

Standard Model at the LHC – Rome | May 7, 2024 **Top Yukawa couplings from ttH and top physics**

Matthias Schröder (Universität Hamburg) on behalf of the ATLAS and CMS Collaborations

The top-Higgs Yukawa coupling is special!

Higgs Yukawa sector – unlike anything we have probed before

Top-Higgs Yukawa coupling yt

By far the largest Higgs-fermion coupling (\approx 1)

- Significant role in electroweak vacuum stability
- Sensitivity to new physics
- Relevant in measurement of Higgs boson self-coupling

May 7, 2024

Outline: How to probe y_t**?**

Loop-induced single Higgs processes ggF production and $H \rightarrow \gamma\gamma$ decays

Virtual contributions to top quark production 4t and tt production Top quark associated production ttH and tH production

Indirect measurements of y_t: Higgs and top physics

y_t from Higgs combination

Combination of Higgs boson measurements in various production x decay channels

May 7, 2024

y_t from 4t cross section

Eur. Phys. J. C 83 (2023) 496 Eur. Phys. J. C 84 (2024) 156 [Erratum]

Phys. Lett. B 844 (2023) 138076

Der Forschung | der Lehre | der Bildung

May 7, 2024

Matthias Schröder | Top Yukawa couplings from ttH and top physics

y_t from tt cross section

Phys. Rev. D 102 (2020) 092013

Universität Hamburg

May 7, 2024

Direct measurements of y_t: ttH and tH production

ttH measurements at the LHC

ttH production: direct probe of top-Higgs coupling

Talk by Anna

Small production cross section: 0.5 pb at 13 TeV [arXiv: 1610.07922]

Multitude of possible final states with many and different objects

Independent observation by ATLAS and CMS in 2018, combining several channels

Phys. Rev. Lett. 120 (2018) 231801 Phys. Lett. B 784 (2018) 173

May 7, 2024

ttH with H $\rightarrow \gamma \gamma$

<u>JHEP 07 (2023) 088</u> Phys. Rev. Lett. 125 (2020) 061801 Universität Hamburg Der Forschung | der lehre | der Bildung

Very clean channel:

clear signature + excellent mass resolution (1%)

 \rightarrow reconstruct Higgs boson from photons

Strategy overview

- Events split in leptonic & hadronic channels
- Dedicated BDT in each channel

 → reject main backgrounds
 → categorise events by signal purity
- Simultaneous fit to m_{γγ} distribution in each category

May 7, 2024

ttH with H $\rightarrow \gamma \gamma$ results

JHEP 07 (2023) 088

May 7, 2024

Step towards differential measurements:

Simplified Template Cross Section (STXS) framework

- Signal strength for each Higgs production mode
- Separated further in different phase-space regions

$H \rightarrow \gamma \gamma$ channel: first ttH STXS results Part of inclusive H $\rightarrow \gamma \gamma$ STXS measurements

<u>Talk by Sarah</u>

May 7, 2024

from ttH and top physics

ttH with H $\rightarrow \gamma \gamma$ STXS analysis

JHEP 07 (2023) 088 JHEP 07 (2021) 027

Universität Hamburg

UН

ttH multilepton

Targeting H decays to vector bosons or $\boldsymbol{\tau}$

Complex categorisation by lepton flavour, multiplicty, and sign + multi-class BDTs (ATLAS) _______ signal + bkg. + multi-class NNs (CMS) _______ control regions

Challenging SM backgrounds

- Irreducible: ttW, ttZ/γ, diboson
- Reducible: non-prompt and fake leptons

No resonance peak: BDTs or NNs to extract signal

ttW background

ttW background difficult to model

- Shape from simulation
 - ATLAS: Sherpa ttW+1/2j (NLO/LO)
 - CMS: MadGraph5_aMC@NLO (NLO)
- Normalisation freely-floating in fit

Example ttW control region from dedicated NN class in 2l(SS)+ $0\tau_h$

Post-fit ttW normalisation larger than SM expectation*

ttW norm. = 1.43 +/- 0.21 (CMS)

(consistent with dedicated measurements)

[JHEP 07 (2023) 219] [arXiv:2401.05299 (subm. to JHEP)]

* Different predictions as reference

Various systematic uncertainites

- Theory (scale choices, shower, etc.)
- Charge asymmetry and b-jet multiplicity

ttH multilepton results

ATLAS-CONF-2019-045 Eur. Phys. J. C 81 (2021) 378

Universität Hamburg Der Forschung | der lehre | der bildung

May 7, 2024

Multilepton: ttH+tH production

Eur. Phys. J. C 81 (2021) 378

Universität Hamburg

CMS analysis: dedicated analysis categories targeting tH events CMS 137 fb⁻¹ (13 TeV) g LECELEO h#H $pp \rightarrow tH + t\bar{t}H$ 2.5 $H \rightarrow WW/ZZ/\tau\tau$ - H g QQQQQQ 1.5 tH production: $s_{SM} = 90$ fb (can be strongly enhanced for non-SM) 0.5 [arXiv: 1610.07922] Observed - 68% CL region ---95% CL region Simultaneoulsy floating ttH and tH contributions -0.5 SM expected Best fit -5 0 5 10 15 μ_{tH}

May 7, 2024

Eur. Phys. J. C 81 (2021) 378

Universität Hamburg

ttH and tH cross-sections depend differently on top-Higgs coupling κ_t

May 7, 2024

ttH with $\textbf{H} \rightarrow \textbf{b}\textbf{b}$

JHEP 06 (2022) 97 CMS-PAS-HIG-19-011

Benefit from large BR($H \rightarrow bb$) \approx 58% Only Higgs-fermion couplings involved

