## Study of EFT effects in <u>nTGC</u> and <u>aQGC</u> in ElectroWeak processes

#### Zuchen Huang On behalf of the ATLAS and CMS Collaborations



The University of Manchester





STANDARD MODEL AT THE LHC Rome, May 7-10, 2024







## nTGC? aQGC? Why?

• SM provides gauge boson coupling of:



Triple Gauge Coupling (TGC): WWZ, WW $\gamma$ 

Quartic Gauge Coupling (QGC): WWWW, WWZZ, WWZ $\gamma$ , WW $\gamma\gamma$ 

• What if *prohibited* vertices exist?



BSM!

## nTGC? aQGC? How?

 Standard Model Effective Field Theory (SMEFT) based on Taylor expansion in local operators with mass dimension > 4



- The nTGCs and aQGCs (without aTGCs counterpart), which is today's focus, are described in diemension-8. While dimension-5 has one operators for neutrino mass and aTGCs arises from dimension-6.
- When the energy scale parameter  $\Lambda \gg \sqrt{s}$  the expansion term can be truncated.



• Growth of amplitude with  $\sqrt{s}$  can violate unitarity

## nTGC? aQGC? How? – The Basic Way

• Cross-section with single operator

$$\sigma_{SMEFT} = \sigma_{SM} + \left(\frac{c^{d=8}}{\Lambda^4}\right)\sigma_{int} + \left(\frac{c^{d=8}}{\Lambda^4}\right)^2 \sigma_{EFT}$$

- Cross-section of interference term is proportional to coefficient.
- Cross-section of pure EFT contribution is proportional to the square of coefficient
- With cross-section of  $\sigma_{int}$  and  $\sigma_{EFT}$  from MC when c = 1, a likelihood test can be performed to the measured cross-section:

$$\mathcal{L} = \frac{1}{\sqrt{(2\pi)^{k}|Cov|}} \exp\left(-\frac{1}{2}\left(\vec{\sigma}_{data} - \vec{\sigma}_{SMEFT} - \sum_{i}\theta \cdot \vec{e}_{\theta}\right)^{T}Cov^{-1}\left(\vec{\sigma}_{data} - \vec{\sigma}_{SMEFT} - \sum_{i}\theta \cdot \vec{e}_{\theta}\right)\right) \times \prod_{i}\mathcal{N}(\theta_{i})$$

$$\chi^{2}$$
Nuisances parameter







### **nTGCs - Parameters**



Neutral TGC (nTGC): ZZZ, ZZ $\gamma$ , Z $\gamma\gamma$ 

Basis of dim 8 operators for nTGCs:

$$\begin{split} \mathcal{O}_{\widetilde{B}W} &= i H^{\dagger} \widetilde{B}_{\mu\nu} W^{\mu\rho} \left\{ D_{\rho}, D^{\nu} \right\} H, \\ \mathcal{O}_{B\widetilde{W}} &= i H^{\dagger} B^{\mu\nu} \widetilde{W}_{\mu\rho} \left\{ D_{\rho}, D^{\nu} \right\} H, \\ \mathcal{O}_{\widetilde{W}W} &= i H^{\dagger} \widetilde{W}_{\mu\nu} W^{\mu\rho} \left\{ D_{\rho}, D^{\nu} \right\} H, \\ \mathcal{O}_{\widetilde{B}B} &= i H^{\dagger} \widetilde{B}_{\mu\nu} B^{\mu\rho} \left\{ D_{\rho}, D^{\nu} \right\} H. \end{split}$$

$$ie\Gamma_{ZZV}^{\alpha\beta\mu}(\mathbf{q}_{1},\mathbf{q}_{2},\mathbf{q}_{3}) = \frac{-e(\mathbf{q}_{3}^{2}-m_{V}^{2})}{M_{Z}^{2}} \left[ f_{4}^{V}(\mathbf{q}_{3}^{\alpha}g^{\mu\beta}+\mathbf{q}_{3}^{\beta}g^{\mu\alpha}) - f_{5}^{V}\epsilon^{\mu\alpha\beta\rho}(\mathbf{q}_{1}-\mathbf{q}_{2})_{\rho} \right] , \quad (1.1)$$

$$ie\Gamma_{Z\gamma V}^{\alpha\beta\mu}(\mathbf{q}_{1},\mathbf{q}_{2},\mathbf{q}_{3}) = \frac{-e(\mathbf{q}_{3}^{2}-m_{V}^{2})}{M_{Z}^{2}} \left\{ h_{1}^{V}(\mathbf{q}_{2}^{\mu}g^{\alpha\beta}-\mathbf{q}_{2}^{\alpha}g^{\mu\beta}) + \frac{h_{2}^{V}}{M_{Z}^{2}}\mathbf{q}_{3}^{\alpha}[(\mathbf{q}_{3}\mathbf{q}_{2})g^{\mu\beta}-\mathbf{q}_{2}^{\mu}\mathbf{q}_{3}^{\beta}] - h_{3}^{V}\epsilon^{\mu\alpha\beta\rho}q_{2\rho} - \frac{h_{4}^{V}}{M_{Z}^{2}}\mathbf{q}_{3}^{\alpha}\epsilon^{\mu\beta\rho\sigma}\mathbf{q}_{3\rho}q_{2\sigma} \right\}$$

$$(1.2)$$

- $f_i^V$  require on shell ZZ, while  $h_i^V$  require on shell Z $\gamma$ .
- A recent paper point out that extra operators and form factor should be introduced in nTGCs.-> PRD 107 (2023) 035005



< 0

#### Eur. Phys. J. C (2021) 81:200



• Sensitive to two nTGCs: ZZZ,  $ZZ\gamma$ .

 $CMS - ZZ(\rightarrow 4l)$ 

- Test predictions at next-to-next-to-leading order (NNLO) in QCD.
- Low background contribution (~3%) due to the requirement for four well-reconstructed and isolated leptons.





Cross section measurement:

| Year     | Total cross section, pb                                                                                    |
|----------|------------------------------------------------------------------------------------------------------------|
| 2016     | $18.1 \pm 0.6 (\text{stat})^{+0.6}_{-0.5} (\text{syst}) \pm 0.4 (\text{theo})^{+0.5}_{-0.4} (\text{lumi})$ |
| 2017     | $17.0 \pm 0.5 ({\rm stat})^{+0.6}_{-0.5} ({\rm syst}) \pm 0.4 ({\rm theo}) \pm 0.4 ({\rm lumi})$           |
| 2018     | $17.1 \pm 0.4 (\text{stat}) \pm 0.5 (\text{syst}) \pm 0.4 (\text{theo}) \pm 0.4 (\text{lumi})$             |
| Combined | $17.4 \pm 0.3$ (stat) $\pm 0.5$ (syst) $\pm 0.4$ (theo) $\pm 0.3$ (lumi)                                   |

