

Global SMEFT fits from (HL)-LHC to future colliders

Jaco ter Hoeve

STANDARD MODEL AT THE LHC Rome, May 7-10, 2024

The high energy landscape

Lots of impressive cross-section measurements, but no clear deviation from the SM (yet) ...

... so we study their overall pattern!

[ATL-PHYS-PUB-2023-039]

Why global fits?

- The SMEFT is our universal tool to search for BSM physics above the EW scale, with minimal assumptions on what it may look like
- Given the **cross-talk** between Higgs, top, diboson and EWPO (and flavour and low energy observables), a simultaneous fit is our only way forward
- Challenge: a large number of operators, with many datasets needed to break degeneracies

[2012.02779] Fitmaker collaboration

Anke Biekötter - HET seminar Brookhaven

►

Previously on global fits...

- SMEFiT: EW + Higgs + diboson + top + projections, NLO, quadratic [2105.00006, 2309.04523 , 2404.12809]
- ► ATLAS: EW + Higgs, LO, quadratic [ATL-PHYS-PUB-2022-037] → See Andrea Visibile's talk!
- simuNET: simultaneous EFT + PDF fit in EW + Higgs + diboson + top, NLO, linear [2402.03308]
- Fitmaker: EW + Higgs + top + diboson, linear [2012.02779, 2204.05260]
- SFitter: EW + Higgs, top, NLO, quadratic [1812.07587, 1910.03606]
- HEPfit: EW, flavour, projections, LO, linear [1910.14012]
- TopFitter: top, linear, LO [1901.03164]
- ► EFTfitter: top + DY + flavour, LO, quadratic, RG effects [1605.05585, 2304.12837] → Lara Nollen's talk from Wednesday
- Mainz group: EW + Higgs + top + flavour + dijet + PV + lepton scattering, NLO, linear [2311.04963]
- Zurich group: EW + flavour + (DY, LEPII, Jet observables), individual, RG effects [2311.00020] → Lukas Allwicher's talk from Wednesday

simuNET: a simultaneous PDF + EFT fit

- Most EFT global fits assume a fixed PDF set. A full treatment should fit the EFT and PDF parameters simultaneously, as done by simuNET
- EFT parameters are stable, while the PDF fits undergo shifts at high invariant mass in e.g. the gluon-gluon luminosity

Costantini, Hammou, Madigan, Mantani, Moore, Morales, Ubiali [2402.03308]

SMEFT and public likelihoods

 Publishing the full statistical model in HistFactory format is getting more and more common (30 public ATLAS likelihoods so far) → Nicholas Wardle's talk from Thursday

• Extremely valuable and a promising tool **outside** experimental collaborations

Elmer, Madigan, Plehn, Schmal - [2312.12502]

The SMEFiT3.0 framework

E. Celada, T. Giani, L. Mantani, J. Rojo, A. Rossia, M. Thomas, E. Vryonidou , JtH

[2404.12809] (Submitted to JHEP)

7

The SMEFiT timeline

Building the likelihood

From (differential) cross sections ...

To a combined likelihood ready for optimisation ...

$$-2\log \mathscr{L} = \frac{1}{n_{\text{dat}}} \sum_{i,j=1}^{n_{\text{dat}}} \left(\sigma_{i,\text{SMEFT}}(c) - \sigma_{i,\text{exp}} \right) \left(\text{cov}^{-1} \right)_{ij} \left(\sigma_{j,\text{SMEFT}}(c) - \sigma_{j,\text{exp}} \right)$$

Theory (pdf + scale) and experimental uncertainties (stat + systematics): $cov^{(tot)}_{ij} = cov^{(th)}_{ij} + cov^{(exp)}_{ij}$

SMEFiT3.0 in a nutshell

- SMEFiT2.0 extended with recent datasets in **top, diboson and Higgs production** based on the full Run II luminosity
- Full **independent treatment of the EWPOs** from LEP and SLD
- Dedicated **projection module** to extrapolate Run II data to HL-LHC
- FCC-ee and CEPC pseudodata from Snowmass predictions [2206.08326], updated to 4 IPs as per the FCC feasibility midterm report
- Both results in terms of Wilson coefficients and **UV-complete models**
- **Public code, data and theory**: results are fully reproducible

"Spider plots / Antarctica plots"

►

►

►

►

Dataset upgrade

Extend SMEFiT2.0 with recent Run II datasets from top, diboson and Higgs production

Catagory	Processes	[2105.00006] <i>n</i>	dat		
	110065565	SMEFIT2.0	SMEF1T3.0		
	$t\bar{t} + X$	94	115		
	$tar{t}Z,tar{t}W$	14	21		
	$tar{t}\gamma$	-	2		
Top quark production	single top (inclusive)	27	28		
	tZ,tW	9	13		
	$tar{t}tar{t}$, $tar{t}bar{b}$	6	12		
	Total	150	189		
	Run I signal strengths	22	22		
Higgs production	Run II signal strengths	40	40		
and decay	Run II, differential distributions & STXS	35	71		
	Total	97	133		
	LEP-2	40	40		
Diboson production	LHC	30	41		
	Total	70	81		
Z-pole EWPOs	LEP-2	-	44		
Baseline dataset	Total	317	449		

Flavour assumption: $U(2)_q \times U(3)_d \times U(2)_u \times (U(1)_\ell \times U(1)_e)^3$

Full treatment of EWPOs

In the SMEFT, the SM couplings receive corrections from dim-6 operators

- SMEFiT2.0: assumed measurements at LEP were precise enough to set the coupling shifts to zero: 14 constraints, 16 d.o.f
- SMEFiT3.0: hardwired constraints get no longer imposed, EWPOs are treated on the same footing as (existing) LHC data: 14 extra d.o.f

Full treatment of EWPOs

In the SMEFT, the SM couplings receive corrections from dim-6 operators

- SMEFiT2.0: assumed measurements at LEP were precise enough to set the coupling shifts to zero: 14 constraints, 16 d.o.f
- SMEFiT3.0: hardwired constraints get no longer imposed, EWPOs are treated on the same footing as (existing) LHC data: 14 extra d.o.f

SMEFiT3.0 is simultaneously sensitive to 45 (50) Wilson coefficients at the linear (quadratic) level!

