(1,1)i

hM(0)|M(1,1),fini = hM(0)|M(1,1)i � I(1,1)hM(0)|M(0)i

� Ĩ(0,1)hM(0)|M(1,0),fini � Ĩ(1,0)hM(0)|M(0,1),fini . (5.1)

We follow the remarks discussed in Section 3 to identify the UV-finite subsets; we then apply

the IR subtraction separately to each subset, when needed. The first subset is given by the

two-loop vertex and box Feynman diagrams (Figs. 1-a, 1-b, 1-c) along with the external

fermion wave function renormalization (Figs. 2-a, 2-b, 2-c). To this subset, we need to

apply the IR subtraction operator relevant for the initial-state singularities???. The second

subset is given by the EW gauge boson self-energy two-loop contributions (Fig. 1-d) with
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apply the IR subtraction operator relevant for the initial-state singularities???. The second

subset is given by the EW gauge boson self-energy two-loop contributions (Fig. 1-d) with
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to any process and they have been implemented in automatic routines in several com-

putational frameworks. At NNLO several techniques have been proposed (see e.g. [102]

and references therein) but none of them can yet claim full generality. Regardless of the

subtraction procedure, the IR poles are removed from the virtual contribution by using a

process-independent subtraction operator. Such operators can in principle be di↵erent for

each subtraction method but, because of the universal nature of the IR structure of the

amplitude [103–111], they can at most di↵er from each other by a finite contribution.

In this paper, we present as our final result the amplitudes after the subtraction of

the IR divergences according to the qT subtraction formalism [79, 112]. We show them in

the form of the hard function H
(1,1), defined as the ratio of the 2-loop subtracted matrix

element and the Born squared matrix element:

H
(1,1) =

1
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where the Is are the IR subtraction operators and |M
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i are the finite

reminders of the one-loop QCD and EW amplitudes respectively:
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The subtraction operators can be obtained from the ones used in the case of the NC

DY process after appropriately changing the charges of the initial state quarks and after

neglecting the contribution stemming from the exchange of a photon between two final

state particles, which is not present in the case of CC DY. By indicating with Qi the value

of the electric charge of the particle i in positron units6, and with CF = N
2�1
2N the Casimir

of the fundamental representation of SU(N), the subtraction operators at one loop read:
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(1,0)

|M
(0,1),fin

i , (4.2)

where the Is are the IR subtraction operators and |M
(1,0),fin

i, |M
(0,1),fin

i are the finite

reminders of the one-loop QCD and EW amplitudes respectively:

|M
(1,0),fin

i = |M
(1,0)

i � I
(1,0)

|M
(0)

i , (4.3)

|M
(0,1),fin

i = |M
(0,1)

i � I
(0,1)

|M
(0)

i . (4.4)

The subtraction operators can be obtained from the ones used in the case of the NC

DY process after appropriately changing the charges of the initial state quarks and after

neglecting the contribution stemming from the exchange of a photon between two final

state particles, which is not present in the case of CC DY. By indicating with Qi the value

of the electric charge of the particle i in positron units6, and with CF = N
2�1
2N the Casimir

of the fundamental representation of SU(N), the subtraction operators at one loop read:

I
(1,0) =

✓
s

µ2

◆�✏

CF

✓
�

2

✏2
�

1

✏
(3 + 2i⇡) + ⇣2

◆
, (4.5)

I
(0,1) =

✓
s

µ2

◆�✏

Q

2
u +Q

2
d

2

✓
�

2

✏2
�

1

✏
(3 + 2i⇡) + ⇣2

◆
+

4

✏
�

(0,1)
l

�
, (4.6)

where

�
(0,1)
l

= �
1

4


Q

2
l
(1 � i⇡) +Q

2
l
log

✓
m

2
l

s

◆
+

+ 2QuQl log

✓
(2p1 · p4)

s

◆
� 2QdQl log

✓
(2p2 · p4)

s

◆�
. (4.7)

6E.g. Qu = 2
3 .

– 14 –

The two-loop subtraction operator for the mixed contribution reads:
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Following the same convention used in the case of the NC DY process, in Eq. (4.2) the

subtraction of the one-loop-like divergences from the two loop amplitude is performed by

using the subtraction operators Ĩ
(1,0) and Ĩ

(0,1), which can be obtained from I
(1,0) and

I
(0,1) by dropping the term proportional to ⇣2.

The approximation of the amplitude in the small lepton mass limit retains all the

terms enhanced by log(ml), divergent in the m` ! 0 limit. The structure of these correc-

tions reflects the universality property of the final-state collinear divergences, and is given,

normalised to the Born squared matrix element, by

lim
m`!0
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where K represents all the other terms in the interference, constant in the m` ! 0

limit. Note that the coe�cients of the lepton mass logarithms are exactly with a factor

half of those of the NC DY, indicating the universal behaviour of these logarithms.

5 Results

5.1 Numerical results

The evaluation of the finite IR-subtracted UV-renormalised hard function H
(1,1), defined

in Eq. (4.1), requires the combination of several contributions, with a non-negligible eval-

uation time for the MIs. For this reason it is of practical interest to prepare a numerical

grid, which covers the whole phase space relevant in the applications at hadron colliders,

making negligible the evaluation time of the results, at any arbitrary point. We consider

the partonic centre-of-mass energy
p
s and scattering angle cos ✓ and compute a grid with

respectively (130x25) points, covering the intervals
p
s 2 [40, 8000] GeV and cos ✓ 2 [�1, 1].

The sampling is based on the known behaviour of the CC-DY NLO-EW distribution, with

special care for the W resonance region, where a finer binning is necessary. We have veri-

fied that the interpolation describes the exact results with an accuracy, in the whole phase

space, at least at the 10�3 level, guaranteed by the smoothness of the IR-subtracted H
(1,1)

function.

We present in Figure 6 the hard function H
(1,1) in the Gµ-scheme, which is normalised

to the Born cross section and expressed, as a function of
p
s and cos ✓, in units ↵

⇡

↵s
⇡
. We

consider for the partonic center-of-mass energy, two di↵erent intervals, namely 40 
p
s 

120 GeV and 500 
p
s  7500 GeV, while the range in cos ✓ is [�1, 1]. In Figure 6, we

use the following parameters:
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2-loop virtual QCD-EW corrections to CC DY: new Master Integrals

Master Integrals with two different internal masses
Master Integrals with 
one W and one internal massive lepton lines

 • All the terms in the amplitude are reduced to Master Integrals with Abiss+KIRA
 • The differential equations are written with LiteRed
 • The Boundary Conditions are computed with AMFlow
 • The Master Integrals are computed with SeaSyde

Automated workflow
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2-loop virtual QCD-EW corrections to CC DY: new Master Integrals

Master Integrals with two different internal masses
Master Integrals with 
one W and one internal massive lepton lines

 • All the terms in the amplitude are reduced to Master Integrals with Abiss+KIRA
 • The differential equations are written with LiteRed
 • The Boundary Conditions are computed with AMFlow
 • The Master Integrals are computed with SeaSyde

Automated workflow
useful to tackle NNLO-EW corrections
 → relevant at LHC and later at FCC-ee
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The Master Integrals can be solved at different  values, yielding a numerical grid, for a given value  of the W boson mass.
 → very efficient and accurate in Monte Carlo simulations

The differential equations with respect to the internal W mass
can be solved via the series expansion approach, yielding as a solution a power series in  ,
taking as BCs the first grid with .

Our final 2-loop virtual result is cast, at every phase-space point, as a power series in ,
which can be evaluated in a negligible amount of time, to give the actual grid, for any  choice

(s, t) mW
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Figure 7. On the left panel we plot the real and imaginary part of the O("0) of
B̃14[1, 1, 1, 1, 0, 1, 1, 0, 1] for di↵erent values of �MW . On the right panel we plot the relative er-
ror of the solution for di↵erent number of terms in the �MW -series expansion, as a function of
�MW .

of �MW . From the plot we can see that if we consider only shifts in �MW of order 100

MeV, 15 terms in the expansions are su�cient for maintaining a relative precision of 10�15.

6 Conclusions

We have presented in this paper the details of the complete calculation, for the CC DY

process, of its exact O(↵↵s) two-loop virtual corrections. These results represent the

companion to the ones discussed in Ref. [68] for the NC DY case, with a higher level of

technical complexity in the Master Integrals, because of the presence of two di↵erent mass

values in the internal lines. When included in the Matrix framework, for the evaluation

of the fiducial cross sections, these results will allow a consistent simultaneous analysis of

both NC and CC DY processes at NNLO QCD-EW level. Such consistency is required by

the interplay between the two final states: for example, in the W -boson mass studies the

NC DY channel plays a crucial calibration role, which would be spoiled if corrections at

di↵erent orders were considered; at large lepton-pair transverse/invariant masses, CC and

NC channels have di↵erent sensitivity to the parton-parton luminosities, thus allowing an

e↵ective reduction of the associated uncertainties, crucial in the New Physics searches.

The results have been obtained thanks to an increased level of automation of every

step of the calculation, opening the way to the systematic study of the mixed QCD-EW

corrections in other 2 ! 2 scattering processes. In particular, it is worth mentioning the

possibility to study in a uniform way all the relevant MIs, with 0,1, or 2 internal massive

lines, in the same semi-analytical framework o↵ered by the SeaSyde code, with excellent

control on the cancellation of UV and IR divergences.