• Consistent with the NNLO prediciton

 $\mathcal{L} = 137 \, f b^{-1} @ 13 \, \text{TeV}$ 



#### $CMS - ZZ(\rightarrow 4l)$ $\mathcal{L} = 137 \, f b^{-1} @13 \, \text{TeV}$

• 2-D constraints, set limit to two parameters simultaneously. Predicted cross section:

 $\sigma_{SMEFT}$ 

 $= \sigma_{SM} + c_1 \sigma_{int1,SM} + c_2 \sigma_{int2,SM} + c_1 c_2 \sigma_{int1,2} + c_1^2 \sigma_{EFT,1} + c_2^2 \sigma_{EFT,2}$ 

- Constraints are set on  $m_{ZZ}$ , CP-even variable. Hence CP-odd parameters  $(f_4^V)$  interference term are vanished.
- Overflow contribution are included in the last bin. •

|                | Expected 95% CL  | Observed 95% CL  |
|----------------|------------------|------------------|
| aTGC parameter | $\times 10^{-4}$ | $\times 10^{-4}$ |
| $f_4^Z$        | -8.8;8.3         | -6.6;6.0         |
| $f_5^Z$        | -8.0;9.9         | -5.5;7.5         |
| $f_4^{\gamma}$ | -9.9;9.5         | -7.8;7.1         |
| $f_5^{\gamma}$ | -9.2;9.8         | -6.8;7.5         |



-0.001

-0.002

Eur. Phys. J. C (2021) 81:200

0.001

-0.001

-0.002

Expected 68% CL

Observed 95% CL

Observed 95% CL (1D)

0

0.001

0.002

 $f_4^{\gamma}$ 

— — Expected 95% CL

-0.002 -0.001

0.001

0.002

 $f_5^{\gamma}$ 

Observed 95% CL

Best fit

-0.002 -0.001

Observed 95% CL (1D)

0

## q $Z^{(*)}/\gamma^*$ $\ell^+$ g Q000





#### • Measure the ZZ polarization in 4l channel (extract the LL component)

• Measure the spin correlation between ZZ bosons

 $Z^{(*)}/\gamma^*$ 

ATLAS – ZZ( $\rightarrow 4l$ ) Angular

• Search for CP-violation and nTGCs in ZZ(4l) on-shell events (dim-8 EFT)





## ATLAS – ZZ( $\rightarrow 4l$ ) Angular

• To improve sensitivity, the two CP sensitive angles are combined as:

 $T_{yz,1(3)} = \sin \phi_{1(3)} \cos \theta_{1(3)}$ 

• An Optimal Observable (OO) is defined from the 2D distribution of  $T_{yz,1}$  V.S. $T_{yz,3}$ to maximise the sensitivity for the fourlepton system.

| aNTGC parameter | Interfere     | ence only     | Full            |                 |  |
|-----------------|---------------|---------------|-----------------|-----------------|--|
|                 | Expected      | Observed      | Expected        | Observed        |  |
| $f_Z^4$         | [-0.16, 0.16] | [-0.12, 0.20] | [-0.013, 0.012] | [-0.012, 0.012] |  |
| $f_{\gamma}^4$  | [-0.30, 0.30] | [-0.34, 0.28] | [-0.015, 0.015] | [-0.015, 0.015] |  |



 $\mathcal{L} = 140 \, f b^{-1} @13 \, \text{TeV}$ 

Angular observable allows direct probe to the interference term and CPV effects, although it is of magnitude weaker in full EFT.

- A BDT is used to determine the three different ZZ polarisation pairs:  $Z_L Z_L$  (Signal) ||  $Z_T Z_L Z_T Z_T$  (Background)
- Fiducial cross section (4.3 $\sigma$  for  $Z_L Z_L$ ):
  - $\sigma_{Z_L Z_L}^{obs.} = 2.45 \pm 0.56(stat.) \pm 0.21(syst.)$  fb
  - $\sigma^{pred.}_{Z_L Z_L} = 2.10 \pm 0.09 \, {\rm fb}$





10

## $\mathbf{CMS} - \mathbf{Z} (\rightarrow \nu \bar{\nu}) \gamma$



- Invisible Z decay has a higher branching fraction (20%) compared to the leptonic Z channel (10%) and cleaner signature compared to both leptonic Z decay and hadronic decay.
- Measurement divided into barrel and endcaps due to different detector response on fake backgrounds:





| Parameter                 | Expected    | Observed    |
|---------------------------|-------------|-------------|
| $h_3^{\gamma} 	imes 10^4$ | (-2.8, 2.9) | (-3.4, 3.5) |
| $h_4^{\gamma} 	imes 10^7$ | (-5.9, 6.0) | (-6.8, 6.8) |
| $h_3^Z \times 10^4$       | (-1.8,1.9)  | (-2.2, 2.2) |
| $h_4^{ m Z} 	imes 10^7$   | (-3.7, 3.7) | (-4.1, 4.2) |

The sensitivities to CP-conserving and CP-violating couplings are comparable in the probed  $p_T$  regime.



aQGCs

## aQGCs - Parameters

- The Eboli Model:
  - tensor (T): EWK field strength tensors derivatives
  - scalar (S): Higgs doublet derivatives
  - mixed (M): both

|                                                                                               | WWWW | WWZZ | ZZZZ | WWAZ | WWAA | ZZZA | ZZAA | ZAAA | AAAA |
|-----------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|
| $\mathcal{L}_{S,0},\mathcal{L}_{S,1}$                                                         | Х    | Х    | Х    | 0    | 0    | 0    | 0    | 0    | 0    |
| $\mathcal{L}_{M,0},\mathcal{L}_{M,1},\!\mathcal{L}_{M,6},\!\mathcal{L}_{M,7}$                 | Х    | Х    | Х    | Х    | Х    | Х    | Х    | 0    | 0    |
| $\mathcal{L}_{M,2} \; , \! \mathcal{L}_{M,3}, \; \mathcal{L}_{M,4} \; , \! \mathcal{L}_{M,5}$ | 0    | Х    | Х    | Х    | Х    | Х    | Х    | 0    | 0    |
| $\mathcal{L}_{T,0} \;, \! \mathcal{L}_{T,1} \;, \! \mathcal{L}_{T,2}$                         | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |
| $\mathcal{L}_{T,5}$ , $\mathcal{L}_{T,6}$ , $\mathcal{L}_{T,7}$                               | 0    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |
| $\mathcal{L}_{T,9}$ , $\mathcal{L}_{T,9}$                                                     | 0    | 0    | Х    | 0    | 0    | Х    | Х    | Х    | Х    |



anomalous QGC (aQGC)

- To guarantee consistency of the analyses, it is essential to verify whether perturbative partial-wave unitarity is satisfied when probing aQGCs.
- Partial wave unitarity for two-to-two scattering is calculated in <u>PRD 101, 113003 (2020)</u>.
- The bounds on each Wilson coefficient is related to the centerof-mass energy ( $\sqrt{s}$ ) of the two-to-two scattering system.

| Wilson coefficient                       |                          | For $\sqrt{s} < 1.5(3)$ TeV  |
|------------------------------------------|--------------------------|------------------------------|
| $\left \frac{f_{S,0}}{\Lambda^4}\right $ | $32\pi s^{-2}$           | $20(1.2) \text{ TeV}^{-4}$   |
| $\left \frac{f_{S,1}}{\Lambda^4}\right $ | $\frac{96}{7}\pi s^{-2}$ | $8.5(0.53) \text{ TeV}^{-4}$ |
| $\left \frac{f_{S,2}}{\Lambda^4}\right $ | $\frac{96}{5}\pi s^{-2}$ | $8.5(0.53) \text{ TeV}^{-4}$ |

Bound 1 operator

Clip Scan: constraints on each Wilson coefficient can be obtained after restricting EFT contribution within  $\sqrt{s} < E_c$ , and the unitarity bound of  $E_c$  can be calculated and compared with the constraints.