Fit residuals (pulls) are largely **consistent** with the SM

$$P_{i} \equiv \frac{\langle c_{i} \rangle - c_{i}^{(\text{SM})}}{\left[c_{i}^{\min}, c_{i}^{\max}\right]^{68\% \text{ CL}}}$$

Large correlations in linear fit get lifted in the quadratic fit

Correlation: NLO $\mathcal{O}\left(\Lambda^{-2}\right)$

Fit residuals (pulls) are largely **consistent** with the SM

$$P_{i} \equiv \frac{\langle c_{i} \rangle - c_{i}^{(\text{SM})}}{\left[c_{i}^{\min}, c_{i}^{\max}\right]^{68\% \text{ CI}}}$$

Large correlations in linear fit get lifted in the quadratic fit

Correlation: NLO $\mathcal{O}\left(\Lambda^{-4}\right)$

Result: HL-LHC

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-2})$, Marginalised

- We project all RunII datasets from the SMEFiT 3.0 baseline: one for each process and final state see backup for details
- We see an improvement ranging from 20 to 70 % in the marginalised fit
- The EW operators only improve in the marginalised fit because of correlations

Result: FCC-ee

Dataset input

- ▶ EWPOs at the Z-pole
- Light fermion pair prediction
- Higgstrahlung and VBF
- Gauge boson pair production
- Top-quark pair production
- Optimal Observables

Enormy (/a)	$\mathcal{L}_{\mathrm{int}}$ (Run time)							
Energy (\sqrt{s})	FCC-ee	CEPC						
91 GeV (Z-pole)	$300 \text{ ab}^{-1} (4 \text{ years})$	$100 \text{ ab}^{-1} (2 \text{ years})$						
161 GeV $(2 m_W)$	$20 \text{ ab}^{-1} (2 \text{ years})$	$6 \text{ ab}^{-1} (1 \text{ year})$						
$240~{ m GeV}$	$10 \text{ ab}^{-1} (3 \text{ years})$	$20 \text{ ab}^{-1} (10 \text{ years})$						
$350~{ m GeV}$	$0.4 \text{ ab}^{-1} (1 \text{ years})$	-						
$365 { m ~GeV} (2 m_t)$	3 ab^{-1} (4 years)	1 ab^{-1} (5 years)						

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-4})$, Marginalised

Result: FCC-ee energy breakdown

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-2})$, Marginalised

- The FCC-ee plans to operate sequentially, hence we need to study the impact at the various energies
- Largest impact for Z-pole at 91 GeV plus the Higgs factory run at 240 GeV
- We can try other combinations too in order to find the most optimal run order for the SMEFT

	LEP	$t\bar{t}$ 8 TeV	$tar{t}$ 13 TeV	$tar{t}\gamma$	$t\bar{t}W$	$t\bar{t}Z$	$t 8 \mathrm{TeV}$	$t 13 \mathrm{TeV}$	tW	tZ	$t\bar{t}A_c$	W helicities	$t\bar{t}t\bar{t} + t\bar{t}b\bar{b}$	Higgs-run I	Higgs-run II	AA	$t\bar{t}$ 13 TeV HL-LHC	$t\bar{t}W$ HL-LHC	$t\bar{t}Z$ HL-LHC	t 13 TeV HL-LHC	tW HL-LHC	tZ HL-LHC	$t\bar{t}A_c$ HL-LHC	W helicities HL-LH	$t\bar{t}t\bar{t} + t\bar{t}b\bar{b}$ HL-LHC	Higgs HL-LHC	VV HL-LHC	FCC-ee 91 GeV	FCC-ee 161 GeV	FCC-ee 240 GeV	FCC-ee 365 GeV		10
^{2}QQ													14.0												86.0								10
Q^{8}_{QQ}													15.1												84.9								
c_{Qt}^1	-												18.1												81.9								
c_{Qt}^8	-												14.1												85.9								
c_{tt}^{1}	-												14.0					7.0							86.0							-	
$c_{Qq}^{1,0}$	-	0.4	10.4	0.2	1.0	1.3					9.1		0.0	0.0	0.1		22.7	7.9	0.3				41.7		0.1	0.1							
$c_{Qq}^{-,-}$ 3.8	-	0.3	22	0.3	19	10	12	0.3			13.6		0.0	0.0	0.1		43	92	4.6	13			59.6		0.2	0.0							
$c_{Qq}_{3,1}$	-	0.0	0.0	0.0	1.0	1.0	15.2	7.7		4.8	0.1		0.0	0.0	0.0		0.1	0.2	1.0	40.0		31.6	0.4		0.0	0.0							
c_{Qq}		0.5	6.9	1.0	4.1	2.3					8.1		0.1	0.0	0.3		7.0	20.1	10.4				38.6		0.5	0.1							
c_{tq}		0.2	10.1								12.3		0.0				29.1						48.2		0.1							:	80
c_{tq}		0.4	8.9	0.3		0.1					13.5		0.0	0.0	0.1		14.9		0.8				60.7		0.2	0.1							
c_{tu}^1		0.2	8.9								12.7		0.0				26.9						51.1		0.2								
^c tu .8		0.8	3.7	2.5		1.0					13.7		0.1	0.0	0.4		6.9		5.2				64.8		0.7	0.2							
Q_{Qu}		0.3	11.0								12.4		0.0				27.7						48.5		0.1								
C_{u}^{8}		0.7	14.4	0.3		0.4					9.7		0.0	0.0	0.2		29.1		2.0				42.8		0.2	0.1						t	
c_{td}^1		0.5	13.8								9.6		0.0				38.8						37.1		0.2								
c_{Od}^{8}		1.5	8.7	0.2		2.4					9.4		0.1	0.0	0.5		21.2		12.1				42.9		0.8	0.2							
Q_{u}		0.4	13.8								10.2		0.0				35.6						40.0		0.1								
$c_{c\varphi}$	1													0.0	0.0											0.1				78.8	21.1		
$c_{b\varphi}$	1													0.0	0.1											0.3				70.5	29.1	- (30
$c_{t\varphi}$														0.5	3.9											16.9				53.6	25.1		
$c_{\tau\varphi}$														0.0	0.1											0.0				78.7	21.2		
c_{tG}		1.8	1.3	0.1	0.0	0.1			0.0		0.0	0.0	0.1	1.3	9.1		7.5	0.1	0.9		0.0		0.0	0.0	0.4	39.9				25.4	11.9		
C_{tW}				0.0		0.0	0.0	0.0	0.0	0.0		1.9		2.3	12.5				0.0	0.1	0.0	0.0		4.1		41.8				26.1	10.9		
c_{tZ}				0.0		0.0				0.0				2.5	13.3				0.0			0.0				44.6				27.9	11.6		
$c^{(3)}_{\varphi q}$	3.2				0.0	0.0	0.0	0.0		0.0				0.0	0.1	0.0		0.0	0.0	0.0		0.0				1.8	0.5	84.8	3.4	3.5	2.7		
(3) φQ	1.8					0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0			0.0	0.0	0.0	0.0				0.0	0.0	98.1		0.0	0.0		
$p_{q}^{-)}$	1.5					0.0				0.0				0.0	0.0	0.0			0.0			0.0				0.3	0.0	82.2		14.5	1.5		
$\overline{Q}^{(-)}$	1.5					0.0				0.0				0.0	0.0	0.0			0.0			0.0				0.0	0.0	80.7		16.1	1.6		40
φu	3.8					0.0								0.0	0.1	0.0			0.0							1.1	0.0	95.1		0.0	0.0		
φd	4.5					0.0								0.0	0.0	0.0			0.0							0.2	0.0	95.2		0.0	0.0		
$c_{\varphi t}$						11.2				0.1				0.3	1.8				74.8			0.5				6.2				3.6	1.5		
φl_1	1.6													0.0	0.0	0.0										0.0	0.0	42.5	0.0	28.7	27.2		
φ_{l_2}	4.6													0.0	0.0	0.0										0.0	0.0	78.1		15.6	1.7		
φl_3 (3)	3.1			0.0	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0				0.0	0.0	81.4	4.0	13.9	1.5		
φl_1 (3)	0.1			0.0	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0				0.0	0.0	3.1	4.2	79.6	12.9		
φl_2 (3)	2.4			0.0	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0				0.0	0.0	68.5	6.7	16.2	63		
φl_3	1.5													0.0	0.0	0.0										0.0	0.0	31.0	0.7	41.5	25.9		
$c_{\varphi e}$	4.3													0.0	0.0	0.0										0.0	0.0	78.6	0.0	15.4	17		20
$c \varphi \mu$	3.5													0.0	0.0	0.0										0.0	0.0	81.7		13.3	1.5		
$\varphi \tau$	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.1	2.5	52.9	44.5		
														0.3	2.5											10.9				58.7	27.6		
φG														2.5	13.2											44.1				28.6	11.7		
φB														1.1	5.8											19.4				46.4	27.3		
PW, VP	0.0			0.0		0.0				0.0				0.0	0.0	0.0			0.0			0.0				0.1	0.0	0.0	0.0	88.6	11.1		
, Д 7117	0.2									0.0						0.1						0.0					4.8		0.0	63.4	31.4		
	1																																
с⊓														0.0	0.1											0.2				75.2	24.5		