The flexibility of the di↵erential equations technique to solve the MIs has been ex-

ploited to preserve the exact dependence on the W -boson mass, even when we prepare
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Fast numerical evaluation with arbitrary W-mass values
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 • Expected large effects at large transverse masses, analogously to the NC DY case
 • Improved theoretical stability in PDFs determination at (sub)percent level
 • Relevance in the discussion of the W resonance region, when matching fixed-order and QCD-QED resummation →  fitmW

Finite 2-loop exact QCD-EW virtual corrections to Charged-Current Drell-Yan



35
Alessandro Vicini - University of Milano                                                                                                                                                                                                                                                      Roma SM@LHC, May 9th 2024

40
60

80
100

120

p
s [GeV] °1.0

°0.5

0.0

0.5

1.0

co
s µ

°40

10

60

500
2000

4000
6000

8000

p
s [GeV] °1.0

°0.5

0.0

0.5

1.0

co
s µ

°200

°100

0

100

in units 
α
π

αs

π
σ0

 • Expected large effects at large transverse masses, analogously to the NC DY case
 • Improved theoretical stability in PDFs determination at (sub)percent level
 • Relevance in the discussion of the W resonance region, when matching fixed-order and QCD-QED resummation →  fitmW

  ●   In the evaluation of the corrections to CC DY we have not optimised the choice of the Master Integrals
        → the diff.eqs. systems are not triangular (like in the NC DY case) but they are generic coupled systems    

        SeaSyde is able to handle such systems, achieving a relative precision of  at every phase-space point

        Potential limitations: the size of the diff.eqs. system can lead to long evaluation time
        Computing the full CC DY grid for LHC applications (3250 points in  ) requires 3 weeks on  one 26-core machine

10−14

(s, t)

Finite 2-loop exact QCD-EW virtual corrections to Charged-Current Drell-Yan
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of muons; for recombined electrons the shifts are of the size of ⇠ 1 ± 2 MeV and

⇠ 1± 4 MeV for MT and p
l

T
, respectively.

These results show that a QED-LL approach without matching is more accurate,

at the level of precision required for the MW determination, when QED FSR is

simulated with Photos (line 2). The small di↵erence between the shifts obtained

with Photos with and without matching with the NLO EW results can also be

understood from figure 8, where the relative impact of the EW e↵ects in the two

cases is almost identical.

These comparisons can be considered as a measure of the accuracy inherent in the use

of a generator given by a tandem of tools like ResBos+Photos (like in the present

Tevatron measurements) in the sector of mixed QCD-EW corrections.

The assessment of the uncertainty for the Tevatron as explained in the third item

above, is, in our opinion, one of the most important and original aspects of our study.

6.4.3 Results for the LHC

In this section we present the results for a similar analysis to the one addressed in Sec-

tion 6.4.2, but under LHC conditions. The details of the event selection are shown in

table 11, and the corresponding mass shifts in table 12.
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< 30 GeV

Table 11. Event selection used for the study of QED and mixed QCD-EW e↵ects at LHC.

pp ! W
+,

p
s = 14 TeV MW shifts (MeV)

Templates accuracy: NLO-QCD+QCDPS W
+
! µ

+
⌫ W

+
! e

+
⌫(dres)

Pseudodata accuracy QED FSR MT p
`
T MT p

`
T

1 NLO-QCD+(QCD+QED)PS Pythia -95.2±0.6 -400±3 -38.0±0.6 -149±2
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4 NLO-(QCD+EW)+(QCD+QED)PStwo-rad Photos -88.6±0.6 -370±3 -39.2±0.6 -159±2

Table 12. W mass determination for muons and dressed electrons at the LHC 14 TeV in the
case of W+ production. MW shifts (in MeV) due to multiple QED FSR and mixed QCD-EW
corrections, computed with Pythia-qed and Photos as tools for the simulation of QED FSR
e↵ects. Pythia-qed and Photos have been interfaced to Powheg-v2 with only QCD corrections
(lines 1 and 2) or matched to Powheg-v2 two-rad with NLO (QCD+EW) accuracy (lines 3 and
4). The templates have been computed with Powheg-v2 with only QCD corrections. The results
are based on MC samples with 4⇥108 events.

Similar remarks on the comparison between Pythia-qed and Photos, as well as on

mixed QCD-EW corrections, apply in this case. However, further considerations can be
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Towards a tool matching QCD+QED resummation with NNLO QCD-EW fixed order
 • The exact NNLO QCD-EW corrections yield large effects at large transverse/invariant masses → BSM searches
 • Relevance in the discussion of the boson resonance region, when matching fixed-order and QCD-QED resummation →  fitmW
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Huge impact of QED and mixed QCD-QED corrections in the  determination
What is the theoretical uncertainty on this estimated shift ? 

mW

POWHEG simulation NLO QCD+EW +QCDPS + QEDPS

L.Buonocore, L.Rottoli, P.Torrielli, arXiv:2404.15112

Matching in full QCD-EW SM at  N3LL’-QCD + NLL’-EW + nNLL’-mixed   accuracy
     including QED effects from all charged legs     (see P.Torrielli’s talk )    

    

Matching with the exact NNLO QCD-EW will be needed to reach full NNLL-mixed
  → Reliable estimate of the reduced residual theoretical uncertainties

region), where the prediction starts being dominated by the fixed-order component. In this region
one also expects that the inclusion of non-factorisable O(↵s↵) QCD-EW effects, not considered in
our results, may play a role.
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Figure 4. Matched spectra for the positively charged muon transverse momentum in neutral-current DY.
Left panel: perturbative progression including QCD and EW effects. Right panel: effect of EW corrections
on top of the QCD baseline.

In Fig. 4 we display differential predictions with respect to the transverse momentum p
µ

+

t
of the

positively charged muon. The inclusion of resummation effects is necessary to provide a physical
description of this observable [167] due to its sensitivity to soft radiation for p

µ
+

t
' m

µµ
/2. The

pattern of the figure is identical to that of Fig. 3, with the perturbative progression displayed in the
left panel, and the impact of EW effects in the right panel. At variance with the di-muon transverse
momentum, the p

µ
+

t
spectrum is non-trivial already at Born level, hence we expect relatively milder

perturbative corrections, and a solid perturbative stability across its entire phase space. This is
what we find inspecting the left panel. Increasing QCD and EW formal accuracy (green vs purple)
amounts to marginally lowering the jacobian peak and raising the tail at the level of roughly 5%.
The inclusion of yet higher-order QCD resummation continues the trend, with a further few-%
distortion. Theoretical uncertainty bands are found to reliably cover the central predictions of
the next perturbative orders, both below and above the peak. The upgrade in formal accuracy
has the visible effect of reducing the residual uncertainty, down to the level of ±2% (±4%) below
(above) peak. As stated above, we expect however that a matching at O(↵s↵), not included in
our predictions, will have a numerical impact on the p

µ
+

t
distribution. This may exceed the quoted

perturbative uncertainty, especially around the jacobian peak, due to genuine mixed effects which
are not captured by scale variations.

The right panel of Fig. 4 shows how the jacobian peak in p
µ

+

t
is exposed to the interplay of QCD

and EW effects. Including the latter has a clearly visible impact on the distribution, lowering the
spectrum by as much as 20% at pµ

+

t
' mZ/2, in a way that by no means can be approximated by a

constant rescaling factor. The shape of the correction is compatible with what observed in [168] (see
Fig. 24) in the context of a comparative study among event generators with QED resummation.
In our case, the prediction including EW effects lies outside of the pure-QCD uncertainty band
in the whole peak region, roughly from 35 GeV to 55 GeV. This accentuates what was observed
in the right panel of Fig. 3 at small pµµ

t
, highlighting the need for EW corrections for a complete

description of this observable.
The di-muon transverse mass m

µµ

t
, displayed in Fig. 5, follows a similar pattern as the muon

transverse momentum in Fig. 4. A solid perturbative convergence is observed in the left panel,

– 12 –



37
Alessandro Vicini - University of Milano                                                                                                                                                                                                                                                      Roma SM@LHC, May 9th 2024

Concluding remarks
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The precision tests of the Standard Model at the LHC are an active research field
They require the development of advanced computational techniques to evaluate complex 2-loop amplitude

The semi-automatic evaluation, with arbitrary numerical precision 
of the exact mixed QCD-EW corrections  to the NC- and CC-DY processes
opens the way to a new class of calculations

The cross section evaluation requires a non-trivial infrastructure 
    to consistently include all the real and virtual sets of corrections  (e.g. Matrix)

The matching of these fixed-order results with a joined QCD-QED all orders resummation
     will allow a robust estimate of the theoretical uncertainties affecting the W-mass determination

Conclusions
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Thank you
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back-up



Computational framework of NNLO QCD-EW corrections to NC DY

41

The complete calculation has been included in the Munich/Matrix framework

           • fully automatic generation and bookkeeping of all the double-real and real-virtual contributions

              based on an interface with OpenLoops and Recola/Collier
           • the 2-loop virtual corrections are separately computed and provided in fast-evaluation format 

In this specific framework, main compatibility requirement to include the double-virtual corrections:  

        the -subtraction formalism to handle the IR singularities (Catani, Grazzini, 2007)

Upon inclusion of the appropriate scheme-dependent subtraction term, 

       the double virtual corrections can be used with any other simulation code

qT



4242

The -subtraction and the residual cut-off dependencyqT

dσ =
∞

∑
m,n=0

dσ(m,n) dσ(1,1) = ℋ(1,1) ⊗ dσLO+[dσ(1,1)
R − dσ(1,1)

CT ]qT /Q>rcut

When    the double-real and the real-virtual contributions, subtracted with CS dipoles, are finite

 is obtained by expanding to fixed order the  resummation formula

qT /Q > rcut

dσ(1,1)
CT qT
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The -subtraction and the residual cut-off dependencyqT

Logarithmic sensitivity on  in the double unresolved limit            

The counterterm removes the IR sensitivity to the cutoff variable  

   → we need small values of the cutoff

   → explicit numerical tests to quantify the bias induced by the cutoff choice    (cfr. Buonocore, Kallweit, Rottoli, Wiesemann, arXiv:2111.13661
                                                                                                                                                                                     Camarda, Cieri, Ferrera, arXiv:2111.14509)

    we can fit the  dependence and extrapolate in the  limit

rcut ∫ dσ(1,1)
R ∼

4

∑
i=1

ci lni rcut + c0 + 𝒪(rm
cut)

∫ (dσ(1,1)
R − dσ(1,1)

CT ) ∼ c0 + 𝒪(rm
cut)

rcut rcut → 0

dσ =
∞

∑
m,n=0

dσ(m,n) dσ(1,1) = ℋ(1,1) ⊗ dσLO+[dσ(1,1)
R − dσ(1,1)

CT ]qT /Q>rcut

When    the double-real and the real-virtual contributions, subtracted with CS dipoles, are finite

 is obtained by expanding to fixed order the  resummation formula

qT /Q > rcut

dσ(1,1)
CT qT
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Numerical challenges in the qT subtraction method Extension to mixed NNLO QCD–EW corrections for charged massive colourless final states