**EW** production

W



q'



- Sensitive to 3 and 4-weak boson self-interactions
- Differential cross-sections can probe New Physics (aTGC, aQGC)
- Unfolded differential cross section measurement.
  - Remove detector response
  - Allow different models to perform re-interpretation directly



## ATLAS – VBS ZZ( $\rightarrow 4l$ )



- Unfolded cross-sections in agreement with predictions (some underestimation from MG5+PY8 strong production)
- Limits to dim-8 operators from a combined  $m_{jj} + m_{4\ell}$  fit with overflow contributions. PRD 101, 113003 (2020)
- Clip scan is performed via  $E_c = m_{4l}$  to check the unitarity bound (if violated).

Clip scan is performed by estimating the limit of Wilson coefficient when clipping all the EFT event with the energy higher than the given  $E_c$ .



| Wilson                       | $ \mathcal{M}_{\mathrm{d}8} ^2$ | 95% confidence              | interval [TeV <sup>-4</sup> ] |
|------------------------------|---------------------------------|-----------------------------|-------------------------------|
| coefficient                  | Included                        | Expected                    | Observed                      |
| $f_{\mathrm{T},0}/\Lambda^4$ | yes                             | [-1.00, 0.97]               | [-0.98, 0.93]                 |
|                              | no                              | [-19, 19]                   | [-23, 17]                     |
| $f_{\mathrm{T},1}/\Lambda^4$ | yes                             | [-1.3, 1.3]                 | [-1.2, 1.2]                   |
|                              | no                              | [-140, 140]                 | [-160, 120]                   |
| $f_{\rm T,2}/\Lambda^4$      | yes                             | [-2.6, 2.5]                 | [-2.5, 2.4]                   |
|                              | no                              | [-63, 62]                   | [-74, 56]                     |
| $f_{\mathrm{T},5}/\Lambda^4$ | yes                             | [-2.6, 2.5]                 | [-2.5, 2.4]                   |
|                              | no                              | [-68, 67]                   | [-79, 60]                     |
| $f_{\rm T,6}/\Lambda^4$      | yes                             | [-4.1, 4.1]                 | [-3.9, 3.9]                   |
|                              | no                              | [-550, 540]                 | [-640, 480]                   |
| $f_{\rm T,7}/\Lambda^4$      | yes                             | [-8.8, 8.4]                 | [-8.5, 8.1]                   |
|                              | no                              | [-220, 220]                 | [-260, 200]                   |
| $f_{\mathrm{T,8}}/\Lambda^4$ | yes                             | [-2.2, 2.2]                 | [-2.1, 2.1]                   |
|                              | no                              | [-3.9, 3.8]×10 <sup>4</sup> | [-4.6, 3.1]×10 <sup>4</sup>   |
| $f_{\rm T,9}/\Lambda^4$      | yes                             | [-4.7, 4.7]                 | [-4.5, 4.5]                   |
|                              | no                              | [-6.4, 6.3]×10 <sup>4</sup> | [-7.5, 5.5]×10 <sup>4</sup>   |

## ATLAS – VBS Z( $\rightarrow \nu \bar{\nu}$ ) $\gamma$

 $\mathcal{L} = 140 \, f b^{-1} @13 \, {
m TeV}$ 

JHEP 06(2023)082



- VBS Z(→ νν̄)γ is observed in low energy phase space (15 < E<sup>γ</sup><sub>T</sub> < 110 GeV) by ATLAS (EPJC 82 (2022) 105). But low energy phase space has no sensitivity to aQGCs.</li>
- This analysis conduct the VBS  $Z(\rightarrow \nu \bar{\nu})\gamma$  in high energy phasespace ( $E_T^{\gamma} > 150$  GeV). Both phase-space can be combined to obtain higher sensitivity to aQGCs.
- Dominant background from QCD  $Z(\rightarrow \nu \bar{\nu})\gamma jj$  and  $W(\rightarrow l\nu)\gamma jj$ .
- Combined measurement has found a 6.3σ (6.6σ) significance on signal strengthen of VBS Z(→ νν̄)γ and the fiducial cross section of high energy phase space is measured:

$$\sigma_{Z\gamma EWK} = 0.77^{+0.34}_{-0.30} \text{ fb} = 0.77^{+0.25}_{-0.23} \text{ (stat.)}^{+0.22}_{-0.18} \text{ (syst.) fb.}$$



## **ATLAS – VBS Z(** $\rightarrow \nu \bar{\nu}$ **)** $\gamma$ $\mathcal{L} = 139 \, f b^{-1} @ 13 \, \text{TeV}$

JHEP 06(2023)082



- Probed for nQGCs via  $E_T^{\gamma}$ .
- Clip scan performed by setting clip energy  $E_c = m_{Z\gamma}$  (using particle-level information).
- The regime in which  $E_c$  is less than 4 TeV is obtained with an  $E_T^{\gamma}$  threshold of 600 GeV (400 GeV) for  $f_T$  ( $f_M$ ).
- The regime in which  $E_c$  exceeds 4 TeV is obtained with an  $E_T^{\gamma}$  threshold of 900 GeV.

| Coefficient        | $E_{\rm c}$ [TeV] | Observed limit $[\text{TeV}^{-4}]$ | Expected limit $[\text{TeV}^{-4}]$ |
|--------------------|-------------------|------------------------------------|------------------------------------|
| $f_{T0}/\Lambda^4$ | 1.7               | $[-8.7, 7.1] \times 10^{-1}$       | $[-8.9, 7.3] \times 10^{-1}$       |
| $f_{T5}/\Lambda^4$ | 2.4               | $[-3.4, 4.2] \times 10^{-1}$       | $[-3.5, 4.3] \times 10^{-1}$       |
| $f_{T8}/\Lambda^4$ | 1.7               | $[-5.2, 5.2] \times 10^{-1}$       | $[-5.3, 5.3] 	imes 10^{-1}$        |
| $f_{T9}/\Lambda^4$ | 1.9               | $[-7.9, 7.9] \times 10^{-1}$       | $[-8.1, 8.1] \times 10^{-1}$       |
| $f_{M0}/\Lambda^4$ | 0.7               | $[-1.6, 1.6] \times 10^2$          | $[-1.5, 1.5] \times 10^2$          |
| $f_{M1}/\Lambda^4$ | 1.0               | $[-1.6, 1.5] \times 10^2$          | $[-1.4, 1.4] \times 10^2$          |
| $f_{M2}/\Lambda^4$ | 1.0               | $[-3.3, 3.2] 	imes 10^1$           | $[-3.0, 3.0] \times 10^1$          |



## ATLAS – VBS WZ

 $\mathcal{L} = 140 \, f b^{-1} @13 \, \text{TeV}$ 

Events

10<sup>4</sup>

10

10<sup>2</sup>

10

10<sup>-1</sup>

1.4

0.8



-0.25 < BDT score < 0.1

W<sup>±</sup>Z-EW

ZZ Misid. leptons

W<sup>±</sup>7-OCD+INT

tZj and VVV

Tot. unc.