Normalized Value

Fisher information study

 The sensitivity of the EFT parameters to the Run II, HL-LHC and FCC-ee datasets is quantified by the fisher information

$$I_{ij} = \sum_{m=1}^{n_{\text{dat}}} \frac{\sigma_{m,i}^{(\text{eft})} \sigma_{m,j}^{(\text{eft})}}{\delta_{\exp,m}^2}$$

- The highest sensitivity in the 2FB sector comes in via the FCC-ee
- The FCC-ee run at 161 GeV is the least sensitive for the SMEFT

LED	-	tt 8 TeV	$tar{t}$ 13 TeV	$tar{t}\gamma$	$t\bar{t}W$	$t\bar{t}Z$	$t \ 8 \ { m TeV}$	$t 13 \mathrm{TeV}$	tW	tZ	$t\bar{t} A_c$	W helicities	$t\bar{t}t\bar{t}+t\bar{t}b\bar{b}$	Higgs-run I Luisses ann II		7 13 TeV HL-LHC	tiW HL-LHC	$t\bar{t}Z$ HL-LHC	t 13 TeV HL-LHC	tZ HL-LHC	$t\bar{t} A_c$ HL-LHC	W helicities HL-LF	$t\bar{t}t\bar{t} + t\bar{t}b\bar{b}$ HL-LHC	Higgs HL-LHC	VV HL-LHC	FCC-ee 91 GeV	FCC-ee 161 GeV	FCC-ee 240 GeV	FCC-ee 365 GeV
Q.													14.0 15.1																
Q													18.1										81.9						
2t													14.1																
$\frac{1}{tt}$													14.0										86.0						
$\frac{.,8}{2q}$.		0.4	8.4	0.2	1.6	1.3					9.1		0.0	0.0 0	.1	22	2.7 7.9	6.3			41.7		0.1	0.1					
2q = -2q		0.3	22	0.3	1.0	1.0	1.2	0.3			11.6		0.0		$c^{(i)}$	3)	84.	8	3.4	3.5		2.7		0.0					
2q.		0.0	0.0	0.0	1.0		15.2	7.7		4.8	0.1		0.0		φ (3	'4 2)						• •	0.0	0.0					
29 . .8		0.5	6.9	1.0	4.1	2.3					8.1		0.1		$C_{\omega}^{(e)}$	\hat{O}	98.	1		0.0		0.0).5	1					
$\begin{bmatrix} \iota q \\ 1 \\ t a \end{bmatrix}$		0.2	10.1								12.3		0.0		(-	-)	82	2		14.5	5	1.5	0.1						
$\begin{bmatrix} 8\\tu \end{bmatrix}$		0.4	8.9	0.3		0.1					13.5		0.0	($\hat{\varphi}$	Ý					-).2	0.1					
$\begin{bmatrix} 1\\tu \end{bmatrix}$		0.2	8.9								12.7		0.0		_(-	-)	80.	.7		16.1	1	1.6).2						
<i>2u</i>		0.8	3.7	2.5		1.0					13.7		0.1	,	φ	Q).7	0.2					
<i>2u</i>		0.3	11.0								12.4		0.0		c_{φ}	u	95.	.1		0.0		0.0	0.1						
8 td		0.7	14.4	0.3		0.4					9.7		0.0		'		05	~				~ ~).2	0.1					
td		0.5	13.8			0.4					9.6		0.0		c_{φ}	d	95.	.2		0.0		0.0).2						
2d		0.4	13.8	0.2		2.4					9.4		0.1		c	,				3.6		1.5) 1	0.2					
2d .		0.4	10.0								10.2		0.0		Cγ	ρt	_	_		0.0				0.1				78.8	21.1
×φ															C_{α}	1.	42.	.5	0.0	28.7	7 2	27.2		0.3				70.5	29.1
ρφ															$\circ \varphi$	ι1								16.9				51.6	25.1
															c_{φ}	l_2	78.	.1		15.6	6	1.7		0.0				78.	21.2
G		1.8	1.3	0.1	0.0	0.1			0.0		0.0	0.0	0.1		r	- 2							2	39.9				25.4	11.9
W				0.0		0.0	0.0	0.0	0.0	0.0		1.9			c_{φ}	l_3	81.	.4		13.9	Э	1.5		418				26.1	1.9
z				0.0		0.0				0.0					(:	3)	3	1	12	79 6		120		44.6				27.9	11.
3) 3.	.2				0.0	0.0	0.0	0.0		0.0					c_{φ}	l_1	J .		7.2	75.		12.0		1.8	0.5	84.8	3.4	3.5	2.7
3) 1. Q	.8					0.0	0.0	0.0	0.0	0.0					<u>(</u> ؛	3)	1.	1	5.1	82.	5 1	11.2		0.0	0.0	98.1		0.0	0.0
-) 1. q	.5					0.0				0.0					c_{φ}	l_2	-				-			0.3	0.0	82.2		14.5	1.5
$Q^{-)}$ 1.	.5					0.0				0.0					$c^{(i)}$	3)	68.	.5	6.7	16.2	2	6.3		0.0	0.0	80.7		16.1	1.6
ou 3.	.8					0.0									$^{\mathcal{C}}\varphi$	l_3								1.1	0.0	95.1		0.0	0.0
od 4.	.5					11.2				0.1					c_{φ}	e^{ie}	31.	.0	0.0	41.	5 2	25.9		6.2	0.0	95.2		3.6	1.5
φt	6					11.2				0.1							70	c		15		17	н	0.0	0.0	42.5	0.0	28.7	27.2
4.	.6														c_{φ}	$^{ m p}\mu$	/0.	0.		15.4	+	1.7		0.0	0.0	78.1		15.6	1.7
3.	.1														c		81.	7		13.3	3	1.5		0.0	0.0	81.4		13.9	1.5
3) 0.	.1			0.0	0.0	0.0	0.0	0.0	0.0	0.0					c_q	$^{o au}$								0.0	0.0	3.1	4.2	79.6	12.9
$\binom{l_1}{3}_{0.}$.1			0.0	0.0	0.0	0.0	0.0	0.0	0.0					C	.11	0.	1	2.5	52.9	9 4	14.5		0.0	0.0	1.1	5.1		11.2