Dependence on rcut of the mixed NNLO QCD–EW corrections for NC Drell–Yan/

Symmetric-cut scenario
pT,`± > 25GeV y`± < 2.5 m`` > 50GeV
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Dependence on  of the NNLO QCD-EW corrections to NC DYrcut
courtesy of S.Kallweit
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Numerical challenges in the qT subtraction method Production of colourless final states at NNLO QCD accuracy

Dependence on rcut in di↵erent cut scenarios for the NC Drell–Yan process/
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The -subtraction and the residual cut-off dependency in different acceptance setupsqT
courtesy of S.Kallweit (cfr. Buonocore, Kallweit, Rottoli, Wiesemann, 2111.13661)
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Differential sensitivity to rcut
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Numerical challenges in the qT subtraction method Extension to mixed NNLO QCD–EW corrections for charged massive colourless final states

Binwise rcut dependence of the mixed NNLO QCD–EW corrections for NC Drell–Yan/

Di↵erential distribution in pT,µ+: peak (left panels) and tail (right panels) regions
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Â large rcut dependence in particular around the peak of the distribution, and typically precision of . 3% on the
relative mixed QCD–EW corrections (artificially large where corrections are basically zero)
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Numerical challenges in the qT subtraction method Extension to mixed NNLO QCD–EW corrections for charged massive colourless final states

Binwise rcut dependence of the mixed NNLO QCD–EW corrections for NC Drell–Yan/

Di↵erential distribution in mµ+µ� : peak (left panels) and tail (right panels) regions
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Â quite large rcut dependence throughout, and lower numerical precision of . 10% on the relative mixed
QCD–EW corrections (but still permille-level precision at the level of cross sections)

Stefan Kallweit (UNIMIB) NC-DY @ mixed QCD-EW: numerical challenges October 6, 2021, Milano-Pisa PRIN meeting 18 / 18

Alessandro Vicini - University of Milano                                                                                                                                                                                                                                                      Roma SM@LHC, May 9th 2024



The hard-virtual coefficient
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dσ =
∞

∑
m,n=0

dσ(m,n) dσ(1,1) = ℋ(1,1) ⊗ dσLO + [dσ(1,1)
R − dσ(1,1)

CT ]qT /Q>rcut

ℋ(1,1) = H(1,1) C1 C2
The process independent collinear functions  are known up to N3LO

The process dependent hard function H is defined 
       upon subtraction of the universal IR contributions

C1, C2
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∞
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m,n=0

dσ(m,n) dσ(1,1) = ℋ(1,1) ⊗ dσLO + [dσ(1,1)
R − dσ(1,1)

CT ]qT /Q>rcut

ℋ(1,1) = H(1,1) C1 C2
The process independent collinear functions  are known up to N3LO

The process dependent hard function H is defined 
       upon subtraction of the universal IR contributions

C1, C2

H(1,0) =
2Re⟨ℳ(0,0) |ℳ(1,0)

fin ⟩

|ℳ(0,0) |2 , H(0,1) =
2Re⟨ℳ(0,0) |ℳ(0,1)

fin ⟩

|ℳ(0,0) |2 , H(1,1) =
2Re⟨ℳ(0,0) |ℳ(1,1)

fin ⟩

|ℳ(0,0) |2

        after UV renormalisation the poles are only of IR origin2Re⟨ℳ(0,0) |ℳ(1,1)⟩ =
0

∑
k=−4

εk fi(s, t, m)

|ℳfin⟩ ≡ (1 − I) |ℳ⟩ H ∝ ⟨ℳ0 |ℳfin⟩

NLO-QCD                                                      NLO-EW                                                   NNLO QCD-EW



The double virtual amplitude: regularisation of the IR divergences
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The evaluation of the amplitudes is done in  dimensions

In the -subtraction formalism, the final state leptons are massive, yielding mass singular logarithms 
 →  also the 2-loop virtual corrections should be evaluated with massive leptons

n = 4 − 2ε

qT

Among the 2-loop boxes
        and  boxes do not develop collinear singularities 
           → evaluated with Master Integrals with massless external lines

        and  boxes individually develop collinear singularities,  but in the sum they exactly cancel

           → explicit check in the  case, based on the massive MIs known from  production
                in the  check that the residual singularity is the soft divergence

WW ZZ

γγ γZ
γγ tt̄

γZ
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We start with a fully massive final state 2-loop amplitude
We retain only collinear singular terms (   ) and discard those suppressed by a power of  ∼ log(m2

l /M2
Z) m2

l /M2
Z



The double virtual amplitude: generation of the amplitude

48

ℳ(0,0)(qq̄ → ll̄) =

ℳ(1,1)(qq̄ → ll̄) =

�

�

μ

μγ

�

�

�

μ

μ�

�

O(1000) self-energies + O(300) vertex corrections +O(130) box corrections + 1loop x 1loop 
     (before discarding all those vanishing for colour conservation, e.g. no fermonic triangles)

Two independent calculations based on QGraf and FeynArts  in the EW Background Field Gauge

The BFG choice guarantees the validity of EW Ward identities for the initial state vertex → additional technical checks

       - UV finiteness when combining 2-loop vertex and quark WF in the full EW SM  → that combination has only IR poles
       - UV renormalisation is confined to the gauge-boson propagators sector, where IR divergences are absent

The 1-loop check of the gauge-parameter independence identifies those subsets of diagrams yielding the cancellation.

The 2-loop calculation is organised splitting the total amplitude in the combination of different subsets, 
      according to their EW charges (# of Ws, Zs, γs)
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The double virtual amplitude: UV renormalization

BFG EW Ward identity     →    cancellation of the UV divergences combining vertex and fermion WF corrections 

Gauge boson renormalised propagators

while �g
Gµ

Z is relevant in the (Gµ, µW , µZ) input scheme

g0
c0

=
q
4
p
2Gµµ2

Z


1� 1

2
�r +

1

2

✓
2
�e

e
+

s2 � c2

c2
�s2

s2

◆�
⌘

q
4
p
2Gµµ2

Z

⇣
1 + �g

Gµ

Z

⌘
(2.18)

Analogously, in the case of the �ff̄ vertex, the electric charge renormalization is given by

g0s0 = e0 = e↵ren + �e ⌘ e↵ren (1 + �g↵A) (2.19)

in the (↵, µW , µZ) scheme [73] and by

g0s0 =
q

4
p
2Gµµ2

Ws2
⇥
1 + 1

2

�
��r + 2 �e

e

�⇤
⌘ e

Gµ
ren

⇣
1 + �g

Gµ

A

⌘
(2.20)

in the (Gµ, µW , µZ) scheme.

2.3.2 Renormalisation of the gauge boson propagators

[General: american or biritsh? Renormalised or renormalized? Both appear.] The renor-

malised 1PI gauge boson self-energies are obtained, at 1-loop, by combining the unrenor-

malised self-energy expressions with the mass and wave function counterterms. In the

full calculation, we never introduce wave function counterterms on the internal lines, be-

cause they would systematically cancel. We exploit instead the relation in the SM between

the wave function and charge counterterms and we directly use the latter to define the

renormalised self-energies. We obtain:

⌃AA
R,T (q

2) = ⌃AA
T (q2) + 2 q2 �gA (2.21)

⌃ZZ
R,T (q

2) = ⌃ZZ
T (q2)� �µ2

Z + 2 (q2 � µ2
Z) �gZ (2.22)

⌃AZ
R,T (q

2) = ⌃AZ
T (q2)� q2

�s2

sc
(2.23)

⌃ZA
R,T (q

2) = ⌃ZA
T (q2)� q2

�s2

sc
, (2.24)

where ⌃V V
T and ⌃V V

R,T are the transverse part of the bare and renormalised V V vector bo-

son self-energy. The factors 2 in the AA,ZZ renormalised self-energies take into account

the contributions from both quark and lepton vertices. The AZ and ZA renormalised

self-energies include the �s2 corrections stemming from the quark and the lepton vertices

respectively. The charge counterterms have been defined in Equations (2.17-2.20). At

O(↵↵s) the structure of these contributions does not change: the corrections to the gauge

boson self-energies stem from a quark loop with one internal gluon exchange and, in addi-

tion, from the O(↵s) mass renormalization of the quark lines in the 1-loop self-energies.

We adopt the complex mass scheme [74] to define the renormalised mass of the gauge

bosons and the corresponding counterterms have been introduced in Eq.(2.15). In terms

of gauge boson self-energies, they are defined as follows:

�µ2
V = ⌃V V

T (µ2
V ) . (2.25)

at the pole in the complex plane q2 = µ2
V of the gauge boson propagator.

The expression of the 2-loop Feynman integrals needed to evaluate theO(↵↵s) correction

to the gauge boson propagators and all the needed counterterms can be found in Refs. [57,

71, 72].
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T and ⌃V V

R,T are the transverse part of the bare and renormalised V V vector bo-

son self-energy. The factors 2 in the AA,ZZ renormalised self-energies take into account

the contributions from both quark and lepton vertices. The AZ and ZA renormalised

self-energies include the �s2 corrections stemming from the quark and the lepton vertices

respectively. The charge counterterms have been defined in Equations (2.17-2.20). At

O(↵↵s) the structure of these contributions does not change: the corrections to the gauge

boson self-energies stem from a quark loop with one internal gluon exchange and, in addi-

tion, from the O(↵s) mass renormalization of the quark lines in the 1-loop self-energies.

We adopt the complex mass scheme [74] to define the renormalised mass of the gauge

bosons and the corresponding counterterms have been introduced in Eq.(2.15). In terms

of gauge boson self-energies, they are defined as follows:

�µ2
V = ⌃V V

T (µ2
V ) . (2.25)

at the pole in the complex plane q2 = µ2
V of the gauge boson propagator.

The expression of the 2-loop Feynman integrals needed to evaluate theO(↵↵s) correction

to the gauge boson propagators and all the needed counterterms can be found in Refs. [57,

71, 72].
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and all the Lorentz indices are considered to be d-dimensional.