-0/Λ<sup>4</sup> = 2.5 TeV<sup>-4</sup>

ATLAS

Post-fit SM

BDT score < -0.25

√s = 13 TeV, 140 fb<sup>-</sup>



- Boost Decision Tree (BDT) for separating QCD WZjj and VBS WZ. 15 input variables are used, including jetkinematics variables, vector-bosons-kinematics variables, and variables related to both jets and leptons kinematics.
- Four bins in BDT score ([-1, -0.25, 0.17, 0.72, 1]) and five bins in m<sub>T</sub><sup>WZ</sup>([0, 400, 750, 1050, 1350, ∞] GeV) are used and garranged in a one-dimensional histogram of 20 statistically independent bins for EFT re-interpretation.



## ATLAS – VBS $W\gamma$

- Setting  $f_T$  constraints via unfolded  $p_T^{jj}$  distribution,  $f_M$  constraints via unfolded  $p_T^l$  distribution.
- Clip scan cut-off performed via  $M_{W\gamma}$
- A first measurement on  $f_{T3}$  and  $f_{T4}$  in LHC.



| e<                            | <b>ATLAS</b> $\sqrt{s} = 13 \text{ TeV}. 1$                           | IO fb <sup>1</sup> | ATLAS                           | $\sqrt{s} = 13 \text{ TeV} \cdot 140 \text{ fb}^{1}$                | Cofficients [TeV <sup>-4</sup> ] | Observable                         | $M_{W\gamma}$ cut-off [TeV] | Expected [TeV <sup>-4</sup> ] | Observed [TeV <sup>-4</sup> ] |
|-------------------------------|-----------------------------------------------------------------------|--------------------|---------------------------------|---------------------------------------------------------------------|----------------------------------|------------------------------------|-----------------------------|-------------------------------|-------------------------------|
| vo 10 <sup>-1</sup>           | EW $W(\rightarrow  \nu)\gamma jj$ $N_{iets}^{gap} = 0, \xi_{i} < 0.3$ | (SR)               | $EW W(\rightarrow lv)\gamma jj$ | $N_{\text{iets}}^{\text{gap}} = 0, \xi_{\perp} < 0.35 \text{ (SR)}$ | $f_{T0}/\Lambda^4$               | $p_{\mathrm{T}_{\mathrm{I}}}^{jj}$ | 1.4                         | [-2.5, 2.6]                   | [-1.9, 1.9]                   |
| £                             | $\gamma$                                                              | nc. 兰兰             |                                 | • Data, stat. unc.                                                  | $f_{T1}/\Lambda^4$               | $p_{\mathrm{T}}^{jj}$              | 1.9                         | [-1.6, 1.6]                   | [-1.1, 1.2]                   |
| þ                             | Total unc.                                                            | ੇ <del>ਹ</del> ੀ   | $0^{-1} = -$                    | Total unc.                                                          | $f_{T2}/\Lambda^4$               | $p_{\mathrm{T}}^{jj}$              | 1.6                         | [-4.9, 5.3]                   | [-3.6, 4.0]                   |
| α /                           | Sherpa 2.2                                                            | 12 1 b             |                                 | <b>o</b> Sherpa 2.2.12                                              | $f_{T3}/\Lambda^4$               | $p_{\mathrm{T}}^{jj}$              | 1.9                         | [-3.4, 3.6]                   | [-2.5, 2.7]                   |
| <sup>o</sup> 10 <sup>−2</sup> | 🗖 📕 💼 MadGraph                                                        | +Pythia8 0         |                                 | MadGraph5+Pythia8                                                   | $f_{T4}/\Lambda^4$               | $p_{\mathrm{T}}^{jj}$              | 2.2                         | [-3.1, 3.1]                   | [-2.2, 2.3]                   |
|                               |                                                                       | 1                  |                                 | -                                                                   | $f_{T5}/\Lambda^4$               | $p_{\mathrm{T}}^{\hat{j}j}$        | 1.8                         | [-1.8, 1.8]                   | [-1.3, 1.3]                   |
|                               | -                                                                     | - 10               | 0 <sup>-2</sup>                 |                                                                     | $f_{T6}/\Lambda^4$               | $p_{\mathrm{T}}^{\hat{j}j}$        | 2.1                         | [-1.5, 1.5]                   | [-1.1, 1.1]                   |
|                               | •                                                                     | 1                  |                                 | 1                                                                   | $f_{T7}/\Lambda^4$               | $p_{\mathrm{T}}^{jj}$              | 2.1                         | [-4.0, 4.1]                   | [-2.9, 3.0]                   |
| 10 <sup>-3</sup>              | - • •                                                                 | -                  |                                 |                                                                     | $f_{M0}/\Lambda^4$               | $p_{\mathrm{T}}^{l}$               | 1.1                         | [-45, 44]                     | [-32, 31]                     |
|                               |                                                                       |                    | e-3                             | 1 🔤                                                                 | $f_{M1}/\Lambda^4$               | $p_{\mathrm{T}}^{l}$               | 1.4                         | [-60, 62]                     | [-43, 44]                     |
| ta -                          | <u></u> <u></u> <u></u>                                               |                    |                                 | F++++                                                               | $f_{M2}/\Lambda^4$               | $p_{\mathrm{T}}^{l}$               | 1.4                         | [-15, 15]                     | [-11, 11]                     |
| C. Da                         |                                                                       | Dat                |                                 |                                                                     | $f_{M3}/\Lambda^4$               | $p_{\mathrm{T}}^{l}$               | 1.8                         | [-22, 22]                     | [-16, 16]                     |
| 2                             |                                                                       | Q                  |                                 | •                                                                   | $f_{M4}/\Lambda^4$               | $p_{T}^{l}$                        | 1.5                         | [-28, 27]                     | [-20, 20]                     |
| otio<br>otio                  |                                                                       | )€ ليبيا           | 0.5                             |                                                                     | $f_{M5}/\Lambda^4$               | $p_T^l$                            | 1.9                         | [-21, 23]                     | [-14, 17]                     |
| ñ                             | 0 100 200 300 400 500 600 700                                         |                    | 40 50 60 70 10 <sup>2</sup>     | $2 \times 10^2$ $3 \times 10^2$                                     | $f_{M7}/\Lambda^4$               | $p_{\mathrm{T}}^{l}$               | 1.5                         | [-100, 99]                    | [-73, 71]                     |
|                               | Ļ                                                                     |                    |                                 | p <sub>T</sub> [GeV]                                                |                                  |                                    |                             |                               |                               |