$\binom{2}{3}{2}$.4														U	11	-							0.0	0.0	68.5	6.7	16.2	6.3
$\rho e = 1.$.5														C_{φ}	G				58.7	7 2	27.6		0.0	0.0	31.0	0.0	41.5	25.9
οµ 4.	.3														r		1							0.0	0.0	78.6		15.4	1.7
ρτ 3.	.5														c_{φ}	B				28.6	5 1	11.7		0.0	0.0	81.7		13.3	1.5
0.	.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0							1			16		27.2		0.0	0.0	0.1	2.5	52.9	44.5
G														(φ	W				40.4	+ 4	27.3		10.9				58.7	27.6
B														C	TT7	р	0.0	0	0.0	88.6	6 1	11.1		44.1				28.6	11.7
W .														c_{φ}	W	В								19.4				46.4	27.3
B 0.	.0			0.0		0.0				0.0				Cw	171	W			0.0	63.4	4 3	31.4		0.1	0.0	0.0	0.0	88.6	11.1
W	2									0.0				- VV	VV	VV	-							0.2	4.8		0.0	75.2	24.5
	.1			0.0		0.0				0.0					C_{arphi}					75.2	2 2	24.5		0.0	0.0	0.1	0.0		11.0
$\nu \equiv$						0.0				0.0					r	_	+							5.5		and -			

Fisher information study

 The sensitivity of the EFT parameters to the Run II, HL-LHC and FCC-ee datasets is quantified by the fisher information

$$I_{ij} = \sum_{m=1}^{n_{\text{dat}}} \frac{\sigma_{m,i}^{(\text{eft})} \sigma_{m,j}^{(\text{eft})}}{\delta_{\exp,m}^2}$$

The highest sensitivity in the 2FB sector comes in via the FCC-ee

Normalized Value

 The FCC-ee run at 161 GeV is the least sensitive for the SMEFT

UV-complete models

- We quantify the mass reach of one-particle extensions of the SM matched at tree level
- Future colliders will give an unprecedented indirect mass reach: 100 TeV, 10 TeV and 70 TeV for some of the heavy scalars, fermion, vector bosons (assuming $g_{\rm UV} = 1$)
- Models sensitive to EW operators are dominantly constrained at the FCC-ee

	Scalars		Fermions		Vectors
Particle	Irrep	Particle	Irrep	Particle	Irrep
S	$(1,1)_{0}$	N	$(1,1)_{0}$	B	$(1,1)_{0}$
\mathcal{S}_1	$(1,1)_1$	E	$(1,1)_{-1}$	\mathcal{B}_1	$(1,1)_{1}$
ϕ	$(1,2)_{1/2}$	Δ_1	$(1,2)_{-1/2}$	W	$(1,3)_0$
Ξ	$(1,3)_0$	Δ_3	$(1,2)_{-3/2}$	\mathcal{W}_1	$(1,3)_1$
Ξ1	$(1,3)_1$	Σ	$(1,3)_{0}$	G	$(8,1)_{0}$
ω_1	$(3,1)_{-1/3}$	Σ_1	$(1,3)_{-1}$	н	$(8,3)_0$
ω_4	$(3,1)_{-4/3}$		$(3,1)_{2/3}$	\mathcal{Q}_5	$(8,3)_0$
ζ	$(3,3)_{-1/3}$	D	$(3,1)_{-1/3}$	\mathcal{Y}_5	$(ar{6},2)_{-5/6}$
Ω_1	$(6,1)_{1/3}$	Q_1	$(3,2)_{1/6}$		
Ω_4	$(6,1)_{4/3}$	Q_7	$(3,2)_{7/6}$		
Υ	$(6,3)_{1/3}$	T_1	$(3,3)_{-1/3}$		
Φ	$(8,2)_{1/2}$	T_2	$(3,3)_{2/3}$		
		Q_5	$(3,2)_{-5/6}$		

Conclusion and outlook

- New physics might be just around the corner, and the SMEFT provides the ideal framework to capture its effects with a minimal set of model assumptions
- A community effort: many global fitting efforts, including combined PDF + EFT studies
- SMEFiT3.0: the biggest global SMEFT analysis to date with 50 WC to 449 datapoints
- Demonstrated the impact of HL-LHC and FCC-ee on the global SMEFT parameter space
- The FCC-ee offers an unprecedented indirect mass reach on new heavy particles

Conclusion and outlook

- New physics might be just around the corner, and the SMEFT provides the ideal framework to capture its effects with a minimal set of model assumptions
- A community effort: many global fitting efforts, including combined PDF + EFT studies
- SMEFiT3.0: the biggest global SMEFT analysis to date with 50 WC to 449 datapoints
- Demonstrated the impact of HL-LHC and FCC-ee on the global SMEFT parameter space
- The FCC-ee offers an unprecedented indirect mass reach on new heavy particles

Contact: jthoeve@nikhef.nl

Thanks for your attention!