The presence of a prescription-dependent term of O(") in the squared matrix element

a↵ects all the coe�cients in the Laurent expansion, with the exception of the highest pole:

in fact, the product of a term of O(") with a singular factor "�k, with k > 0, generates a

contribution of O("�k+1). Such prescription-dependent terms will be generated both in the

unsubtracted squared matrix element and in the subtraction term. The cancellation of the

IR singularities, expected on general grounds, requires that also the prescription-dependent

terms cancel accordingly. In the present calculation, the IR subtraction term is computed

by following the properties of universality of the radiation in the IR limits, combining the

universal divergent structure with the Born and one-loop amplitudes. The construction

of this subtraction term is completely independent with respect to the evaluation of the

two-loop amplitude and it provides a non-trivial check of our algebraic manipulations. We

observe the cancellation of lower orders poles, when combining the full 2-loop amplitude

with the subtraction term, which hints in favour of the consistency of our approch.

2.3 Ultraviolet renormalisation

The renormalization at O(↵↵s) of the neutral current DY process has already been dis-

cussed in detail in Ref. [57]. We report here the basic steps that we implemented to obtain

the complete 2-loop renormalised amplitude.

2.3.1 Charge renormalisation

The bare gauge couplings g0, g00 and the Higgs doublet vacuum expectation value v0 are

expressed in terms of their renormalised counterparts g, g0, v via the introduction of ap-

propriate counterterms. The relation of g, g0, v to a set of three measurable quantities, like

for instance Gµ, µW , µZ (the Fermi constant and the masses of the W and Z bosons) or

↵, µW , µZ (with ↵ the fine structure constant), allows the numerical evaluation of the ampli-

tude. We introduce for convenience two additional bare quantities: the sinus squared of the

on-shell weak mixing angle, which we abbreviate as s20 = sin2 ✓W0 = 1� µ2
W0
µ2
Z0

, c20 = 1� s20,

and the electric charge e0 = g0s0. Clearly only three of these parameters are independent.

We rely on the relation between the Fermi constant and the muon-decay amplitude

Gµp
2
=

g20
8m2

W0

(1 +�r) (2.14)

where the correction �r was introduced in Ref. [70] and its O(↵↵s) corrections were pre-

sented in Ref. [71, 72]. After the introduction of the counterterms

µ2
W0 = µ2

W + �µ2
W , µ2

Z0 = µ2
Z + �µ2

Z , e0 = e+ �e (2.15)

�s2

s2
=

c2

s2

✓
�µ2

Z

µ2
Z

� �µ2
W

µ2
W

◆
(2.16)

we consider the bare couplings which appear at tree-level in the photon- and Z-exchange

Feynman diagrams and work them out. The UV divergent correction factors �g↵Z con-

tributes to the charge renormalization of the Zff̄ vertex in the (↵, µW , µZ) input scheme

g0
c0

=
e

cs


1 +

1

2

✓
2
�e

e
+

s2 � c2

c2
�s2

s2

◆�
⌘ e

cs
(1 + �g↵Z) (2.17)
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Complex mass scheme

The bare couplings of Z and photon to fermions
in the  input scheme
are given by

(Gμ, μW, μZ)

while �g
Gµ

Z is relevant in the (Gµ, µW , µZ) input scheme
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full calculation, we never introduce wave function counterterms on the internal lines, be-

cause they would systematically cancel. We exploit instead the relation in the SM between

the wave function and charge counterterms and we directly use the latter to define the
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of gauge boson self-energies, they are defined as follows:
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at the pole in the complex plane q2 = µ2
V of the gauge boson propagator.

The expression of the 2-loop Feynman integrals needed to evaluate theO(↵↵s) correction

to the gauge boson propagators and all the needed counterterms can be found in Refs. [57,

71, 72].
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the mass counterterms are defined 
      at the complex pole of the propagator

the weak mixing angle is complex valued  c2 ≡ μ2
W /μ2

Z

G.Degrassi, AV, hep-ph/0307122,  S.Dittmaier,T.Schmidt,J.Schwarz, arXiv:2009.02229 S.Dittmaier, arXiv:2101.05154

After the UV renormalisation, the singular structure is entirely due to IR soft and/or collinear singularities 



50

The double virtual amplitude:   treatmentγ5
The absence of a consistent definition of  in  dimensions yields a practical problem

The trace of Dirac matrices and  is a polynomial in 
The UV or IR divergences of Feynman integrals appear as poles 

If  is evaluated in a non-consistent way, 
then poles might not cancel and the finite part of the xsec might have a spurious contribution

γ5 n = 4 − 2ε

γ5 ε
1/ε

Tr(γα . . . γμγ5) × ∫ dnk
1

[k2 − m2
0][(k + q1)2 − m2

1][(k + q2)2 − m2
2]

∼ (a0+a1ε + . . . ) × ( c−2

ε2
+

c−1

ε
+ c0 + . . . )

a1
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1][(k + q2)2 − m2
2]

∼ (a0+a1ε + . . . ) × ( c−2

ε2
+

c−1

ε
+ c0 + . . . )

a1

      • we computed the 2-loop amplitude and, independently, the IR subtraction term; both depend on the prescription chosen
      • the cancellation of all the lowest order poles is checked (and non trivial)
      • absence of fermionic triangles because of colour conservation

  - ’t Hooft-Veltman   treat    (anti)commuting in ( )  dimensions   preserving the cyclicity of the traces 
      (one counterterm is needed)  
  -  Kreimer   treats  anticommuting in  dimensions, abandoning the cyclicity of the traces  (→ need of a starting point)

  - Heller, von Manteuffel, Schabinger verified that the IR-subtracted squared matrix element are identical in the two approaches

  - we adopted the naive anticommuting prescription (Kreimer); we use  to compute traces with one 

γ5 4 n − 4

γ5 n

γ5 =
i

4!
ϵμνρσγμγνγργσ γ5



Differential equations and IBPs

51

  • Not all the Feynman integrals in one amplitude are independent   
      → exploit Integration-by-parts (IBP) and Lorentz identities to reduce to a basis of independent Master Integrals

∫
dnk1

(2π)n ∫
dnk2

(2π)n

∂
∂kμ

1

(kμ
1 , kμ

2 , pμ
r )

[k2
1 − m2

0]α0 [(k1 + p1)2 − m2
1]α1 … [(k1 + k2 + pj)2 − m2

j ]αj … [(k2 + pl)2 − m2
l ]αl

= 0

∫
dnk1

(2π)n ∫
dnk2

(2π)n

∂
∂kμ

2

(kμ
1 , kμ

2 , pμ
r )

[k2
1 − m2

0]α0 [(k1 + p1)2 − m2
1]α1 … [(k1 + k2 + pj)2 − m2

j ]αj … [(k2 + pl)2 − m2
l ]αl

= 0

  • Henn’s conjecture (2013): if a change of basis exists which leads to                                      
                                      then the solution is expressed in terms of iterated integrals (Chen integral representation)
                                      depending only on the results at previous orders in the  expansion

d ⃗J( ⃗s; ε) = εÃ( ⃗s) ⋅ ⃗J( ⃗s; ε)

ε

Alessandro Vicini - University of Milano                                                                                                                                                                                                                                                      Roma SM@LHC, May 9th 2024
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ε

  • The independent Master Integrals (MIs) satisfy a system of first-order linear differential equations
       with respect to each of the kinematical invariants / internal masses
     When considering the complete set of MIs, the system can be cast in homogeneous form:     d ⃗I( ⃗s; ε) = A( ⃗s; ε) ⋅ ⃗I( ⃗s; ε)
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where the last equation has been obtained as IBP identity for the tadpole 7.

6.2. Differential equation for J(D, k2)

The master integral J(D, k2) is an analytic function of the argument k2 and it can be viewed as the
solution of a suitable differential equation. Let us see how to build and solve such an equation. For
J(D, k2) the following trivial identity holds,

∂J

∂kµ
=

∂J

∂k2

∂k2

∂kµ
= 2kµ

∂J

∂k2
. (82)

By contracting (82) with the vector kµ we have

kµ
∂J

∂kµ
= 2k2 ∂J

∂k2
. (83)

On the other hand

∂J

∂kµ
=

∫
dDp

(2π)D−2

∂

∂kµ

(
1

D1D2

)

=

∫
dDp

(2π)D−2

2(pµ − kµ)

D1D2
2

, (84)

so

kµ
∂J

∂kµ
=

∫
dDp

(2π)D−2

2(p · k − k2)

D1D2
2

=
︸︷︷︸

2p·k=D1−D2+k2

=

∫
dDp

(2π)D−2

1

D2
2

−
∫

dDp

(2π)D−2

1

D1D2
−
∫

dDp

(2π)D−2

k2

D1D2
2

=

= − − k2 (85)

By substituting Eq. (85) in Eq. (83) we have

d

dk2
=

1

2k2
− 1

2k2
− 1

2
, (86)

which is rewritten, thanks to the second identity of the (77) and to (81), as a non-homogeneous
first-order differential equation for J(D, k2)

d

dk2
+

1

2

[
1

k2
− (D − 3)

(k2 + 4m2)

]

= − (D − 2)

4m2

[
1

k2
− 1

(k2 + 4m2)

]

. (87)

Eq. (87) contains the boundary condition for the solution. In fact, thanks to the analytic properties
of Feynman integrals, we know that J(D, k2) must be a regular function in k2 = 0, that is
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{ f′ (x) + 1
x2 − 4x + 5 f(x) = 1

x + 2
f(0) = 1

fhom(x) = xr
∞

∑
k=0

ckxk

rc0 = 0
1
5 c0 + c1(r + 1) = 0
4
25 c0 + 1

5 c1 + c2(2 + r) = 0

…

fhom(x) = 5 − x − 3
10 x2 + 11

150 x3 + . . .

fpart(x) = fhom(x)∫
x

0
dx′ 

1
(x′ + 2) f −1

hom(x′ )

= 1
2 x − 7

40 x2 + 2
75 x3 + . . .

A Simple Example

Method implemented in the Mathematica package DiffExp for real kinematic 
variables [F.Moriello, arXiv:1907.13234], [M.Hidding, arXiv:2006.05510] 

(see also AMFLOW [X. Liu and Y.-Q. Ma, arXiv: 2201.11669])

f′ hom(x) =
∞

∑
k=0

(k + r) ck x(k+r−1)

SOLVING D.E. B SERIES EXPANSION

f(x) = fpart(x) + C fhom(x)

f(0) = 1 → C = 1
5

Expanded around x′ = 0

Evaluation of the Master Integrals by series expansions
T.Armadillo, R.Bonciani, S.Devoto, N.Rana, AV, 2205.03345
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15

TAYLOR VS LOGARITHMIC EXPANSION
➤ Taylor expansion: avoids the singularities; 
➤ Logarithmic expansion: uses the singularities as expansion points. 
➤ Logarithmic expansion has larger convergence radius but requires longer 

evaluation time. We use Taylor expansion as default.