### CMS – VBS ssWW with hadronic $\tau$

- VBS same-sign (ss) WW with one W decays to e or  $\mu$ , another W decays to hadronic  $\tau$ . Signal:  $\tau v_{\tau} l v_{l} j j$   $(l = e, \mu)$
- Significance of SM process at 2.7  $\sigma$ , signal strength: 1.44<sup>+0.63</sup><sub>-0.56</sub>
- First simultaneous extraction of dim-6 and dim-8 constraints



- 2-D constraints set via transverse mass  $M_{o1}$ :  $M_{o1}^{2} = \left(p_{T}^{\tau} + p_{T}^{l} + p_{T}^{miss}\right)^{2} - \left|\vec{p}_{T}^{\tau} + \vec{p}_{T}^{l} + \vec{p}_{T}^{miss}\right|^{2}$
- Cross section for dim-6 + dim-8 operator:  $\sigma_{SMEFT} = \sigma_{SM} + c_{d-6}\sigma_{int} + c_{d-6}^2\sigma_{d-6} + c_{d-8}\sigma_{int} + c_{d-8}^2\sigma_{d-8}$



 $\mathcal{L} = 138 \, f b^{-1} @13 \, \text{TeV}$ 

CMS

#### CMS – VBS ssWW with hadronic $\tau$



#### • Also 1-D constraints are set via Deep Neural Network (DNNs) score

| Milcon    | afficient      | 68% CL interval                     | (s)             | 95% CL          | interval        |
|-----------|----------------|-------------------------------------|-----------------|-----------------|-----------------|
| vviison c | coentcient     | Expected                            | Observed        | Expected        | Observed        |
|           | $c_{ll}^{(1)}$ | $[-12.9, -8.03] \cup [-2.95, 1.91]$ | [-11.6, 0.045]  | [-14.6, 3.53]   | [-13.5, 2.11]   |
|           | $c_{qq}^{(1)}$ | [-0.501, 0.576]                     | [-0.341, 0.416] | [-0.742, 0.818] | [-0.605, 0.681] |
|           | $c_W$          | [-0.681, 0.669]                     | [-0.513, 0.481] | [-0.987, 0.974] | [-0.842, 0.818] |
|           | $c_{HW}$       | [-7.00, 6.09]                       | [-5.48, 4.31]   | [-9.99, 9.05]   | [-8.68, 7.60]   |
| 1         | $c_{HWB}$      | [-41.7, 69.6]                       | [30.7, 89.2]    | [-66.6, 96.4]   | [-49.7, 110]    |
| dim-6     | $c_{H\square}$ | [-16.6, 18.1]                       | [-12.0, 14.0]   | [-24.7, 26.3]   | [-20.9, 22.7]   |
|           | $c_{HD}$       | [-24.6, 34.7]                       | [-15.3, 31.5]   | [-38.2, 48.8]   | [-31.4, 45.5]   |
|           | $c_{Hl}^{(1)}$ | [-28.8, 29.9]                       | [-38.2, 39.5]   | [-49.4, 49.7]   | [-69.3,68.3]    |
|           | $c_{Hl}^{(3)}$ | $[-1.43, 2.23] \cup [5.88, 9.54]$   | [-0.045, 8.58]  | [-2.64, 10.8]   | [-1.59, 9.94]   |
|           | $c_{Hq}^{(1)}$ | [-4.53, 4.42]                       | [-3.27, 3.44]   | [-6.56, 6.44]   | [-5.55, 5.60]   |
|           | $c_{Hq}^{(3)}$ | [-2.39, 1.37]                       | [-1.88, 0.705]  | [-3.24, 2.16]   | [-2.82, 1.61]   |
|           | $f_{T0}$       | [-1.02, 1.08]                       | [-0.774, 0.842] | [-1.52, 1.58]   | [-1.32, 1.38]   |
|           | $f_{T1}$       | [-0.426, 0.480]                     | [-0.319, 0.381] | [-0.640, 0.695] | [-0.552, 0.613] |
|           | $f_{T2}$       | [-1.15, 1.37]                       | [-0.851, 1.12]  | [-1.75, 1.98]   | [-1.51, 1.76]   |
|           | $f_{M0}$       | [-9.89, 9.74]                       | [-8.07, 7.70]   | [-14.6, 14.5]   | [-13.1, 12.8]   |
| dim-8     | $f_{M1}$       | [-12.5, 13.3]                       | [-9.54, 11.15]  | [-18.7, 19.6]   | [-16.4, 17.7]   |
| unn-0     | $f_{M7}$       | [-20.3, 19.2]                       | [-17.6, 15.3]   | [-29.9, 28.8]   | [-27.6, 25.8]   |
|           | $f_{S0}$       | [-11.6, 12.0]                       | [-9.60, 9.82]   | [-17.4, 17.9]   | [-15.9,16.1]    |
|           | $f_{S1}$       | [-37.4, 38.8]                       | [-40.9, 41.3]   | [-57.2, 58.6]   | [-60.9,61.8]    |
|           | $f_{S2}$       | [-37.4, 38.8]                       | [-40.9, 41.3]   | [-57.2, 58.6]   | [-60.9, 61.8]   |



**Di-Boson Interaction** 

 $qq \rightarrow ZZ \rightarrow 4l$   $gg \rightarrow ZZ \rightarrow 4l$ 

 $gg \rightarrow H \rightarrow ZZ \rightarrow 4I$ 





## **CMS – Triboson** $V\gamma\gamma$ $\mathcal{L} = 137 \, fb^{-1}@13 \, \text{TeV}$ <u>JHEP 10(2021)174</u>

- $e/\mu$  channels are used and combined in this measurement
- Background dominated by misid-jet and misid electrons
- Sensitive to the dim-6 and dim-8 operators, but lower statistics than di-bosons results in much weaker limits
- EFT constraints set via  $p_{T,\gamma\gamma}$