Backup

HL-LHC projections

 The central values of the pseudo data are fluctuated around the SM

$$\mathcal{O}_i^{(\text{exp})} = \mathcal{O}_i^{(\text{th})} \left(1 + r_i \delta_i^{(\text{stat})} + \sum_{k=1}^{n_{\text{sys}}} r_{k,i} \delta_{k,i}^{(\text{sys})} \right)$$

 Statistical uncertainties we rescale according to the improved luminosity

$$\delta_i^{(\text{stat})} = \tilde{\delta}_i^{(\text{stat})} \sqrt{\frac{\mathcal{L}_{\text{Run2}}}{\mathcal{L}_{\text{HLLHC}}}}$$

 While systematics are rescaled by an overall factor, namely 1/2 for all datasets

$$\delta_{k,i}^{(\mathrm{sys})} = \tilde{\delta}_{k,i}^{(\mathrm{sys})} \times f_{\mathrm{red}}^{(k)} \qquad k = 1, \dots, n_{\mathrm{sys}}$$

+ flexible framework that can project any Run II dataset

- + SMEFT predictions can be recycled
 - No additional bins in the tails

Without statistical noise = L0

With statistical noise = L1

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-4})$, Marginalised

FCC-ee and CEPC

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}\left(\Lambda^{-2}\right)$, Marginalised

1-loop & multi-particle matching

SM predictions

Category	Process	\mathbf{SM}	Code/Ref	SMEFT
	$t\bar{t}$ (incl)	NNLO QCD	MG5_aMC NLO + NNLO K-fact	NLO QCD
	$t\bar{t} + V$	NLO QCD	MG5_aMC NLO	LO QCD $+$ NLO SM K -fact
Top quark production	single- t (incl)	NNLO QCD	MG5_aMC NLO + NNLO K-fact	NLO QCD
	t + V	NLO QCD	MG5_aMC NLO	LO QCD + NLO SM K -fact
	$t\bar{t}t\bar{t}$, $t\bar{b}t\bar{b}$	NLO QCD	MG5_aMC NLO	LO QCD + NLO SM K -fact
	gg ightarrow h	NNLO QCD + NLO EW	HXSWG	NLO QCD
	VBF	NNLO QCD + NLO EW	HXSWG	LO QCD
Higgs production and decay	h + V	NNLO QCD + NLO EW	HXSWG	NLO QCD
	$htar{t}$	NNLO QCD + NLO EW	HXSWG	NLO QCD
	$h \to X$	NNLO QCD + NLO EW	HXSWG	NLO QCD $(X = b\bar{b})$ LO QCD $(X \neq b\bar{b})$
Diboson	$e^+e^- \rightarrow W^+W^-$	NNLO QCD + NLO EW	LEP EWWG	LO QCD
production	$pp \to VV'$	NNLO QCD	MATRIX	NLO QCD

HL-LHC projected datasets

Dataset	\mathcal{L} (fb ⁻¹)	Info	Observables	$ $ $n_{\rm dat}$	Ref.
ATLAS_STXS_RunII_13TeV_2022	139	ggF , VBF, Vh , $t\bar{t}h$, th	$d\sigma/dp_T^h$ $d\sigma/dm_{jj}$ $d\sigma/dp_T^V$	36	[55]
CMS_ggF_aa_13TeV	77.4	gg F, $h \rightarrow \gamma \gamma$	$\sigma_{gg\mathrm{F}}(p_T^h,N_{\mathrm{jets}})$	6	[83]
ATLAS_ggF_ZZ_13TeV	79.8	gg F, $h \rightarrow ZZ$	$\sigma_{gg\mathrm{F}}(p_T^h, N_{\mathrm{jets}})$	6	[84]
ATLAS_ggF_13TeV_2015	36.1	$gg{\rm F},h\to ZZ,h\to\gamma\gamma$	$d\sigma(gg{ m F})/dp_T^h$	9	[85]
ATLAS_WH_Hbb_13TeV	79.8	$Wh, h ightarrow bar{b}$	$d\sigma^{(\rm fid)}/dp_T^W$ (stage 1 STXS)	2	[86]
ATLAS_ZH_Hbb_13TeV	79.8	$Zh,h ightarrow bar{b}$	$d\sigma^{(\rm fid)}/dp_T^Z$ (stage 1 STXS)	2	[86]
CMS_H_13TeV_2015_pTH	35.9	$h \to b\bar{b}, h \to \gamma\gamma, h \to ZZ$	$d\sigma/dp_T^h$	9	[87]
ATLAS_WW_13TeV_2016_memu	36.1	fully leptonic	$d\sigma^{(\rm fid)}/dm_{e\mu}$	13	[88]
ATLAS_WZ_13TeV_2016_mTWZ	36.1	fully leptonic	$d\sigma^{({ m fid})}/dm_T^{WZ}$	6	[89]
CMS_WZ_13TeV_2016_pTZ	35.9	fully leptonic	$d\sigma^{({ m fid})}/dp_T^Z$	11	[90]
CMS_WZ_13TeV_2022_pTZ	137	fully leptonic	$d\sigma/dp_T^Z$	11	[56]