Evaluation of the Master Integrals by series expansions
T.Armadillo, R.Bonciani, S.Devoto, N.Rana, AV, 2205.03345
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Exploiting the flexibility of the Differential Equations approach

(s, t) = (s0, t0)
BCs for B̃16

(s, t) = (s0, t0)
BCs for B16

evolve (s, t)

evolve (s, t)

evolve upper
mass

grid for B16

grid for B̃16

The CC-DY Master Integrals can be evaluated with two different approaches:

  - compute the BCs with AMFlow and then 
    solve the differential equations in the invariants s and t

  - use the results of the NC DY process as BCs 
    (two equal internal masses, arbitrary s and t)
    then solve the differential equation 
    in the mass parameter from  to 

Perfect agreement of the two approaches 

(mZ, mZ) (mW, mZ)



Estimate of the residual uncertainties:  total cross section
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The impact of the NNLO QCD-EW corrections is twofold:    more accurate predictions  (additional higher orders)
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55

The impact of the NNLO QCD-EW corrections is twofold:    more accurate predictions  (additional higher orders)
                                                                                           reduced uncertainties (scale, inputs, matching)
Ongoing phenomenological studies for full NC DY

order Gμ α(0) δ( Gμ-α(0) )  (%)

NNLO-QCD 55787 53884 3.53

NNLO-QCD+NLO-EW 55501 55015 0.88

NNLO-QCD+NLO-EW+

NNLO QCD-EW 55469 55340 0.23

A representative example from the results for the on-shell Z production total cross section 
R.Bonciani, F.Buccioni, N.Rana, AV, arXiv:2007.06518, arXiv:2111.12694

 →  dependence on the EW input-scheme choice

comparison of  and     (very conservative choice that maximises the spread of the results)(Gμ, MW, MZ) (α(0), MW, MZ)
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      which is reduced by the NNLO QCD-EW (→0.23%)



Estimate of the residual uncertainties:  total cross section

55
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Ongoing phenomenological studies for full NC DY
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A representative example from the results for the on-shell Z production total cross section 
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 →  dependence on the EW input-scheme choice

comparison of  and     (very conservative choice that maximises the spread of the results)(Gμ, MW, MZ) (α(0), MW, MZ)

the LO + NLO-EW result would suffer of only 0.55% spread;    
the NLO-QCD and NNLO-QCD corrections are only LO-EW and reintroduce a dependence (→0.88%)
      which is reduced by the NNLO QCD-EW (→0.23%)

The availability of N3LO-QCD and NNLO QCD-EW results can bring the study of EW gauge bosons  in the per mille arena !!!

Is the full NNLO-EW calculation negligible at this level ?



W-boson mass prediction
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The renormalisation of the SM and a framework for precision tests

• The Standard Model is a renormalizable gauge theory based on  

• The EW gauge sector of the SM lagrangian is assigned specifying  in terms of 4 measurable inputs

• More observables can be computed and expressed in terms of the input parameters, including the available 

radiative corrections, at any order in perturbation theory 

• The validity of the SM can be tested comparing these predictions with the corresponding experimental results

SU(3) × SU(2)L × U(1)Y

(g, g′￼, v, λ)

• The input choice   minimises the parametric uncertainty of the predictions(g, g′￼, v, λ) ↔ (α, Gμ, mZ, mH)

• with these inputs,   and the weak mixing angle are predictions of the SM, 
    to be tested against the experimental data

mW

↵(0) = 1/137.035999139(31)

Gµ = 1.1663787(6)⇥ 10�5 GeV�2

mZ = 91.1876(21) GeV/c2

mH = 125.09(24) GeV/c2
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The W boson mass: theoretical prediction

LSM = LSM (α, Gµ, mZ ;mH ;mf ;CKM)
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The W boson mass: theoretical prediction

59

effects of higher-order terms on ∆r
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on-shell scheme: dominant contributions to ∆r

∆r = ∆α− c2w
s2w

∆ρ+∆rrem

∆α = Πγ
ferm(M

2
Z)−Πγ

ferm(0) → α(MZ) =
α

1−∆α

∆ρ = ΣZ(0)
M2

Z

− ΣW (0)
M2

W

= 3GFm2
t

8π2
√
2

[one-loop] ∼ m2
t

v2
∼ αt

beyond one-loop order: ∼ α2, ααt, α2
t , α

2αt, αα2
t , α

3
t , . . .

reducible higher order terms from ∆α and ∆ρ via

1 +∆r →
1

(

1−∆α
)(

1 + c2w
s2w

∆ρ
)

+ · · ·

ρ = 1 +∆ρ →
1

1−∆ρ

Consoli, WH, Jegerlehner 1989(Consoli, Hollik, Jegerlehner)



W-boson mass 
determination
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 determination at hadron collidersmW

 ● In charged-current DY, 
    it is NOT possible to reconstruct the lepton-neutrino invariant mass
    Full reconstruction is possible (but not easy) only in the transverse plane

 ● A generic observable has a linear response to an  variation 
    With a goal for the relative error of , the problem seems to be unsolvable

 ●   extracted from the study of the shape of the ,  and   distributions  in CC-DY 
    thanks to the jacobian peak that enhances the sensitivity to 

                       

      → enhanced sensitivity at the  level (  distribution ) 
                            or even at the  level (  distribution)

mW
10−4

mW pl
⊥ M⊥ Emiss

⊥
mW

d
dp2

⊥
→

2
s

1

1 − 4p2
⊥/s

d
d cos θ

∼
d

dp2
⊥

→
2
s

1

1 − 4p2
⊥/m2

W

d
d cos θ
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The lepton transverse momentum distribution in charged-current Drell-Yan

The lepton transverse momentum distribution has a jacobian peak 

induced by the factor   .

When studying the W resonance region, the peak appears at 

Kinematical end point at   at LO

The decay width allows to populate the upper tail of the distribution

Sensitivity to soft radiation → double peak at NLO-QCD

The QCD-ISR next-to-leading-log resummation broadens the distribution
and cures the sensitivity to soft radiation at the jacobian peak.

1/ 1 −
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In the  spectrum the sensitivity to  and important QCD features are closely intertwinedpℓ
⊥ mW
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Given one experimental kinematical distribution
  · we compute the corresponding theoretical distribution for several hypotheses of one Lagrangian input parameters (e.g. )
  · we compute, for each  hypothesis, a   defined in a certain interval around the jacobian peak (fitting window)
  · we look for the minimum of the  distribution
The  value associated to the position of the minimum of the  distribution is the experimental result

mW
m(k)

W χ2
k

χ2

mW χ2

 determination at hadron colliders: template fittingmW
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A determination at the  level requires 
a control over the shape of the distributions at the per mille level

The theoretical uncertainties of the templates 
contribute to the theoretical systematic error on 

   -  higher-order QCD  

   -  non-perturbative QCD 

   -  PDF uncertainties

   -  heavy quarks corrections                   

   -  EW corrections

10−4

mW
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The template fitting procedure is acceptable if the data are described by the theoretical distribution with high quality
Template fitting: description of the single lepton transverse momentum distribution

Scale variation of the NNLO+N3LL prediction for ptlep  
provides a set of equally good templates 
but the width of the uncertainty band is at the few percent level 
a factor 10 larger than the naive estimate would require !

→ data driven approach
     a Monte Carlo event generator is tuned to the data in NCDY ( )
     for one QCD scale choice
                                                    ↓
     the same parameters are then used to prepare the CCDY templates

pZ
⊥
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The template fitting procedure is acceptable if the data are described by the theoretical distribution with high quality
Template fitting: description of the single lepton transverse momentum distribution

Scale variation of the NNLO+N3LL prediction for ptlep  
provides a set of equally good templates 
but the width of the uncertainty band is at the few percent level 
a factor 10 larger than the naive estimate would require !

→ data driven approach
     a Monte Carlo event generator is tuned to the data in NCDY ( )
     for one QCD scale choice
                                                    ↓
     the same parameters are then used to prepare the CCDY templates
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FIG. S36: Differences between the data and simulation, divided by the expected statistical uncertainty, for the mT

distributions in the muon (left) and electron (right) channels.
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FIG. S37: Differences between the data and simulation, divided by the expected statistical uncertainty, for the p!T
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inputs, χ2/dof and the probability of obtaining a χ2/dof at least as large, are summarized in Table S9.

B. Consistency checks

We compare the electron and muon p!T fit results obtained from subsamples of the data chosen to enhance possible
residual instrumental effects (Table S10). The uncertainty on the difference between the W+ → µ+ν and W− → µ−ν
fits includes the uncertainty due to the COT alignment (the uncertainty in the intercept of the linear fit in Fig. S6),
which contributes to this mass splitting. The mass fit differences for the electron channel are shown with and without
applying an E/p-based calibration from the corresponding subsample. The stability of the momentum and energy
scales is verified by performing Z-boson mass fits in subsamples separated in chronological time (indicated by run
number in Table S10).

We additionally test the stability of the mass fits as the fit ranges are varied. The variations of the fitted mass values
relative to the nominal results are consistent with expected statistical fluctuations, as shown in Figs. S39-S41 [107].

CDF collaboration, Scince 376, 170-176 (2022)    	 Eur.Phys.J.C 78 (2018) 2, 110, Eur.Phys.J.C 78 (2018) 11, 898 (erratum) 
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The template fitting procedure is acceptable if the data are described by the theoretical distribution with high quality
Template fitting: description of the single lepton transverse momentum distribution

Scale variation of the NNLO+N3LL prediction for ptlep  
provides a set of equally good templates 
but the width of the uncertainty band is at the few percent level 
a factor 10 larger than the naive estimate would require !

→ data driven approach
     a Monte Carlo event generator is tuned to the data in NCDY ( )
     for one QCD scale choice
                                                    ↓
     the same parameters are then used to prepare the CCDY templates
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A data driven approach improves                the accuracy of the model      ( i.e. its ability to describe the data )
                                   does not improve   the precision of the model     ( the intrinsic ambiguities in the model formulation )      

What are the limitations of the transfer of information from NCDY to CCDY ?