|                       | $W\gamma\gamma$ ( | $\text{TeV}^{-4}$ ) | $Z\gamma\gamma$ (2 | ${ m FeV}^{-4}$ ) |
|-----------------------|-------------------|---------------------|--------------------|-------------------|
| Parameter             | Expected          | Observed            | Expected           | Observed          |
| $f_{ m M2}/\Lambda^4$ | [-57.3, 57.1]     | [-39.9,  39.5]      | <u></u>            | _                 |
| $f_{ m M3}/\Lambda^4$ | [-91.8,  92.6]    | [-63.8,65.0]        |                    |                   |
| $f_{ m T0}/\Lambda^4$ | [-1.86,  1.86]    | [-1.30,  1.30]      | [-4.86,  4.66]     | [-5.70,  5.46]    |
| $f_{ m T1}/\Lambda^4$ | [-2.38, 2.38]     | [-1.70,  1.66]      | [-4.86,  4.66]     | [-5.70,  5.46]    |
| $f_{ m T2}/\Lambda^4$ | [-5.16,  5.16]    | [-3.64,  3.64]      | [-9.72,  9.32]     | [-11.4,  10.9]    |
| $f_{ m T5}/\Lambda^4$ | [-0.76,  0.84]    | [-0.52,0.60]        | [-2.44,  2.52]     | [-2.92,  2.92]    |
| $f_{ m T6}/\Lambda^4$ | [-0.92,1.00]      | [-0.60,  0.68]      | [-3.24,  3.24]     | [-3.80,  3.88]    |
| $f_{ m T7}/\Lambda^4$ | [-1.64,  1.72]    | [-1.16,  1.16]      | [-6.68,  6.60]     | [-7.88, 7.72]     |
| $f_{ m T8}/\Lambda^4$ | _                 | _                   | [-0.90,0.94]       | [-1.06,  1.10]    |
| $f_{ m T9}/\Lambda^4$ |                   | 3                   | [-1.54,  1.54]     | [-1.82,  1.82]    |





CMS

## Summary & Outlook

- As nTGCs and aQGCs are direct hints to BSM physics, the re-interpretation is become one main part of bosonic electroweak analysis.
- nTGCs limits are set by diboson ZZ or Zγ production. aQGCs limits are obtain by VBS and Tri-boson production. All results are compatible with SM so far.
- Unfolded analysis allows test of new models in the future.



- Challenges:
  - Current analysis set constraints on one parameter / two parameters in simultaneously. How about more
    parameters and even full model?
  - Unitarity violation when including higher energy overflow contribution
  - Higher order correction of BSM model is absent, current analysis uses EFT model generated in tree-level
- LHC Run3 is on-going. Higher statistic and higher enegy → Higher sensitivity to BSM physics! Moreover, new global fit of Run 2 is await to be conducted.

# Backup

## nTGCs summary in 2020

<u>CERN Twiki</u>

| September 2020    | CMS<br>ATLAS                          |              |                     |                       |         |
|-------------------|---------------------------------------|--------------|---------------------|-----------------------|---------|
|                   | ATLAS+CMS                             | Channel      | Limits              | ∫ <i>L</i> dt         | √s      |
| ~ F               |                                       | ZZ (41,212v) | [-1.5e-02, 1.5e-02] | 4.6 fb <sup>-1</sup>  | 7 TeV   |
| f <sup>r</sup> .  | <b>⊢−−−−</b> 1                        | ZZ (4I,2I2v) | [-3.8e-03, 3.8e-03] | 20.3 fb <sup>-1</sup> | 8 TeV   |
| •4                | <b>⊢</b> −−1                          | ZZ (4I)      | [-1.8e-03, 1.8e-03] | 36.1 fb <sup>-1</sup> | 13 TeV  |
|                   | ⊢-I                                   | ZZ (2l2v)    | [-1.2e-03, 1.2e-03] | 36.1 fb <sup>-1</sup> | 13 TeV  |
|                   | <b>⊢−−−−−</b>                         | ZZ (4I)      | [-5.0e-03, 5.0e-03] | 19.6 fb <sup>-1</sup> | 8 TeV   |
|                   | <b>⊢−−−−</b>                          | ZZ (2l2v)    | [-3.6e-03, 3.2e-03] | 24.7 fb <sup>-1</sup> | 7,8 TeV |
|                   | <b>⊢−−−</b> 4                         | ZZ (4I,2I2v) | [-3.0e-03, 2.6e-03] | 24.7 fb <sup>-1</sup> | 7,8 TeV |
|                   | н                                     | ZZ (4I)      | [-7.8e-04, 7.1e-04] | 137 fb <sup>-1</sup>  | 13 TeV  |
|                   |                                       | ZZ (4I,2I2v) | [-1.0e-02, 1.0e-02] | 9.6 fb <sup>-1</sup>  | 7 TeV   |
| 7                 |                                       | ZZ (4I,2I2v) | [-1.3e-02, 1.3e-02] | 4.6 fb <sup>-1</sup>  | 7 TeV   |
| f <del>.</del>    | <b>⊢−−−−</b>                          | ZZ (4I,2I2v) | [-3.3e-03, 3.2e-03] | 20.3 fb <sup>-1</sup> | 8 TeV   |
| -4                | ⊢                                     | ZZ (4I)      | [-1.5e-03, 1.5e-03] | 36.1 fb <sup>-1</sup> | 13 TeV  |
|                   | н                                     | ZZ (2l2v)    | [-1.0e-03, 1.0e-03] | 36.1 fb <sup>-1</sup> | 13 TeV  |
|                   | <b>⊢</b> −−−−−−                       | ZZ (4I)      | [-4.0e-03, 4.0e-03] | 19.6 fb <sup>-1</sup> | 8 TeV   |
|                   | <b>⊢−−−</b> 4                         | ZZ (2l2v)    | [-2.7e-03, 3.2e-03] | 24.7 fb <sup>-1</sup> | 7,8 TeV |
|                   | <b>⊢</b> −−1                          | ZZ (4I,2I2v) | [-2.1e-03, 2.6e-03] | 24.7 fb <sup>-1</sup> | 7,8 TeV |
|                   | н                                     | ZZ (4I)      | [-6.6e-04, 6.0e-04] | 137 fb <sup>-1</sup>  | 13 TeV  |
|                   |                                       | ZZ (4I,2I2v) | [-8.7e-03, 9.1e-03] | 9.6 fb <sup>-1</sup>  | 7 TeV   |
| ~                 |                                       | ZZ (41,212v) | [-1.6e-02, 1.5e-02] | 4.6 fb <sup>-1</sup>  | 7 TeV   |
| fr                | ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► | ZZ (41,212v) | [-3.8e-03, 3.8e-03] | 20.3 fb <sup>-1</sup> | 8 TeV   |
| 5                 | <b>⊢</b> –−                           | ZZ (4I)      | [-1.8e-03, 1.8e-03] | 36.1 fb <sup>-1</sup> | 13 TeV  |
|                   | H                                     | ZZ (2l2v)    | [-1.2e-03, 1.2e-03] | 36.1 fb <sup>-1</sup> | 13 TeV  |
|                   | <b>⊢</b> −−−−−−−−−−−−                 | ZZ (4I)      | [-5.0e-03, 5.0e-03] | 19.6 fb <sup>-1</sup> | 8 TeV   |
|                   | <b>⊢−−−−</b>                          | ZZ(2l2v)     | [-3.3e-03, 3.6e-03] | 24.7 fb <sup>-1</sup> | 7,8 TeV |
|                   | <b>⊢</b> −−−4                         | ZZ(4I,2I2v)  | [-2.6e-03, 2.7e-03] | 24.7 fb <sup>-1</sup> | 7,8 TeV |
|                   | Н                                     | ZZ (4I)      | [-6.8e-04, 7.5e-04] | 137 fb <sup>-1</sup>  | 13 TeV  |
|                   | <b>├</b>                              | ZZ (4I,2I2v) | [-1.1e-02, 1.1e-02] | 9.6 fb <sup>-1</sup>  | 7 TeV   |
| -7                |                                       | ZZ (41,212v) | [-1.3e-02, 1.3e-02] | 4.6 fb <sup>-1</sup>  | 7 TeV   |
| ff                | <b>⊢</b> −−−−                         | ZZ (41,212v) | [-3.3e-03, 3.3e-03] | 20.3 fb <sup>-1</sup> | 8 TeV   |
| 5                 | H                                     | ZZ (4I)      | [-1.5e-03, 1.5e-03] | 36.1 fb <sup>-1</sup> | 13 TeV  |
|                   | H                                     | ZZ (2l2v)    | [-1.0e-03, 1.0e-03] | 36.1 fb <sup>-1</sup> | 13 TeV  |
|                   |                                       | ZZ (4I)      | [-4.0e-03, 4.0e-03] | 19.6 fb <sup>-1</sup> | 8 TeV   |
|                   |                                       | ZZ (2l2v)    | [-2.9e-03, 3.0e-03] | 24.7 fb <sup>-1</sup> | 7,8 TeV |
|                   |                                       | ZZ (41,212v) | [-2.2e-03, 2.3e-03] | 24.7 fb <sup>-1</sup> | 7,8 TeV |
|                   | H                                     | ZZ (4I)      | [-5.5e-04, 7.5e-04] | 137 fb <sup>-1</sup>  | 13 TeV  |
|                   |                                       | ZZ (41,212v) | [-9.1e-03, 8.9e-0β] | 9.6 fb <sup>-1</sup>  | 7 TeV   |
|                   |                                       | 0.00         | 0.04                |                       |         |
| -0.02             | 0                                     | 0.02         | 0.04                |                       | 0.06    |
| aC summary plots  | at: http://cern.ch/go/8ghC            |              |                     | imita @O              |         |
| ao ouninary plote |                                       |              | aluc                |                       | 5% U.L. |

