Study of EFT effects in $n T G C$ and $a Q G C$ in ElectroWeak processes

Zuchen Huang

On behalf of the ATLAS and CMS Collaborations

MANCHESTER The University of Manchester

INFN STANDARD MODELATTHELHC

$$
\text { Rome, May 7-10, } 2024
$$

UNiverstidid Roma

nTGC? aQGC? Why?

- SM provides gauge boson coupling of:

Triple Gauge Coupling (TGC): WWZ, WW γ

Quartic Gauge Coupling (QGC): WWWW, WWZZ, WWZ γ,
WW $\gamma \gamma$
-What if prohibited vertices exist?

A direct hint to

Neutral TGC (nTGC):
anomalous QGC (aQGC)

nTGC? aQGC? How?

- Standard Model Effective Field Theory (SMEFT) based on Taylor expansion in local operators with mass dimension > 4

$$
\begin{aligned}
& \mathcal{L}_{S M E F T}=\mathcal{L}_{S M}+\sum_{i} \frac{c_{i}^{d=6}}{\Lambda_{i}^{2}} \mathcal{O}_{i}^{d=6}+\sum_{j} \frac{c_{j}^{d=8}}{\Lambda^{4}} \mathcal{O}_{j}^{d=8}+\cdots \\
& \text { Wilson Coefficient } \\
& \text { Onergy Scale } \quad \text { Operators }
\end{aligned}
$$

- The nTGCs and aQGCs (without aTGCs counterpart), which is today's focus, are described in diemension-8. While dimension-5 has one operators for neutrino mass and aTGCs arises from dimension-6.
- When the energy scale parameter $\Lambda \gg \sqrt{s}$ the expansion term can be truncated.
- Growth of amplitude with \sqrt{s} can violate unitarity

nTGC? aQGC? How? - The Basic Way

- Cross-section with single operator

$$
\sigma_{S M E F T}=\sigma_{S M}+\left(\frac{c^{d=8}}{\Lambda^{4}}\right) \sigma_{\text {int }}+\left(\frac{c^{d=8}}{\Lambda^{4}}\right)^{2} \sigma_{E F T}
$$

- Cross-section of interference term is proportional to coefficient.
- Cross-section of pure EFT contribution is proportional to the square of coefficient
- With cross-section of $\sigma_{i n t}$ and $\sigma_{E F T}$ from MC when $c=1$, a likelihood test can be performed to the measured crosssection:
$\mathcal{L}=\frac{1}{\sqrt{(2 \pi)^{k}|C o v|}} \exp \left(-\frac{1}{2}\left(\vec{\sigma}_{\text {data }}-\vec{\sigma}_{\text {SMEFT }}-\sum_{i} \theta \cdot \vec{e}_{\theta}\right)^{T} \operatorname{Cov}^{-1}\left(\vec{\sigma}_{\text {data }}-\vec{\sigma}_{\text {SMEFT }}-\sum_{i} \theta \cdot \vec{e}_{\theta}\right)\right) \times \prod_{i} \mathcal{N}\left(\theta_{i}\right)$

$z^{2 / v}$
 $\sin _{z / v}$

nTGCs

nTGCs - Parameters

Neutral TGC (nTGC):
$\mathrm{ZZZ}, \mathrm{ZZ} \gamma, \mathrm{Z}_{\gamma \gamma}$

$$
\begin{align*}
i e \Gamma_{Z Z V}^{\alpha \beta \mu}\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right) & =\frac{-e\left(\mathrm{q}_{3}^{2}-m_{V}^{2}\right)}{M_{Z}^{2}}\left[f_{4}^{V}\left(\mathrm{q}_{3}^{\alpha} g^{\mu \beta}+\mathrm{q}_{3}^{\beta} g^{\mu \alpha}\right)-f_{5}^{V} \epsilon^{\mu \alpha \beta \rho}\left(\mathrm{q}_{1}-\mathrm{q}_{2}\right)_{\rho}\right] \tag{1.1}\\
i e \Gamma_{Z \gamma V}^{\alpha \beta \mu}\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right) & =\frac{-e\left(\mathrm{q}_{3}^{2}-m_{V}^{2}\right)}{M_{Z}^{2}}\left\{h_{1}^{V}\left(\mathrm{q}_{2}^{\mu} g^{\alpha \beta}-\mathrm{q}_{2}^{\alpha} g^{\mu \beta}\right)+\frac{h_{2}^{V}}{M_{Z}^{2}} \mathrm{q}_{3}^{\alpha}\left[\left(\mathrm{q}_{3} \mathrm{q}_{2}\right) g^{\mu \beta}-\mathrm{q}_{2}^{\mu} \mathrm{q}_{3}^{\beta}\right]\right. \\
& \left.-h_{3}^{V} \epsilon^{\mu \alpha \beta \rho} q_{2 \rho}-\frac{h_{4}^{V}}{M_{Z}^{2}} \mathrm{q}_{3}^{\alpha} \epsilon^{\mu \beta \rho \sigma} \mathrm{q}_{3 \rho} q_{2 \sigma}\right\} \tag{1.2}
\end{align*}
$$