MW from a 

jacobian asymmetry
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The jacobian asymmetry 𝒜pℓ
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The asymmetry is an observable (i.e. it is measurable via counting):  its value is one single scalar number
It depends only on the edges of the two defining bins

Increasing  shifts the position of the peak to the right     Events migrate from the blue to the orange bin     
  The asymmetry decreases

mW →
→
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The jacobian asymmetry  as a function of 𝒜pℓ
⊥

mW

The asymmetry  has a linear dependence on , 
       stemming from the linear dependence on the end-point position

The slope of the asymmetry expresses the sensitivity to  , 
       in a given setup  

The slope is the same with every QCD approximation   
      (factorization of QCD effects, perturbative and non-perturbative)

The “large” size of the two bins  GeV leads to  
      - small statistical errors
      - excellent stability of the QCD results (inclusive quantity)
      - ease to unfold the data to particle level   (  combination)

𝒜p⊥
mW

mW
(pℓ,min

⊥ , pℓ,mid
⊥ , pℓ,max

⊥ )

𝒪(5 − 10)

mW

The experimental value and the theoretical predictions can be directly compared  (  from the intersection of two lines)

The main systematics on the two fiducial cross sections is related to the lepton momentum scale resolution

mW
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Compatibility and combination 
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world W-boson mass determinations
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• LEP – legacy combination from LEP experiments.

Input Measurements for combination
• CDF – !!̅ collisions @ √+ = 1.96 TeV; fit variables 

are !!" 	, !!# 	and .!. 
• D0 – two separate measurements using 
!!̅ collisions @ √+ = 1.96 TeV; fit variables are !!$ , 
.! and !!#.
• ATLAS – !! collisions @ √+ = 7 TeV; central region 

at LHC; fit variables are !!" 	and .!. 
[Original analysis used following agreement to use published 
results]

• LHCb – !! collisions @ √+ = 13 TeV; forward region 
at LHC; fit variable is //!!%.

CDF, Science 376 (2022) 170; D0, PRL 103 (2009) 141801 and PRD 89 (2014) 012005; 
ATLAS, EPJC 78 (2018) 110; LHCb, JHEP 01 (2022) 036; LEP, Phys Rept 532 (2013) 119

Alessandro Vicini - University of Milano                                                                                                                                                                                                                                                      Roma SM@LHC, May 9th 2024



71

QCD challenges

The measurements span two decades → remarkable theoretical progress

The analyses are based on different PDF sets and event generators, with different theoretical content

The combination study seeks to “update” the measurements to a common QCD framework
before their compatibility is assessed and, eventually, the results are combined
                                                           Update to                                Additional
                                                           common PDF                          (small) updates

                 
                                          Published                             Common W
                                          value                                    polarisation

The LHCb measurement has been “repeated”, using the same code framework but different PDF sets
Effect of updates on other measurements estimated with two simulated samples from two models

mupdate
W = mref

W + δmPDF
W + δmpol

W + δmother
WWilliam Barter (Edinburgh) Slide 7mW combination and comparison 23/8/23

QCD Challenges
• Starting point of fits to data therefore crucial.

• D0: RESBOS CP (N2LO, N2LL) with CTEQ66 PDFs (NLO)
• CDF: RESBOS C (NLO, N2LL) with CTEQ6M PDFs (NLO)
• ATLAS: POWHEG + Pythia8 (NLO+PS) with DYTurbo for Angular Distribution (N2LO) 

with CT10 PDFs (NNLO)
• LHCb: POWHEG + Pythia8 (NLO+PS) with DYTurbo for Angular Distribution (N2LO) 

with averaged result from MSHT20, NNPDF31 and CT18 PDFs (NLO)

• Approach taken:
• LHCb measurement “repeated” using same code framework but with PDF updates.
• Effect of updates on other measurements using simulated samples from two 

models.

[CDF publication applied a correction to 
reproduce Resbos2 + NNPDF3.1]
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Compatibility of PDF sets with Drell-Yan data
10 S. Amoroso et al.: Compatibility and combination of world W -boson mass measurements

Measurement NNPDF3.1 NNPDF4.0 MMHT14 MSHT20 CT14 CT18 ABMP16
CDF yZ 24 / 28 28 / 28 30 / 28 32 / 28 29 / 28 27 / 28 31 / 28
CDF AW 11 / 13 14 / 13 12 / 13 28 / 13 12 / 13 11 / 13 21 / 13
D0 yZ 22 / 28 23 / 28 23 / 28 24 / 28 22 / 28 22 / 28 22 / 28
D0 W ! e⌫ A` 22 / 13 23 / 13 52 / 13 42 / 13 21 / 13 19 / 13 26 / 13
D0 W ! µ⌫ A` 12 / 10 12 / 10 11 / 10 11 / 10 11 / 10 12 / 10 11 / 10
ATLAS peak CC yZ 13 / 12 13 / 12 58 / 12 17 / 12 12 / 12 11 / 12 18 / 12
ATLAS W� y` 12 / 11 12 / 11 33 / 11 16 / 11 13 / 11 10 / 11 14 / 11
ATLAS W+ y` 9 / 11 9 / 11 15 / 11 12 / 11 9 / 11 9 / 11 10 / 11
Correlated �2 75 62 210 88 81 41 83
Total �2 / d.o.f. 200 / 126 196 / 126 444 / 126 270 / 126 210 / 126 162 / 126 236 / 126
p(�2, n) 0.003% 0.007% < 10�10 < 10�10 0.0004% 1.5% 10�8

Table 6: �2 per degree of freedom for the Tevatron Z-rapidity and W - and l-asymmetry measurements at
p
s =

1.96 TeV, and the LHC Z-rapidity and W lepton-rapidity measurements at
p
s = 7 TeV. The total �2 is the sum of

those quoted for individual measurements along with a separate contribution for correlated uncertainties, where the
latter is extracted using a nuisance parameter representation of the �

2 [47]. The CT14 and CT18 PDF uncertainties
correspond to 68% coverage, obtained by rescaling the eigenvectors by a factor of 1/1.645. The probability of obtaining
a total �2 at least as high as that observed is labelled p(�2

, n).

+ A6 sin 2✓ sin�+A7 sin ✓ sin�], (10)

where the decay angles ✓,� are expressed in the Collins-
Soper (C-S) frame [54], and the Ai coe�cients depend
on the pT, rapidity, and invariant mass of the `⌫ system.
The coe�cients can be calculated perturbatively in ↵S,
with A5, A6, and A7 becoming non-zero only at NNLO in
QCD. The A0 term primarily reflects the relative fractions
of the qq ! W , qg ! Wq, and higher-order subprocesses,
and has a significant p

W
T dependence while being nearly

independent of boson rapidity. The A4 term produces a
forward-backward asymmetry, and is thus sensitive to the
directions of the incoming quark and anti-quark in the
dominant qq̄

0
! W process. It depends on rapidity and

on the PDF set used in the calculation, and decreases with
increasing p

W
T .

The ResBos-C and ResBos-CP codes resum a sub-
set of contributions to Equation 10, specifically those af-
fecting the (1 + cos2 ✓) and A4 cos ✓ terms. This partial
resummation modifies the A0–A3 terms relative to fixed-
order predictions, as demonstrated in Figure 6, where A0�

A3 are shown for W -boson events generated at
p
s =

1.96 TeV with ResBos-C, ResBos-CP, ResBos2, and
DYNNLO. The partial-resummation predictions di↵er with
respect to measurements performed at the LHC [55], which
instead agree with fully-resummed calculations such as
ResBos2 or Wj-MiNNLO, and fixed-order calculations
such as DYNNLO.

Experimental fits for mW in data use theoretical pre-
dictions of the leptonic angular distributions fromResBos-
C for CDF, ResBos-CP for D0, DYNNLO [20,21] for
ATLAS, and DYTurbo for LHCb. The CDF experiment
applies a post-fit correction to reproduce the NNPDF3.1
PDF prediction, and this correction includes the e↵ect of
updating the angular coe�cients to those calculated by
ResBos2.

In order to achieve a common theoretical treatment
of the W -boson polarization, the results of the CDF and
D0 fits to the measurement distributions are adjusted to

correspond to the ResBos2 calculation of the leptonic
angular distributions at O(↵S). Events generated with
ResBos-C or ResBos-CP are reweighted such that the
A0�A4 coe�cients match those of ResBos2, as functions
of pWT and yW . TheW -boson pT is fixed to that of the orig-
inal measurement, in the same manner as for the �m

PDF
W

evaluations in Sec. 4.2.1. The impact of the reweighting
on the CDF mT and p

`
T distributions is shown in Fig. 7,

and the �m
pol
W values from reweighting the Ai coe�cients

individually and together are given in Tables 7 and 8 for
CDF and D0, respectively. The reweighting procedure re-
produces the direct fit from ResBos-C or ResBos-CP to
ResBos2, as expected since the basis of spherical harmon-
ics is complete and exact. The results of the reweighting
procedure for the D0 configuration, �mpol

W = �6.4, �6.9,
and �15.8 MeV for the mT, p`T, and p

⌫
T distributions, re-

spectively, are applied to the measured mW . For CDF,
values of �m

pol
W = �9.5, �8.4, and �12.5 MeV for the

mT, p`T, and p
⌫
T distributions, respectively, are applied to

events generated with ResBos-C.

ATLAS estimates a 5.8 MeV polarization modelling
uncertainty based on the precision of measurements on
the Z-boson resonance, while the LHCb uncertainty of 10
MeV arises from its determination of the A3 coe�cient
as part of its fit for mW . These uncertainties are taken
to be uncorrelated. The Tevatron experiments do not in-
clude a corresponding uncertainty in their measurements.
An uncorrelated uncertainty is applied to the shift calcu-
lated for each experiment to account for the limitations of
the parameterized MWWG simulation. This uncertainty
is ⇡ 1 MeV and is similar to that obtained by taking the
di↵erence between the NLO and NNLO fixed-order calcu-
lations of the leptonic angular coe�cients.