## nTGCs summary in 2018

<u>CERN Twiki</u>

| oct 2018 | CMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |                       |                      |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------|-----------------------|----------------------|
|          | ATLAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Channel     | Limits              | ∫ <i>L</i> dt         | ſs                   |
| γ        | <b>⊢−−−−</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ζγ(ΙΙγ,ννγ) | [-9.5e-04, 9.9e-04] | 20.3 fb <sup>-1</sup> | 8 TeV                |
| 3        | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ζγ(ννγ)     | [-3.7e-04, 3.7e-04] | 36.1 fb <sup>-1</sup> | 13 TeV               |
|          | <b>⊢</b> I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ζγ(ΙΙγ,ννγ) | [-2.9e-03, 2.9e-03] | 5.0 fb <sup>-1</sup>  | 7 TeV                |
| H        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ζγ(ΙΙγ)     | [-4.6e-03, 4.6e-03] | 19.5 fb <sup>-1</sup> | 8 TeV                |
|          | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ζγ(ννγ)     | [-1.1e-03, 9.0e-04] | 19.6 fb <sup>-1</sup> | 8 TeV                |
| 7        | <b>⊢−−−</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ζγ(ΙΙγ,ννγ) | [-7.8e-04, 8.6e-04] | 20.3 fb <sup>-1</sup> | 8 TeV                |
| 3        | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ζγ(ννγ)     | [-3.2e-04, 3.3e-04] | 36.1 fb <sup>-1</sup> | 13 TeV               |
|          | <b>⊢−−−−−</b> −−−−−−−−−−−−−−−−−−−−−−−−−−−−1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ζγ(ΙΙγ,ννγ) | [-2.7e-03, 2.7e-03] | 5.0 fb <sup>-1</sup>  | 7 TeV                |
|          | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Zγ(IIγ)     | [-3.8e-03, 3.7e-03] | 19.5 fb <sup>-1</sup> | 8 TeV                |
|          | HH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ζγ(ννγ)     | [-1.5e-03, 1.6e-03] | 19.6 fb <sup>-1</sup> | 8 TeV                |
| ,        | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ζγ(ΙΙγ,ννγ) | [-3.2e-06, 3.2e-06] | 20.3 fb <sup>-1</sup> | 8 TeV                |
| Ļ        | H Contraction of the second seco | Ζγ(ννγ)     | [-4.4e-07, 4.3e-07] | 36.1 fb <sup>-1</sup> | 13 TeV               |
|          | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ζγ(ΙΙγ,ννγ) | [-1.5e-05, 1.5e-05] | 5.0 fb <sup>-1</sup>  | 7 TeV                |
|          | HH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Zγ(IIγ)     | [-3.6e-05, 3.5e-05] | 19.5 fb <sup>-1</sup> | 8 TeV                |
|          | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ζγ(ννγ)     | [-3.8e-06, 4.3e-06] | 19.6 fb <sup>-1</sup> | 8 TeV                |
| 7        | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ζγ(ΙΙγ,ννγ) | [-3.0e-06, 2.9e-06] | 20.3 fb <sup>-1</sup> | 8 TeV                |
| -<br>1   | H Contraction of the second seco | Ζγ(ννγ)     | [-4.5e-07, 4.4e-07] | 36.1 fb <sup>-1</sup> | 13 TeV               |
|          | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ζγ(ΙΙγ,ννγ) | [-1.3e-05, 1.3e-05] | 5.0 fb <sup>-1</sup>  | 7 TeV                |
|          | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ζγ(ΙΙγ)     | [-3.1e-05, 3.0e-05] | 19.5 fb <sup>-1</sup> | 8 TeV                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ζγ(ννγ)     | [-3.9e-06, 4.5e-06] | 19.6 fb <sup>-1</sup> | 8 TeV                |
| -0.5     | 5 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5         | 1                   | 1.5                   | x10 <sup>-2</sup> (  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | aTGC Limits @       | 295% C.               | L. x10 <sup>-4</sup> |