Challenging final state

- No unambigious event reconstruction
- Irreducible tt+bb background

Complex analysis strategy

- Categories in #leptons, jets, b-tags and b-tag eff. (ATLAS) / multi-class NNs (CMS)
 - ATLAS: dedicated boosted category
 - CMS: 0 lepton channel (data-driven QCD)
- BDTs for jet-parton assignment
- Signal extracted using BDT or NN information

May 7, 2024

Matthias Schröder | Top Yukawa couplings from ttH and top physics

2018 discriminant bins

May 7, 2024

Matthias Schröder | Top Yukawa couplings from ttH and top physics

Arbitrary Units

21

tt+bb difficult to model and to measure [arXiv:2309.14442, acc. by JHEP]

Simulations typically underpredict cross section by $\approx 20-30\%$

Talk by Tae Jeong

Differences in relevant kinematic distributions

Different **approaches** to simulate events include:

- tt ME at NLO + PS g \rightarrow bb splitting (5FS)
- ttbb ME at NLO (4FS)

tt+bb background

ME: matrix element, PS: parton shower, FS: flavour scheme

expect better description of kinematics and better defined uncertainties

tt+bb background

tt+bb difficult to model and to measure [arXiv:2309.14442, acc. by JHEP]

Simulations typically underpredict cross section by ≈20–30%

Talk by Tae Jeong

Differences in relevant kinematic distributions

Different **approaches** to simulate events include:

- tt ME at NLO + PS g \rightarrow bb splitting (5FS)
- ttbb ME at NLO (4FS)

ME: matrix element, PS: parton shower, FS: flavour scheme

tt+bb background from Powheg ttbb 4FS simulation [Eur. Phys. J. C78 (2018) 502]

- Embedded into Powheg tt 5FS sample to cover full phase space
- Overall tt+bb normalisation freely-floating

ATLAS PP8 ttbb CMS PP8 ttbb ATLAS PP8 tt CMS PP8 tt tt 5FS ATLAS + CMS Generator Level √s=13 TeV, ≥ 4b, ≥ 4j Dilepton channel

May 7, 2024

tt+bb background

Various modelling uncertainties

- Scale choice in ME and PS
- ME—PS matching
- Hadronisation
- tt+b frac. (ATLAS) / collinear g \rightarrow bb (CMS)
- p_T(H) spectrum (ATLAS)

In addition to varying generator parameters

- ATLAS: diff. between generators as uncert.
- CMS: bias tests with other generators

Post-fit tt+bb normalisation larger than prediction

(consistent with dedicated measurement)

- ATLAS: 1.28 ± 0.08
- CMS: 1.19 ± 0.13 * Different predictions as reference

May 7, 2024

Matthias Schröder | Top Yukawa couplings from ttH and top physics

Talk by Tae Jeong

ttH with H \rightarrow bb results

May 7, 2024

Signal region events separated into 5 p_T(H) bins using BDTs (ATLAS) / NNs (CMS)

Signal region events separated into 5 p_T(H) bins using BDTs (ATLAS) / NNs (CMS)

26

ttH measurements: status

ttH results with **full Run-2 dataset** in (almost) all channels Major improvements in sensitivity & extended interpretations (STXS, targeting tH)

May 7, 2024

Top Yukawa CP properties

Phys. Rev. Lett. 125 (2020) 061802

Phys. Rev. Lett. 125 (2020) 061801

CP-odd component in top-Higgs interaction?

In principle allowed at tree level!

$$\mathcal{A}(\mathrm{Htt}) = -\frac{m_{\mathrm{t}}}{v}\overline{\psi}_{\mathrm{t}}\left(\kappa_{\mathrm{t}} + \mathrm{i}\tilde{\kappa}_{\mathrm{t}}\gamma_{5}\right)\psi_{\mathrm{t}}$$

 \rightarrow impact on ttH + tH rates and kinematics

Simultaneoulsy floating ttH and tH contributions \rightarrow constraints on CP-odd top-Higgs coupling $\tilde{\kappa}_t$

 $H \rightarrow \gamma\gamma$: first measurement of Htt CP structure Pure CP-odd structure excluded at 3.9σ ATLAS / 3.2σ (2.6σ exp.) CMS

May 7, 2024

Top Yukawa CP properties

JHEP 07 (2023) 092 CMS-PAS-HIG-19-011 Phys. Lett. B 849 (2024) 138469

Universität Hamburg

CP analyses in multilepton (CMS) and H \rightarrow bb (ATLAS, CMS) channels

- Building on inclusive ttH+tH measurements
- Dedicated observables exploiting kin. differences of CP scenarios (multilepton, ATLAS H → bb)

May 7, 2024

Rich set of results with Run 2 data by ATLAS and CMS covering many different channels

- Very challenging measurements: complex ML-based analysis strategies Modelling of backgrounds is key
 - First differential (STXS) ttH results, analysis of CP structure from ttH+tH and 4t
 - **Consistent with SM expectation**, some tension in ttH, $H \rightarrow bb$ channel

Run 3 at full swing with much more data to analyse Many more opportunities for y_t measurements ahead!

May 7, 2024

Summary

Several complementary probes of top-Higgs coupling

- Indirect: ggF production and $H \rightarrow \gamma \gamma$ decays, 4t and tt cross section
- Direct: ttH and tH production