No PDF set provides a good description of the full Tevatron+LHC dataset

Best description given by CT18 (which has larger uncertainties)

CT18 therefore taken as the default PDF set
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80300 80350 80400 80450
 [MeV]Wm

D0

ATLAS

LHCb

CDF

ABMP16 CT14 CT18
MMHT2014 MSHT20 NNPDF3.1
NNPDF4.0

LHC-TeV MWWG

Combination

Input measurements with updates applied

S. Amoroso et al.: Compatibility and combination of world W -boson mass measurements 15

ATLAS (27 d.o.f) LHCb LHC (1 d.o.f)
PDF set mW �2 mW �2 mW �PDF �2 p(�2, n)
ABMP16 80352.8± 16.1 31 80361.0± 30.4 – 80354.6± 14.2 2.9 0.1 75%
CT14 80363.1± 20.4 30 80354.4± 32.2 – 80360.4± 16.4 6.5 0.0 100%
CT18 80374.5± 20.3 30 80347.3± 32.7 – 80366.5± 16.6 6.3 0.5 48%
MMHT2014 80372.8± 18.6 30 80342.5± 31.3 – 80364.4± 15.4 5.1 0.6 44%
MSHT20 80368.9± 17.9 45 80351.3± 31.0 – 80364.3± 15.0 4.5 0.2 65%
NNPDF3.1 80358.4± 17.6 29 80359.3± 31.1 – 80358.6± 15.0 5.0 0.0 100%
NNPDF4.0 80353.5± 16.6 35 80361.6± 30.6 – 80355.4± 14.5 3.8 0.1 75%

Table 14: The ATLAS and LHCb mW values obtained from a combination of the individual measurement distributions
and decay channels, along with the combined LHC mW , PDF uncertainty, and �

2, and probability of obtaining this
�
2 or larger. The �

2 of the combination of fit distributions and decay channels is shown for ATLAS; no �
2 is shown

for LHCb as the measurement is performed using one distribution in one channel. Mass units are in MeV.

80300 80350 80400 80450
 [MeV]Wm

D0

ATLAS

LHCb

CDF

ABMP16 CT14 CT18
MMHT2014 MSHT20 NNPDF3.1
NNPDF4.0

LHC-TeV MWWG

Fig. 8: The D0, ATLAS, LHCb, and CDF mW val-
ues and uncertainties using the ABMP16, CT14, CT18,
MMHT2014, MSHT20, NNPDF3.1, and NNPDF4.0 PDF
sets.

PDF uncertainties [65]. Therefore the combined PDF un-
certainties and the variation of the combined central val-
ues are smaller than for the individual experiments. The
ATLAS mW value ranges from 80352.8 MeV for ABMP16
to 80374.5 MeV for CT18. This range is comparable to
that of the Tevatron experiments. A similar spread but
opposite trends are observed for LHCb, and the spread of
mW values is reduced from ⇡ 20 MeV to 14.1 MeV in the
combination. The PDF uncertainties range from 4.0 MeV
to 11.4 MeV for ATLAS and 3.0 to 12.2 MeV for LHCb,
but are reduced to 2.9–6.5 MeV for the combined result.

All experiments (4 d.o.f.)
PDF set mW �PDF �2 p(�2, n)
ABMP16 80392.7± 7.5 3.2 29 0.0008%
CT14 80393.0± 10.9 7.1 16 0.3%
CT18 80394.6± 11.5 7.7 15 0.5%
MMHT2014 80398.0± 9.2 5.8 17 0.2%
MSHT20 80395.1± 9.3 5.8 16 0.3%
NNPDF3.1 80403.0± 8.7 5.3 23 0.1%
NNPDF4.0 80403.1± 8.9 5.3 28 0.001%

Table 15: Combination of mW measurements from the in-
dividual experiments. Shown for each PDF are the PDF
uncertainty, �2, and probability of obtaining this �

2 or
larger. Mass units are in MeV.

5.2.2 All measurements

Tables 15–17 provide the results for various combinations
including LEP, whose uncertainties are treated as uncor-
related with the others. A combination of all measure-
ments yields a total uncertainty ranging between 7.5 and
11.5 MeV, though the �

2 probabilities are low, ranging
from 8 ⇥ 10�6 to 5 ⇥ 10�3. The low probabilities reflect
the discrepancy between the CDF measurement and the
other measurements. The combined value of mW for the
CT18 PDF set, which gives the largest compatibility with
the broader Drell-Yan measurements, is mW = 80394.6±
11.5 MeV with a probability of 0.5%. The relative weights
of the CDF, ATLAS, LHCb, LEP, and D0 measurements
are 41%, 28%, 13%, 12%, and 5%, respectively. Weights
for other PDF sets are given in the Appendix. The largest
di↵erence in mW between PDF sets is 10.4 MeV.

A possible procedure for combining measurements with
low compatibility is to scale all uncertainties by the square
root of the ratio of the �

2 to the number of degrees of
freedom. This procedure e↵ectively assumes a common
underestimated uncertainty, which is an unlikely scenario
for these measurements. The PDF uncertainty is only par-
tially correlated, and the uncertainty from the CT18 set
is the most conservative. Other measurement uncertain-
ties are smaller or are statistically constrained and there-
fore uncorrelated. Further measurements or studies are
required to obtain more consistent results.

No combination of all measurements provides a good  probability

the full combination, including CDF, is disfavoured

χ2
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80300 80350 80400 80450
 [MeV]Wm

Excluding ATLAS
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NNPDF4.0
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LHC

All

ABMP16 CT14 CT18
MMHT2014 MSHT20 NNPDF3.1
NNPDF4.0 N/A

LHC-TeV MWWG
MW combinations  (cfr arXiv:2308.09417 for all the preparatory steps of the combination)

Combinations with CDF excluded have good compatibility:    (CT18)

                                                                                         the  probability is 91%

                                                                                         relative weights: 42% (ATLAS), 23% (D0), 18% (LHCb), 16% (LEP)

The inclusion of CDF brings the  probability below 0.5%

mW = 80369.2 ± 13.3 MeV
χ2

χ2
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Combination of the different  determinationsmW
Results combined using BLUE

Validation by reproducing internal experimental combinations

The CDF measurement contains an a posteriori shift  
        accounting for (CTEQ6M→NNPDF3.1, mass modelling, polarisation effects  ) removed before the combination  

δmW ∼ 3 MeV

PDF correlations in the combination

CT18 MSHT20 NNPDF4.0

Correlations needed in the combination

Significantly different correlations between the various PDF sets

PDF anti-correlations between experiments leads to more stable results and reduced PDF dependence
           cfr. G.Bozzi, L.Citelli, AV, M.Vesterinen, arXiv:1501.05587, arXiv:1508.06954 

Alessandro Vicini - University of Milano                                                                                                                                                                                                                                                      Roma SM@LHC, May 9th 2024



76

Conclusions about the  combination effortmW

Extensive effort to provide a common treatment of PDF and pQCD modelling for the  determination at hadron colliders

The updated treatment is unable to solve the tension between the existing measurements

The full combination  (CT18) is disfavoured due to low  probability (0.5%)

The combination with CDF excluded    (CT18) has good   probability (91%)

mW

mW = 80394.6 ± 11.5 MeV χ2

mW = 80369.2 ± 13.3 MeV χ2
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Need for a full NNLO-EW calculation to reduce the uncertainties to sub-percent level
The NNLO-EW corrections to scattering processes are still today one of the frontiers in QFT

                               
The NNLO-EW corrections could modify in a non-trivial way the large-mass/momentum tails of the distributions
Large logarithmic corrections (EW Sudakov logs) appear in the virtual corrections 
At two-loop level, we have up to the fourth power of , log(s/m2
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Figure 1: Separate logarithmic contributions to R(e+e− → qq̄) in % to the Born approximation:
(a) the one-loop LL (ln2(s/M2), long-dashed line), NLL (ln1(s/M2), dot-dashed line) and N2LL
(ln0(s/M2), solid line) terms; (b) the two-loop LL (ln4(s/M2), short-dashed line), NLL (ln3(s/M2),
long-dashed line), NNLL (ln2(s/M2), dot-dashed line) and N3LL (ln1(s/M2), solid line) terms.

section) we obtain in the same notations

RLR(e+e− → QQ̄) = 1− 4.48L(s) + 17.51 l(s)− 13.16 a

− 1.16L2(s) + 15.66L(s) l(s)− 43.50 l2(s) + 44.05 l(s) a ,

RLR(e+e− → qq̄) = 1− 1.12L(s) + 12.05 l(s)− 16.44 a

− 0.81L2(s) + 18.02L(s) l(s)− 130.74 l2(s) + 278.71 l(s) a ,

RLR(e+e− → µ+µ−) = 1− 13.24L(s) + 116.58 l(s)− 148.42 a

− 0.79L2(s) + 23.68L(s) l(s)− 155.46 l2(s)− 116.67 l(s) a .

(66)

Finally, for the left-right asymmetry ÃLR (the difference of the cross sections for the left-
and right-handed initial state particles divided by the total cross section) which differs from
ALR for the quark-antiquark final state we have

R̃LR(e+e− → QQ̄) = 1− 2.75L(s) + 10.60 l(s)− 9.05 a

− 0.91L2(s) + 11.16L(s) l(s)− 33.49 l2(s) + 28.28 l(s) a ,

R̃LR(e+e− → qq̄) = 1− 1.07L(s) + 11.75 l(s)− 16.21 a

− 0.77L2(s) + 17.06L(s) l(s)− 125.18 l2(s) + 267.60 l(s) a .