## aQGCs summary in 2020

<u>CERN Twiki</u>



## aQGCs summary in 2020

| Aug 2020                         | CMS<br>ATLAS                            | C                   | hannel                     | Limite                                                  | [ / dt                                          | √e                      |
|----------------------------------|-----------------------------------------|---------------------|----------------------------|---------------------------------------------------------|-------------------------------------------------|-------------------------|
| $f_{M,0}/\Lambda^4$              |                                         | W<br>Zî             | Wγ<br>v                    | [-7.7e+01, 8.1e+01]<br>[-7.1e+01, 7.5e+01]              | 19.3 fb <sup>-1</sup><br>19.7 fb <sup>-1</sup>  | 8 TeV                   |
|                                  |                                         | Z,                  | ý                          | -1.9e+01, 2.0e+01                                       | 35.9 fb <sup>-1</sup>                           | 13 TeV                  |
|                                  | ↓¥                                      | Ŵ                   |                            | -7.7e+01, 7.4e+01                                       | 19.7 fb <sup>-1</sup>                           | 8 TeV                   |
|                                  | Ж                                       | SS                  | sww                        | [-3.0e+00, 3.2e+00]                                     | 137 fb                                          | 13 TeV                  |
|                                  | ► <u></u>                               | Ŷ                   | ∕∠<br>∕→₩₩                 | -2.8e+01, 2.8e+01                                       | 20.2 fb                                         | 8 TeV                   |
|                                  | Ţ                                       |                     | /→vvv<br>/V ZV             | [-4.20+00, 4.20+00]<br>[-6.9e-01, 7.0e-01]              | 24.7 fb<br>35.9 fb                              | 13_TeV                  |
| f <sub>Μ,1</sub> /Λ <sup>4</sup> |                                         |                     | γ                          | -1.3e+02, 1.2e+02<br>-1.9e+02, 1.8e+02                  | 19.3 fb<br>19.7 fb                              | 8 TeV<br>8 TeV          |
|                                  |                                         | Z                   | Y<br>Y                     | -4.8e+01, 4.7e+01<br>[-1.5e+02, 1.5e+02]                | 35.9 fb <sup>-</sup><br>20.2 fb <sup>-</sup>    | 13 TeV<br>8 <u>T</u> eV |
|                                  |                                         | Ŵ                   | ly<br>ly                   | [-1.2e+02, 1.3e+02]<br>[-1.2e+01, 1.2e+01]              | 19.7 fb <sup>-</sup><br>35.9 fb <sup>-</sup>    | 8 TeV<br>13 TeV         |
|                                  | Ц                                       | SS<br>W             | s WW<br>IZ                 | [-4.7e+00, 4.7e+00]<br>[-8.2e+00, 8.3e+00]              | 137 fb <sup>-1</sup><br>137 fb <sup>-1</sup>    | 13 TeV<br>13 TeV        |
|                                  |                                         | 22                  | /→WW<br>/→WW               | -1.1e+02, 1.0e+02<br>-1.6e+01, 1.6e+01                  | 20.2 fb <sup>-1</sup><br>24 7 fb <sup>-1</sup>  | 8 TeV<br>7,8 TeV        |
| £ / A 4                          | <u>H</u> `                              |                     | N ZV<br>N v                | -2.0e+00, 2.1e+00<br>-5.7e+01, 5.7e+01                  | 35.9 fb <sup>-1</sup><br>20.2 fb <sup>-1</sup>  | 13 TeV<br>8 TeV         |
| I <sub>M,2</sub> //X             |                                         | Ž'<br>Z'            | Ϋ́,                        | -3.2e+01, 3.1e+01                                       | 19.7 fb <sup>-1</sup><br>35.9 fb <sup>-1</sup>  | 8 TeV                   |
|                                  |                                         | Z                   | ý,                         | -2.7e+01, 2.7e+01                                       | 20.2 fb <sup>-1</sup><br>19 7 fb <sup>-1</sup>  | 8 TeV                   |
| <b>5</b> (+4                     | Н '                                     | Ŵ                   | Ιγ΄<br>Ν/~                 | -2.8e+00, 2.8e+00                                       | 35.9 fb <sup>-1</sup>                           | 13 TeV                  |
| f <sub>M,3</sub> /Λ              |                                         | Ž                   | Ϋ́,                        | -5.8e+01, 5.9e+01                                       | 19.7 fb <sup>-1</sup>                           | 8 TeV                   |
|                                  | FH                                      | Ž                   | Ý.                         | -5.2e+01, 5.2e+01                                       | 20.2 fb <sup>-1</sup>                           | 8 TeV                   |
|                                  |                                         | Ŵ                   | lý<br>Klav                 | -4.4e+00, 4.4e+00                                       | 35.9 fb <sup>-1</sup>                           |                         |
| f <sub>M,4</sub> /Λ <sup>4</sup> |                                         | Z                   | Y.                         | -1.5e+02, 1.5e+02<br>[-1.5e+01, 1.6e+01]                | 20.2 fb<br>35.9 fb                              | 13 TeV                  |
|                                  | Н                                       | Ŵ                   | ry<br>ly<br>l/a            | -4.0e+01, 4.0e+01<br>-5.0e+00, 5.0e+00                  | 35.9 fb <sup>-1</sup>                           | 13 TeV                  |
| f <sub>M,5</sub> /Λ <sup>4</sup> | · - · ·                                 |                     | Y Y                        | -2.0e+02, 2.0e+02<br>-2.5e+01, 2.4e+01                  | 20.2 fb<br>35.9 fb                              | 8 IeV<br>13 TeV         |
|                                  |                                         | <u>v</u>            | lý                         | -8.3e+00, 8.3e+00                                       | 19.7 fb<br>35.9 fb                              |                         |
| f <sub>M,6</sub> /Λ <sup>4</sup> |                                         | Į,                  | lγ                         | -3.9e+01, 4.0e+01<br>-1.3e+02, 1.3e+02                  | 35.9 fb<br>19.7 fb                              | 13 TeV<br>8 TeV         |
|                                  | .H.                                     | SS                  | γ<br>s_WW                  | [-1.6e+01, 1.6e+01]<br>[-6.0e+00, 6.5e+00]              | 35.9 fb <sup>+</sup><br>137 fb <sup>+</sup>     | 13 TeV<br>13 TeV        |
|                                  | 🐨                                       | W                   | IZ<br>IV ZV                | -1.2e+01, 1.2e+01<br>-1.3e+00, 1.3e+00                  | 137 fb <sup>-</sup><br>35.9 fb <sup>-</sup>     | 13 TeV<br>13 TeV        |
| f <sub>M,7</sub> /Λ <sup>4</sup> |                                         | Z <sup>2</sup><br>W | Ĭγ                         | [-6.1e+01, 6.3e+01]<br>[-1.6e+02, 1.6e+02]              | 35.9 fb <sup>-</sup><br>19.7 fb <sup>-</sup>    | 13 TeV<br>8 TeV         |
|                                  | E F                                     | W<br>SS             | /γ<br>s WW                 | [-2.1e+01, 2.0e+01]<br>[-6.7e+00, 7.0e+00]              | 35.9 fb <sup>-</sup><br>137 fb <sup>-</sup>     | 13 TeV<br>13 TeV        |
|                                  | - I - I - I - I - I - I - I - I - I - I |                     | IZ<br>IV ZV <sub>I</sub> I | [-1.0e+01, 1.0e+01]<br>[-3.4e+00, <sub>1</sub> 3.4e+00] | 137 fb <sup>-'</sup><br>  35.9 fb <sup>-1</sup> | 13 TeV<br>13 TeV        |
|                                  | -200 0                                  | 200                 |                            | 400                                                     | 600                                             | 800                     |
|                                  | v ploto at: http://porp.ch/go/9ghC      | 200                 |                            |                                                         |                                                 | IT-1/-41                |
| ao summar                        | y plots at. http://cem.ch/go/ogno       |                     | ac                         |                                                         | @95% C.L.                                       | [lev]                   |

## aQGCs summary in 2020

CERN Twiki