- f_{i}^{V} require on shell ZZ, while h_{i}^{V} require on shell $Z \gamma$.
- A recent paper point out that extra operators and form factor should be introduced in nTGCs.-> PRD 107 (2023) 035005
Basis of dim 8 operators for nTGCs:

$$
\begin{aligned}
\mathcal{O}_{\widetilde{B} W} & =i H^{\dagger} \widetilde{B}_{\mu \nu} W^{\mu \rho}\left\{D_{\rho}, D^{\nu}\right\} H, \\
\mathcal{O}_{B \widetilde{W}} & =i H^{\dagger} B^{\mu \nu} \widetilde{W}_{\mu \rho}\left\{D_{\rho}, D^{\nu}\right\} H, \\
\mathcal{O}_{\widetilde{W} W} & =i H^{\dagger} \widetilde{W}_{\mu \nu} W^{\mu \rho}\left\{D_{\rho}, D^{\nu}\right\} H, \\
\mathcal{O}_{\widetilde{B} B} & =i H^{\dagger} \widetilde{B}_{\mu \nu} B^{\mu \rho}\left\{D_{\rho}, D^{\nu}\right\} H .
\end{aligned}
$$

CMS - ZZ $(\rightarrow 4 l)$

- Sensitive to two nTGCs: ZZZ, ZZ γ.
- Test predictions at next-to-next-to-leading order (NNLO) in QCD.
- Low background contribution (~3\%) due to the requirement for four well-reconstructed and isolated leptons.

- Cross section measurement:

Year	Total cross section, pb
2016	18.1 ± 0.6 (stat) $)_{-0.5}^{+0.6}$ (syst) ± 0.4 (theo) ${ }_{-0.4}^{+0.5}$ (lumi)
2017	17.0 ± 0.5 (stat) ${ }_{-0.5}^{+0.6}$ (syst) ± 0.4 (theo) ± 0.4 (lumi)
2018	17.1 ± 0.4 (stat) ± 0.5 (syst) ± 0.4 (theo) ± 0.4 (lumi)
Combined	17.4 ± 0.3 (stat) ± 0.5 (syst) ± 0.4 (theo) ± 0.3 (lumi)

- Consistent with the NNLO prediciton

CMS - ZZ $(\rightarrow 4 l)$

- 2-D constraints, set limit to two parameters simultaneously. Predicted cross section:

$\sigma_{\text {SMEFT }}$

$$
=\sigma_{S M}+c_{1} \sigma_{i n t 1, S M}+c_{2} \sigma_{i n t 2, S M}+c_{1} c_{2} \sigma_{i n t 1,2}+c_{1}^{2} \sigma_{E F T, 1}+c_{2}^{2} \sigma_{E F T, 2}
$$

- Constraints are set on $m_{Z Z}$, CP-even variable. Hence CP-odd parameters $\left(f_{4}^{V}\right)$ interference term are vanished.
- Overflow contribution are included in the last bin.

ATLAS - ZZ $(\rightarrow 4 l)$ Angular

- Search for CP-violation and nTGCs in ZZ(4l) on-shell events (dim-8 EFT)
- Measure the ZZ polarization in 4 l channel (extract the LL component)
- Measure the spin correlation between ZZ bosons

ATLAS - ZZ $(\rightarrow 4 l)$ Angular

- To improve sensitivity, the two CP sensitive angles are combined as:

$$
T_{y z, 1(3)}=\sin \phi_{1(3)} \cos \theta_{1(3)}
$$

- An Optimal Observable (OO) is defined from the 2D distribution of $T_{y z, 1} V . S . T_{y z, 3}$ to maximise the sensitivity for the fourlepton system.

aNTGC parameter	Interference only		Full		
	Expected	Observed	Expected	Observed	
f_{Z}^{4}	$[-0.16,0.16]$	$[-0.12,0.20]$	$[-0.013,0.012]$	$[-0.012,0.012]$	
f_{γ}^{4}	$[-0.30,0.30]$	$[-0.34,0.28]$	$[-0.015,0.015]$	$[-0.015,0.015]$	