Dataset	$\mathcal{L}\left(fb^{-1}\right)$	Info	Observables	n_{dat}	Ref.
ATLAS_tt_13TeV_1jets_2016_Mtt	36.1	ℓ+jets	$d\sigma/dm_{t\bar{t}}$	7	[91]
CMS_tt_13TeV_dilep_2016_Mtt	35.9	dilepton	$d\sigma/dm_{t\bar{t}}$	7	[92]
CMS_tt_13TeV_Mtt	137	ℓ +jets	$1/\sigma d\sigma/dm_{t\bar{t}}$	14	[57]
CMS_tt_13TeV_ljets_inc	137	$\ell + jets$	$\sigma(t\bar{t})$	1	[57]
ATLAS_tt_13TeV_asy_2022	139	ℓ + jets	A_C	5	[59]
CMS_tt_13TeV_asy	138	ℓ + jets	A_C	3	[58]
ATLAS_Whel_13TeV	139	W-helicity fraction	F_0, F_L	2	[60]
ATLAS_ttbb_13TeV_2016	36.1	lepton + jets	$\sigma_{\rm tot}(t\bar{t}b\bar{b})$	1	[93]
CMS_ttbb_13TeV_2016	35.9	all-jets	$\sigma_{\rm tot}(t\bar{t}b\bar{b})$	1	[94]
CMS_ttbb_13TeV_dilepton_inc	35.9	dilepton	$\sigma_{\rm tot}(t\bar{t}b\bar{b})$	1	[<mark>68</mark>]
CMS_ttbb_13TeV_ljets_inc	35.9	lepton + jets	$\sigma_{\rm tot}(t\bar{t}b\bar{b})$	1	[68]
ATLAS_tttt_13TeV_run2	139	multi-lepton	$\sigma_{tot}(t\bar{t}t\bar{t})$	1	[95]
CMS_tttt_13TeV_run2	137	same-sign or multi-lepton	$\sigma_{tot}(t\bar{t}t\bar{t})$	1	[<mark>96</mark>]
ATLAS_tttt_13TeV_slep_inc	139	single-lepton	$\sigma_{tot}(t\bar{t}t\bar{t})$	1	[64]
CMS_tttt_13TeV_slep_inc	35.8	single-lepton	$\sigma_{tot}(t\bar{t}t\bar{t})$	1	[<mark>65</mark>]
ATLAS_tttt_13TeV_2023	139	multi-lepton	$\sigma_{tot}(t\bar{t}t\bar{t})$	1	[<mark>66</mark>]
CMS_tttt_13TeV_2023	139	same-sign or multi-lepton	$\sigma_{\rm tot}(t\bar{t}t\bar{t})$	1	[67]
CMS_ttZ_13TeV_pTZ	77.5	$t\bar{t}Z$	$d\sigma(t\bar{t}Z)/dp_T^Z$	4	[97]
ATLAS_ttZ_13TeV_pTZ	139	$t\bar{t}Z$	$d\sigma(t\bar{t}Z)/dp_T^Z$	7	[61]
ATLAS_ttW_13TeV_2016	36.1	$t\bar{t}W$	$\sigma_{tot}(t\bar{t}W)$	1	[98]
CMS_ttW_13TeV	35.9	$t\bar{t}W$	$\sigma_{\rm tot}(t\bar{t}W)$	1	[99]
ATLAS_t_tch_13TeV_inc	3.2	t-channel	$\sigma_{\rm tot}(tq), \sigma_{\rm tot}(\bar{t}q)$	2	[100]
CMS_t_tch_13TeV_2019_diff_Yt	35.9	t-channel	$d\sigma/d y_t $	5	[101]
ATLAS_t_sch_13TeV_inc	139	s-channel	$\sigma(t + \bar{t})$	1	[<mark>69</mark>]
ATLAS_tW_13TeV_inc	3.2	multi-lepton	$\sigma_{tot}(tW)$	1	[102]
CMS_tW_13TeV_inc	35.9	multi-lepton	$\sigma_{tot}(tW)$	1	[103]
CMS_tW_13TeV_slep_inc	36	single-lepton	$\sigma_{\rm tot}(tW)$	1	[71]
ATLAS_tZ_13TeV_run2_inc	139	multi-lepton + jets	$\sigma_{\rm fid}(t\ell^+\ell^-q)$	1	[104]
CMS_tZ_13TeV_pTt	138	multi-lepton + jets	$d\sigma_{\rm fid}(tZj)/dp_T^t$	3	[70]

Operator	Coefficient	Definition
	3rd generation quarks	
$\mathcal{O}^{(1)}_{\varphi Q}$	$c^{(1)}_{arphi Q}$ (*)	$i(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \varphi)(\bar{Q} \gamma^{\mu} Q)$
$\mathcal{O}^{(3)}_{arphi Q}$	$c^{(3)}_{\varphi Q}$	$i(\varphi^\dagger \stackrel{\leftrightarrow}{D}_\mu au_{\scriptscriptstyle I} arphi) (ar{Q} \gamma^\mu au^{\scriptscriptstyle I} Q)$
$\mathcal{O}_{arphi t}$	$c_{\varphi t}$	$i(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \varphi)(\bar{t} \gamma^{\mu} t)$
\mathcal{O}_{tW}	c_{tW}	$i(\bar{Q}\tau^{\mu\nu}\tau_I t)\tilde{\varphi}W^I_{\mu\nu}$ + h.c.
\mathcal{O}_{tB}	c_{tB} (*)	$i(\bar{Q}\tau^{\mu\nu}t)\tilde{\varphi}B_{\mu\nu}+{\rm h.c.}$
\mathcal{O}_{tG}	c_{tG}	$ig_{s}\left(ar{Q} au^{\mu u} T_{\scriptscriptstyle A} t ight) \widetilde{arphi} G^{A}_{\mu u} + { m h.c.}$
$\mathcal{O}_{t \varphi}$	c_{tarphi}	$(\varphi^{\dagger}\varphi)\overline{Q}t\widetilde{\varphi} + h.c.$
\mathcal{O}_{barphi}	c_{barphi}	$\left(\varphi^{\dagger} \varphi \right) \bar{Q} b \varphi + \text{h.c.}$
	1st, 2nd generation quarks	
$\mathcal{O}^{(1)}_{_{arphi q}}$	$c^{(1)}_{arphi q}$ (*)	$\sum_{i=1,2} i \left(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi \right) \left(\bar{q}_i \gamma^{\mu} q_i \right)$
$\mathcal{O}^{(3)}_{_{arphi q}}$	$c^{(3)}_{arphi q}$	$\sum_{i=1,2} i (\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \tau_{I} \varphi) (\bar{q}_{i} \gamma^{\mu} \tau^{I} q_{i})$
$\mathcal{O}_{arphi u i}$	$c_{\varphi u i}$	$\sum_{i=1,2,3}^{} i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi) (\bar{u}_{i} \gamma^{\mu} u_{i})$
$\mathcal{O}_{arphi di}$	$c_{arphi di}$	$\sum\limits_{i=1,2,3} i ig(arphi^\dagger \stackrel{\leftrightarrow}{D}_\mu arphi ig) ig(ar{d}_i \gamma^\mu d_i ig)$
\mathcal{O}_{carphi}	c_{carphi}	$\left(\varphi^{\dagger} \varphi \right) \bar{q}_2 c \tilde{\varphi} + \text{h.c.}$
	two-leptons	
$\mathcal{O}^{(1)}_{_{arphi\ell_i}}$	$c^{(1)}_{\varphi \ell_i}$	$i(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \varphi)(\bar{\ell}_i \gamma^{\mu} \ell_i)$
$\mathcal{O}^{(3)}_{_{arphi\ell_i}}$	$c^{(3)}_{\varphi \ell_i}$	$i(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \tau_{\scriptscriptstyle I} \varphi)(\bar{\ell}_i \gamma^{\mu} \tau^{\scriptscriptstyle I} \ell_i)$
$\mathcal{O}_{_{arphi e}}$	$c_{arphi e}$	$i(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \varphi)(\bar{e} \gamma^{\mu} e)$
$\mathcal{O}_{arphi\mu}$	$c_{arphi\mu}$	$i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi)(\bar{\mu} \gamma^{\mu} \mu)$
$\mathcal{O}_{arphi au}$	$c_{\varphi\tau}$	$i(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \varphi)(\bar{\tau} \gamma^{\mu} \tau)$
$\mathcal{O}_{ auarphi}$	$c_{ auarphi}$	$\left(\varphi^{\dagger}\varphi\right)\bar{\ell_{3}}\tau\varphi+{\rm h.c.}$
	four-lepton	
$\mathcal{O}_{\ell\ell}$	$c_{\ell\ell}$	$\left(\bar{\ell}_1\gamma_\mu\ell_2\right)\left(\bar{\ell}_2\gamma^\mu\ell_1\right)$