(67)

The numerical structure of the corrections in the case of e+e− annihilation is shown in
Figs. 1-3. In Fig. 1 the values of different logarithmic contributions to R(e+e− → qq̄) are

22

1-loop 2-loop

           B.Jantzen, J.H.Kühn, A.A.Penin, V.A.Smirnov, hep-ph/0509157

corrections to  
due to EW Sudakov logs

e+e− → qq̄
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urgently needed to match sub-percent precision in the TeV region



Beyond fixed order:  Drell-Yan cross sections resumming large logarithmic corrections

78

S. Camarda, L. Cieri and G. Ferrera Physics Letters B 845 (2023) 138125

Fig. 1. The qT spectrum of Z/γ ∗ bosons with lepton selection cuts at the LHC (
√

s = 13 TeV) at various perturbative orders. Resummed component (see Eq. (3)) of the 
hadronic cross-section with scale variation bands as defined in the text. The order of the parton density evolution is set consistently with the order of the resummation (left) 
or with the order of the PDFs (right).

where

gK (b) = g0

(

1 − exp

[

− C F αS((b0/b#)
2)b2

π g0b2
lim

])

, (5)

with g1 = 0.5 GeV2, Q 0 = 1 GeV, g0 = 0.3, blim = 1.5 GeV−1 and

b2
# = b2b2

lim/(b2 + b2
lim) . (6)

The g1 parameter controls the quadratic NP power corrections which are dominant in the region of moderate qT of 4–10 GeV while g0
controls the asymptotic behaviour of the NP form factor at very small qT . The parameter blim set the scale at which the running of αS
in Eq. (5) is frozen while Q 0 represent the initial scale at which the NP form factor is parameterised. The variable b# is also used to 
regularize the perturbative form factor at very large value of b (b ! 1/%Q C D , where %Q C D is the scale of the Landau pole of the running 
coupling αS (q2)) which correspond to very small values of qT (qT " %Q C D ) through the so-called ‘b# prescription’ [5,52] which consist in 
the freezing of the integration over b below the upper limit blim through the replacement b → b# . An alternative regularization procedure 
of the Landau singularity, which have also been implemented in the DYTurbo numerical program, is the so-called Minimal Prescription 
[53–55] which avoid the Landau singularity by deforming the integration contour in the complex b space. The Minimal Prescription does 
not require any infrared cut-off, it leaves unchanged the perturbative result to any fixed order in αS and it can be implemented within a 
purely perturbative framework without introducing an explicit model of NP effects.

We have thus considered the production of l+l− pairs from Z/γ ∗ decay at the LHC (
√

s = 13 TeV) with the following fiducial cuts: the 
leptons are required to have transverse momentum pT > 25 GeV, pseudo-rapidity |η| < 2.5 while the lepton pair system is required to 
have an invariant mass of 80 < Ml+l− < 100 GeV with transverse momentum qT < 30 GeV.

In order to estimate the size of yet uncalculated higher-order terms and the ensuing perturbative uncertainties we consider the depen-
dence of the results from the auxiliary scales µF , µR and Q . We thus perform an independent variation of µF , µR and Q in the range 
M/2 ≤ {µF , µR , Q } ≤ 2M with the constraints 0.5 ≤ {µF /µR , Q /µR , Q /µF } ≤ 2.

In Fig. 1 we consider Z/γ ∗ production and decay and we show the resummed component (see Eq. (3)) of the transverse-momentum 
distribution in the small-qT region. The label NnLL+NnLO (n = 1, 2, 3) indicates that we perform the resummation of logarithmic enhanced 
contribution at NnLL accuracy including the hard-virtual coefficient at NnLO while the label N4LL+N4LOa indicates that we perform the 
resummation at N4LL accuracy with the hard-virtual coefficient at N4LO and an estimate of yet not known N4LO corrections.2

In the left panel of Fig. 1 we show the resummed predictions following the original formalism of Refs. [6,8,17]. The lower panel shows 
the ratio of the distribution with respect to the N4LLa prediction at the central value of the scales µF = µR = Q = M . We observe that 
the NLL+NLO and NNLL+NNLO scale dependence bands do not overlap thus showing that the NLL+NLO scale variation underestimates the 
true perturbative uncertainty. This feature was already observed and discussed in Refs. [17,49]. In the present case the lack of overlap can 
be ascribed to the fact that we are using the same N3LO parton densities set at NLL, NNLL, N3LL and N4LL accuracy. This choice introduces 
a formal mismatch between the N3LO Altarelli-Parisi evolution as encoded in the N3LO parton densities functions and the corresponding 
NkLO evolution included in the Nk+1LL partonic resummed formula.

In order to show that this is indeed the case, in the right panel of Fig. 1 we show the resummed predictions in which we set the 
order of Altarelli-Parisi evolution in the resummed prediction to be equal to the order of the parton densities (i.e. both at approximated 
N3LO). In practice, with this choice, we are modifying the NLL, NNLL and N3LL predictions by including formally subleading logarithmic 
corrections.3 We observe that with this choice the scale dependence bands show a nice overlap at subsequent orders thus indicating that 

2 Incidentally we observe that our prediction at N4LL+N4LOa includes the full perturbative information contained in the so-called N4LL accuracy and also a reliable 
approximation of the N4LL’ accuracy as sometimes defined in the literature.

3 We note that this inclusion of formally subleading terms is similar to what happen in the Collins, Soper and Sterman resummation formalism [5] where the parton 
densities are evaluated at the scale b0/b [4].
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Figure 3. Matched spectra for the di-lepton transverse momentum in neutral-current DY. Left panel:
perturbative progression including QCD and EW effects. Right panel: effect of EW corrections on top of
the QCD baseline.

4.1 Neutral-current Drell Yan

We start by displaying in Fig. 3 the transverse momentum p
µµ

t
of the di-muon system in NCDY. In

the left panel we compare matched predictions with different accuracy. The purple band features
NLO+NLL0 accuracy both in the QCD and in the EW coupling. We recall that this amounts to
excluding all quantities with label “(1,1)” from eqs. (2.15) to (2.17). Green and orange bands both
include nNLL0

MIX
EW effects (i.e. “(1,1)” quantities in eqs. (2.15) to (2.17)), as well as NNLOQCD,

with the orange (green) attaining N3LL0 (NNLL0) logarithmic QCD accuracy. At medium-large
p
µµ

t
the inclusion of NNLOQCD contributions has the effect of significantly hardening the tail, and

reducing the uncertainty band to the 10-15% level. In the p
µµ

t
! 0 resummation region, nNLL0

MIX

and especially NNLL0
QCD

logarithmic terms lower the spectrum (green vs purple), a trend which
is maintained after inclusion of N3LL0

QCD
contributions (orange vs green). We notice that in this

region the uncertainty band is significantly reduced upon adding logarithmic effects, down to the
few-% level below 20 GeV for our most accurate prediction (orange). Predictions with higher formal
accuracy are well contained within the uncertainty bands of lower orders in that region, which is a
sign of good perturbative convergence.

In the right panel of Fig. 3 we assess the importance of including EW effects (orange) on top
of the QCD NNLO+N3LL0 baseline (light blue). The orange band is identical to the one in the left
panel, which will be the case as well for the next figures in this section. The two predictions differ by
their perturbative content, as well as by the PDF adopted, where a LUXqed photon PDF (together
with its DGLAP evolution) is active only for the former. EW effects induce a visible distortion in
the spectrum at small pµµ

t
, lowering the prediction by as much as 10-15% for p

µµ

t
. 10 GeV. We

have checked that, as one might expect, EW corrections largely factorise from QCD in the small-pµµ
t

region, namely similar shape distortions as those in the right panel of Fig. 3 can be observed when
including EW effects on top of lower-order QCD predictions. The same considerations apply for
all observables considered below. We also note that at small pµµ

t
the uncertainty bands of the two

predictions are comparatively small, at the level of few %, and do not overlap. The latter feature
is not surprising, since EW corrections are genuinely new physical effects, whose magnitude is not
supposed to be meaningfully estimated by pure-QCD scale variations. This consideration highlights
the relevance of an accurate description of EW effects in DY production for a successful precision-
physics programme at the LHC. The effect of all-order EW corrections becomes more and more
marginal for p

µµ

t
& 30 GeV (except for a slight increase in the uncertainty band in the matching
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Figure 11. Normalised ratio of charged- to neutral-current Drell Yan di-lepton transverse momentum.
Variations of µR, µF , and Q are correlated between the numerator and the denominator of the ratio. Left
panel: perturbative progression including QCD and EW effects. Right panel: effect of EW corrections on
top of the QCD baseline.

more marginal reduction, essentially confirming the shape obtained at the previous QCD logarithmic
accuracy. The shape itself is relatively non-trivial, as due to the interplay of EW corrections from
initial- and final-state radiation with the fiducial cuts adopted. The right panel of Fig. 11 shows the
impact of EW corrections (orange) on top of the QCD baseline (light blue). The main distortion
is observed at small p``

t
, compatibly with what was noticed in the individual di-lepton transverse

momentum spectra in Fig. 3 and Fig. 7. EW effects increase the slope of the ratio at p``
t
. 15 GeV,

reaching the level of ±3%, and exceeding the QCD theoretical uncertainty band. We note that the
impact of EW corrections on the ratio observable is significantly more pronounced than the ±0.5%
observed in Fig. 6 of [102]. Apart from differences in the setup and in the perturbative accuracy,
the bulk of the discrepancy is due to fact that the analysis of [102] is performed with undecayed
Z and W gauge bosons, and inclusively over their phase space. We have checked that the ratio
with EW effects indeed gets much closer to the pure QCD result upon removing the effect of QED
radiation off final-state leptons. This highlights once more the importance of working with leptons
at the fiducial level for precision DY phenomenology.

In Fig. 12 the CCDY to NCDY ratio is shown with a more conservative assumption on the
correlation of scale variations. In particular, while the renormalisation and resummation scales are
still varied in a fully correlated fashion, the factorisation scales for the numerator (µnum

F
) and for

the denominator (µden

F
) are varied independently, with the sole constraint 1/2  µ

num

F
/µ

den

F
 2.

This uncertainty prescription was already introduced in [86, 174], and is physically motivated by
considering that CCDY and NCDY probe different combinations of partonic channels, and of PDFs
in turn, hence full µF correlation may not be clearly justified. Decorrelating µF variations causes
a significant inflation in uncertainty bands, especially at small p``

t
and for predictions with lower

formal accuracy, as seen comparing the left panels of Fig. 12 and of Fig. 11. As a result of this
more conservative uncertainty estimate, predictions with and without EW effects in the right panel
of Fig. 12 are now marginally compatible.

Finally, Fig. 13 reports the comparison of RadISH+MATRIX and POWHEG predictions
for the ratio observable, including QCD and EW contributions (left panel), or solely QCD effects
(right panel). Although the POWHEGQCD+EW predictions for individual p

``

t
distributions are

in reasonable agreement with the NLO+NLL0 RadISH+MATRIX ones, the left panel of Fig. 13
reveals a moderate shape discrepancy in the ratio (purple vs pink), with POWHEGQCD+EW being
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