- A BDT is used to determine the three different ZZ polarisation pairs: $Z_{L} Z_{L}$ (Signal) \| $Z_{T} Z_{L} Z_{T} Z_{T}$ (Background)
- Fiducial cross section (4.3 σ for $Z_{L} Z_{L}$):
- $\sigma_{Z_{L} Z_{L}}^{o b s .}=2.45 \pm 0.56$ (stat.) ± 0.21 (syst.) fb
- $\sigma_{Z_{L} Z_{L}}^{p r e d .}=2.10 \pm 0.09 \mathrm{fb}$

CMS -Z $(\rightarrow v \bar{v}) \gamma$

- Invisible Z decay has a higher branching fraction (20\%) compared to the leptonic Z channel (10\%) and cleaner signature compared to both leptonic Z decay and hadronic decay.
- Measurement divided into barrel and endcaps due to different detector response on fake backgrounds:

ZZ γ Vertex

Parameter	Expected	Observed
$h_{3}^{\gamma} \times 10^{4}$	$(-2.8,2.9)$	$(-3.4,3.5)$
$h_{4}^{\gamma} \times 10^{7}$	$(-5.9,6.0)$	$(-6.8,6.8)$
$h_{3}^{Z} \times 10^{4}$	$(-1.8,1.9)$	$(-2.2,2.2)$
$h_{4}^{Z} \times 10^{7}$	$(-3.7,3.7)$	$(-4.1,4.2)$

The sensitivities to CP-conserving and CP- violating couplings are comparable in the probed p_{T} regime.

aQGCs - Parameters

- The Eboli Model:
- tensor (T): EWK field strength tensors derivatives

anomalous QGC (aQGC)
- scalar (S): Higgs doublet derivatives
- mixed (M): both

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{L}_{S, 0}, \mathcal{L}_{S, 1}$	X	X	X	O	O	O	O	0	O
$\mathcal{L}_{M, 0}, \mathcal{L}_{M, 1}, \mathcal{L}_{M, 6}, \mathcal{L}_{M, 7}$	X	X	X	X	X	X	X	0	0
$\mathcal{L}_{M, 2}, \mathcal{L}_{M, 3}, \mathcal{L}_{M, 4}, \mathcal{L}_{M, 5}$	O	X	X	X	X	X	X	0	0
$\mathcal{L}_{T, 0}, \mathcal{L}_{T, 1}, \mathcal{L}_{T, 2}$	X	X	X	X	X	X	X	X	X
$\mathcal{L}_{T, 5}, \mathcal{L}_{T, 6}, \mathcal{L}_{T, 7}$	O	X	X	X	X	X	X	X	X
$\mathcal{L}_{T, 9}, \mathcal{L}_{T, 9}$	O	O	X	O	O	X	X	X	X
he analyses, it is essential to rtial-wave unitarity is satisfied								und	
								erator	
			Wilson coefficient				For $\sqrt{s}<1.5(3) \mathrm{TeV}$		
			$\left\|\frac{f_{S_{0}}}{\Lambda^{4}}\right\|$			$32 \pi s^{-2}$		$20(1.2) \mathrm{TeV}^{-4}$	
			$\left\|\frac{f_{s, 1}}{\Lambda^{4}}\right\|$			$\frac{96}{7} \pi s^{-2}$		$8.5(0.53) \mathrm{TeV}^{-4}$	
			$\left\|\frac{f_{S_{2}}}{\Lambda^{4}}\right\|$			$\frac{96}{5} \pi \mathrm{~s}^{-2}$		$8.5(0.53) \mathrm{TeV}^{-4}$	

: constraints on each Wilson coefficient can be obtained after restricting EFT contribution within $\sqrt{S}<E_{C}$, and the unitarity bound of E_{c} can be calculated and compared with the constraints.

ATLAS - VBS ZZ $(\rightarrow 4 l)$

- Motivation and goal
- Sensitive to 3 and 4 -weak boson self-interactions
- Differential cross-sections can probe New Physics (aTGC, aQGC)
- Unfolded differential cross section measurement.
- Remove detector response

Physics distribution y_{i}

(Particle-level)

ATLAS - VBS ZZ $(\rightarrow 4 l)$

- Unfolded cross-sections in agreement with predictions (some underestimation from MG5+PY8 strong production)
- Limits to dim-8 operators from a combined $m_{j j}+m_{4 \ell}$ fit with overflow contributions.

PRD 101, 113003 (2020)

- Clip scan is performed via $E_{c}=m_{4 l}$ to check the unitarity bound (if violated).

Clip scan is performed by estimating the limit of Wilson coefficient when clipping all the EFT event with the energy higher than the given E_{c}.