Operator basis

$$\begin{split} &\mathcal{O}_{qq}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} q_j) (\bar{q}_k \gamma_{\mu} q_l), \\ &\mathcal{O}_{qq}^{3(ijkl)} = (\bar{q}_i \gamma^{\mu} \tau^I q_j) (\bar{q}_k \gamma_{\mu} \tau^I q_l), \\ &\mathcal{O}_{qu}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} q_j) (\bar{u}_k \gamma_{\mu} u_l), \\ &\mathcal{O}_{qu}^{8(ijkl)} = (\bar{q}_i \gamma^{\mu} T^A q_j) (\bar{u}_k \gamma_{\mu} T^A u_l), \\ &\mathcal{O}_{qd}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} q_j) (\bar{d}_k \gamma_{\mu} d_l), \\ &\mathcal{O}_{qd}^{8(ijkl)} = (\bar{q}_i \gamma^{\mu} T^A q_j) (\bar{d}_k \gamma_{\mu} T^A d_l), \\ &\mathcal{O}_{uu}^{(ijkl)} = (\bar{u}_i \gamma^{\mu} u_j) (\bar{u}_k \gamma_{\mu} u_l), \\ &\mathcal{O}_{ud}^{1(ijkl)} = (\bar{u}_i \gamma^{\mu} u_j) (\bar{d}_k \gamma_{\mu} d_l), \\ &\mathcal{O}_{ud}^{8(ijkl)} = (\bar{u}_i \gamma^{\mu} T^A u_j) (\bar{d}_k \gamma_{\mu} T^A d_l), \end{split}$$

Operator	Coefficient	Definition
$\mathcal{O}_{arphi G}$	$c_{arphi G}$	$\left(arphi^{\dagger} arphi ight) G^{\mu u}_{A} G^{A}_{\mu u}$
$\mathcal{O}_{arphi B}$	$c_{arphi B}$	$\left(arphi^{\dagger} arphi ight) B^{\mu u} B_{\mu u}$
$\mathcal{O}_{arphi W}$	$c_{arphi W}$	$\left(arphi^{\dagger} arphi ight) W^{\mu u}_{\scriptscriptstyle I} W^{\scriptscriptstyle I}_{\mu u}$
$\mathcal{O}_{arphi WB}$	$c_{arphi WB}$	$(arphi^\dagger au_{\scriptscriptstyle I} arphi) B^{\mu u} W^{\scriptscriptstyle I}_{\mu u}$
$\mathcal{O}_{arphi d}$	$c_{arphi d}$	$\partial_\mu (arphi^\dagger arphi) \partial^\mu (arphi^\dagger arphi)$
$\mathcal{O}_{arphi D}$	$c_{arphi D}$	$(arphi^\dagger D^\mu arphi)^\dagger (arphi^\dagger D_\mu arphi)$
\mathcal{O}_W	c_{WWW}	$\epsilon_{IJK}W^I_{\mu u}W^{J, u ho}W^{K,\mu}_{ ho}$

FCC-ee and CEPC datasets

Zh and VBF ($h\nu\nu$)

EWPOs

Z-pole EWPOs ($\sqrt{s} = 91.2 \text{ GeV}$)									
	$\delta/\Delta ~ \mathcal{O}_i$								
	FCC-ee	CEPC							
$lpha(m_Z)^{-1}(imes 10^3)$	$\Delta=2.7~(1.2)$	$\Delta = 17.8$							
$\Gamma_W ~({ m MeV})$	$\Delta=0.85~(0.3)$	$\Delta=1.8~(0.9)$							
Γ_Z (MeV)	$\Delta = 0.0028~(0.025)$	$\Delta = 0.005~(0.025)$							
$A_e \left(\times 10^5 \right)$	$\Delta = 0.5~(2)$	$\Delta = 1.5$							
$A_{\mu} \left(imes 10^5 ight)$	$\Delta = 1.6~(2.2)$	$\Delta=3.0~(1.8)$							
$A_{ au} \left(imes 10^5 ight)$	$\Delta=0.35~(20)$	$\Delta = 1.2~(6.9)$							
$A_b \left(imes 10^5 ight)$	$\Delta = 1.7~(21)$	$\Delta = 3$ (21)							
$A_c (imes 10^5)$	$\Delta = 14 \ (15)$	$\Delta=6~(30)$							
$\sigma_{ m had}^0~({ m pb})$	$\Delta=0.025~(4)$	$\Delta = 0.05~(2)$							
$R_e (imes 10^3)$	$\delta = 0.0028 \; (0.3)$	$\delta = 0.003 \; (0.2)$							
$R_{\mu}(imes 10^3)$	$\delta = 0.0021 \; (0.05)$	$\delta = 0.003 \; (0.1)$							
$R_{ au} (imes 10^3)$	$\delta = 0.0021 \; (0.1)$	$\delta = 0.003 \; (0.1)$							
$R_b (imes 10^3)$	$\delta = 0.001 \; (0.3)$	$\delta = 0.005 \; (0.2)$							
$R_c(imes 10^3)$	$\delta = 0.011 \; (1.5)$	$\delta=0.02~(1)$							