Wilson coefficient	$\left\|\mathcal{M}_{\mathrm{d} 8}\right\|^{2}$ Included	95\% confidence Expected	Observed
$f_{\mathrm{T}, 0} / \Lambda^{4}$	yes	$[-1.00,0.97]$	$[-0.98,0.93]$
	no	$[-19,19]$	$[-23,17]$
$f_{\mathrm{T}, 1} / \Lambda^{4}$	yes	$[-1.3,1.3]$	$[-1.2,1.2]$
	no	$[-140,140]$	$[-160,120]$
$f_{\mathrm{T}, 2} / \Lambda^{4}$	yes	$[-2.6,2.5]$	$[-2.5,2.4]$
	no	$[-63,62]$	$[-74,56]$
$f_{\mathrm{T}, 5} / \Lambda^{4}$	yes	$[-2.6,2.5]$	$[-2.5,2.4]$
	no	$[-68,67]$	$[-79,60]$
$f_{\mathrm{T}, 6} / \Lambda^{4}$	yes	$[-4.1,4.1]$	$[-3.9,3.9]$
	no	$[-550,540]$	$[-640,480]$
$f_{\mathrm{T}, 7} / \Lambda^{4}$	yes	$[-8.8,8.4]$	$[-8.5,8.1]$
	no	$[-220,220]$	$[-260,200]$
$f_{\mathrm{T}, 8} / \Lambda^{4}$	yes	$[-2.2,2.2]$	$[-2.1,2.1]$
	no	$[-3.9,3.8] \times 10^{4}$	$[-4.6,3.1] \times 10^{4}$
$f_{\mathrm{T}, 9} / \Lambda^{4}$	yes	$[-4.7,4.7]$	$[-4.5,4.5]$
	no	$[-6.4,6.3] \times 10^{4}$	$[-7.5,5.5] \times 10^{4}$

ATLAS - VBS $\mathrm{Z}(\rightarrow \nu \bar{v}) \gamma$

- VBS $Z(\rightarrow v \bar{v}) \gamma$ is observed in low energy phase space ($15<$ $E_{T}^{\gamma}<110 \mathrm{GeV}$) by ATLAS (EPJC 82 (2022) 105). But low energy phase space has no sensitivity to aQGCs.
- This analysis conduct the VBS $Z(\rightarrow v \bar{v}) \gamma$ in high energy phasespace ($E_{T}^{\gamma}>150 \mathrm{GeV}$). Both phase-space can be combined to obtain higher sensitivity to aQGCs.
- Dominant background from QCD $Z(\rightarrow v \bar{v}) \gamma j j$ and $\mathrm{W}(\rightarrow l v) \gamma j j$.
- Combined measurement has found a 6.3σ (6.6σ) significance on signal strengthen of VBS $Z(\rightarrow \nu \bar{v}) \gamma$ and the fiducial cross section of high energy phase space is measured:

$$
\left.\sigma_{Z \gamma \mathrm{EWK}}=0.77_{-0.30}^{+0.34} \mathrm{fb}=0.77_{-0.23}^{+0.25} \text { (stat.) }\right)_{-0.18}^{+0.22} \text { (syst.) fb. }
$$

ATLAS - VBS $\mathbb{L}(\rightarrow 1$ \cdot Probed for nQGCs via E_{T}^{γ}

- Clip scan performed by setting clip energy $E_{c}=$ $m_{Z_{\gamma}}$ (using particle-level information).
- The regime in which E_{c} is less than 4 TeV is obtained with an E_{T}^{γ} threshold of $600 \mathrm{GeV}(400$ GeV) for $f_{T}\left(f_{M}\right)$.
- The regime in which E_{c} exceeds 4 TeV is obtained with an E_{T}^{γ} threshold of 900 GeV .

Coefficient	$E_{\mathrm{c}}[\mathrm{TeV}]$	Observed limit $\left[\mathrm{TeV}^{-4}\right]$	Expected limit $\left[\mathrm{TeV}^{-4}\right]$
$f_{T 0} / \Lambda^{4}$	1.7	$[-8.7,7.1] \times 10^{-1}$	$[-8.9,7.3] \times 10^{-1}$
$f_{T 5} / \Lambda^{4}$	2.4	$[-3.4,4.2] \times 10^{-1}$	$[-3.5,4.3] \times 10^{-1}$
$f_{T 8} / \Lambda^{4}$	1.7	$[-5.2,5.2] \times 10^{-1}$	$[-5.3,5.3] \times 10^{-1}$
$f_{T 9} / \Lambda^{4}$	1.9	$[-7.9,7.9] \times 10^{-1}$	$[-8.1,8.1] \times 10^{-1}$
$f_{M 0} / \Lambda^{4}$	0.7	$[-1.6,1.6] \times 10^{2}$	$[-1.5,1.5] \times 10^{2}$
$f_{M 1} / \Lambda^{4}$	1.0	$[-1.6,1.5] \times 10^{2}$	$[-1.4,1.4] \times 10^{2}$
$f_{M 2} / \Lambda^{4}$	1.0	$[-3.3,3.2] \times 10^{1}$	$[-3.0,3.0] \times 10^{1}$