$e^+e^- ightarrow Zh$										
	$\sqrt{s} = 24$	40 GeV	$\sqrt{s} = 36$	$55 { m GeV}$						
\mathcal{O}_i	$\delta_{\exp} \mathcal{O}_i$ (FCC-ee)	$\delta_{\exp} \mathcal{O}_i$ (CEPC)	$\delta_{\exp} \mathcal{O}_i$ (FCC-ee)	$\delta_{\exp} \mathcal{O}_i \; (ext{CEPC})$						
σ_{Zh}	0.0035	0.0026	0.0064	0.014						
$\sigma_{Zh} imes \mathrm{BR}_{b\bar{b}}$	0.0021	0.0014	0.0035	0.009						
$\sigma_{Zh} \times \mathrm{BR}_{c\bar{c}}$	0.0156	0.0202	0.046	0.088						
$\sigma_{Zh} \times \mathrm{BR}_{gg}$	0.0134	0.0081	0.0247	0.034						
$\sigma_{Zh} \times BR_{ZZ}$	0.0311	0.0417	0.0849	0.2						
$\sigma_{Zh} \times \mathrm{BR}_{WW}$	0.0085	0.0053	0.0184	0.028						
$\sigma_{Zh} \times \mathrm{BR}_{\tau^+\tau^-}$	0.0064	0.0042	0.0127	0.021						
$\sigma_{Zh} \times \mathrm{BR}_{\gamma\gamma}$	0.0636	0.0302	0.127	0.11						
$\sigma_{Zh} \times \mathrm{BR}_{\gamma Z}$	0.12	0.085	-	-						
		$e^+e^- \to h \nu \nu$								
	$\sqrt{s} = 24$	40 GeV	$\sqrt{s} = 36$	$55 { m GeV}$						
\mathcal{O}_i	$\delta_{\exp} \mathcal{O}_i$ (FCC-ee)	$\delta_{\exp} \mathcal{O}_i$ (CEPC)	$\delta_{\exp} \mathcal{O}_i$ (FCC-ee)	$\delta_{\exp} \mathcal{O}_i \; (ext{CEPC})$						
$\sigma_{h\nu\nu}\times \mathrm{BR}_{b\bar{b}}$	0.0219	0.0159	0.0064	0.011						
$\sigma_{h\nu\nu} \times \mathrm{BR}_{c\bar{c}}$	-	-	0.0707	0.16						
$\sigma_{h\nu\nu} \times \mathrm{BR}_{gg}$	-	-	0.0318	0.045						
$\sigma_{h\nu\nu} \times \mathrm{BR}_{ZZ}$	-	-	0.0707	0.21						
$\sigma_{h\nu\nu} \times \mathrm{BR}_{WW}$	-	-	0.0255	0.044						
$\sigma_{h\nu\nu} \times \mathrm{BR}_{\tau^+\tau^-}$	-	-	0.0566	0.042						
$\sigma_{h\nu\nu}\times \mathrm{BR}_{\gamma\gamma}$	-	-	0.156	0.16						

FCC-ee and CEPC datasets

$e^+e^- ightarrow far{f}$										
		$\sqrt{s} = 240 { m GeV}$				$\sqrt{s} = 365 \text{ GeV}$				
\mathcal{O}_i		$\Delta_{\exp} \mathcal{O}_i$ (FCC-ee)		$\Delta_{\exp} \mathcal{O}_i$ (CEPC)		$\Delta_{\exp} \mathcal{O}_i$ (FCC-ee)		$\Delta_{\exp} \mathcal{O}_i (ext{CEPC})$		
$\sigma_{\rm tot}(e^+e^-)$ [fb]		2.29		1.62		2.74		4.68		
$A_{ m FB}(e^+e^-)$		$9.79\cdot 10^{-6}$		$6.92\cdot 10^{-6}$		$2.83\cdot10^{-5}$		$4.83 \cdot 10^{-5}$		
$\sigma_{ m tot}(\mu^+\mu^-)$ [fb]		0.405		0.287		0.48		0.82		
$A_{ m FB}(\mu^+\mu^-)$		$1.98\cdot 10^{-4}$		$1.397\cdot 10^{-4}$		$5.69\cdot10^{-4}$		$9.7 \cdot 10^{-4}$		
$\sigma_{\rm tot}(\tau^+\tau^-)$ [fb]		0.374		0.264		0.443		0.756		
$A_{ m FB}(au^+ au^-)$		$2.17\cdot 10^{-4}$		$1.53\cdot 10^{-4}$		$6.24\cdot10^{-4}$		0.00106		
$\sigma_{ m tot}(car{c})$ [fb]		0.088		0.062		0.102		0.175		
$A_{ m FB}(car c)$		0.000813		$5.74\cdot 10^{-4}$		0.00238		0.00405		
$\sigma_{ m tot}(bar{b})~[{ m fb}]$		0.151		0.107		0.171		0.29		
$A_{ m FB}(bar{b})$		$4.86\cdot10^{-4}$		$3.44\cdot10^{-4}$		0.00142		0.00243		
$e^+e^- ightarrow W^+W^-$										
\mathcal{O}_i		$\sqrt{s} = 161 { m ~GeV}$			$\sqrt{s} = 24$	$40 { m GeV}$		$\sqrt{s} = 365 { m GeV}$		
	$\delta_{ m exp}$	δ_{exp} (FCC-ee) δ_{exp}		C)	δ_{exp} (FCC-ee)	δ_{exp} (CEPC)	$\delta_{ ext{exp}}$	(FCC-ee)	$\delta_{ m exp}$ (CEP	
σ_{WW}	$1.36\cdot 10^{-4}$		$2.48\cdot 10^{-4}$		$1.22 \cdot 10^{-4}$	$8.63 \cdot 10^{-5}$	2.8	$81 \cdot 10^{-4}$	$4.87 \cdot 10^{-1}$	
$\mathrm{BR}_{W o \ell_i \nu_i}$	$2.72\cdot 10^{-4}$		$4.95\cdot 10^{-4}$		$2.44\cdot 10^{-4}$	$1.73 \cdot 10^{-4}$	5.	$63 \cdot 10^{-4}$	$9.75 \cdot 10^{-1}$	

Light fermion production

EWPO benchmark