ATLAS - VBS WZ

- Boost Decision Tree (BDT) for separating QCD WZij and VBS WZ. 15 input variables are used, including jetkinematics variables, vector-bosons-kinematics variables, and variables related to both jets and leptons kinematics.
- Four bins in BDT score ($[-1,-0.25,0.17,0.72,1]$) and five bins in $m_{T}^{W Z}([0,400,750,1050,1350, \infty] \mathrm{GeV})$ are used and arranged in a one-dimensional histogram of 20 statistically independent bins for EFT re-interpretation.

ATLAS - VBS W γ

- Setting f_{T} constraints via unfolded $p_{T}^{j j}$ distribution, f_{M} constraints via unfolded p_{T}^{l} distribution.
- Clip scan cut-off performed via $M_{W_{\gamma}}$
- A first measurement on $f_{T 3}$ and $f_{T 4}$ in LHC.

CMS - VBS ssWW with hadronic τ

$\mathcal{L}=138 \mathrm{fb}^{-1} @ 13 \mathrm{TeV}$

- VBS same-sign (ss) WW with one W decays to e or μ, another W decays to hadronic τ. Signal: $\tau v_{\tau} l v_{l} j j(l=e, \mu)$
- Significance of SM process at 2.7σ, signal strength: $1.44_{-0.56}^{+0.63}$
- First simultaneous extraction of dim-6 and dim-8 constraints

- 2-D constraints set via transverse mass $M_{o 1}$:

$$
M_{o 1}^{2}=\left(p_{T}^{\tau}+p_{T}^{l}+p_{T}^{\text {miss }}\right)^{2}-\left|\vec{p}_{T}^{\tau}+\vec{p}_{T}^{l}+\vec{p}_{T}^{\text {miss }}\right|^{2}
$$

- Cross section for dim-6 + dim-8 operator:

$$
\sigma_{S M E F T}=\sigma_{S M}+c_{d-6} \sigma_{i n t}+c_{d-6}^{2} \sigma_{d-6}+c_{d-8} \sigma_{i n t}+c_{d-8}^{2} \sigma_{d-8}
$$

CMS - VBS ssWW with hadronic τ

$\mathcal{L}=138{f b^{-1} @ 13 \mathrm{TeV}}^{\text {@ }}$

- Also 1-D constraints are set via Deep Neural Network (DNNs) score

Wilson coefficient		68\% CL interval(s)		95\% CL interval	
		Expected	Observed	Expected	Observed
dim-6	$c_{l l}^{(1)}$	$[-12.9,-8.03] \cup[-2.95,1.91]$	[-11.6, 0.045]	[-14.6,3.53]	[-13.5,2.11]
	$c_{q 9}^{(1)}$	[-0.501, 0.576]	[-0.341, 0.416]	[-0.742, 0.818]	[-0.605, 0.681]
	c_{W}	[-0.681, 0.669]	[$-0.513,0.481$]	[$-0.987,0.974$]	-0.842,0.818]
	$c_{\text {HW }}$	[-7.00, 6.09]	[$-5.48,4.31$]	[-9.99, 9.05]	[-8.68,7.60]
	$c_{\text {HWB }}$	[-41.7, 69.6]	[30.7, 89.2]	[-66.6, 96.4]	[-49.7,110]
	$\mathcal{c}_{\text {H }}$	[-16.6,18.1]	[-12.0, 14.0]	[-24.7,26.3]	[-20.9,22.7]
	$c^{\text {HD }}$	[-24.6,34.7]	[-15.3,31.5]	[-38.2, 48.8]	[-31.4,45.5]
	$c_{\text {Hl }}^{(1)}$	[-28.8, 29.9]	[-38.2,39.5]	[-49.4,49.7]	[-69.3,68.3]
	$c_{\text {H1 }}$	$[-1.43,2.23] \cup[5.88,9.54]$	[-0.045, 8.58]	[-2.64,10.8]	[-1.59, 9.94]
	$c^{(1)}$	[-4.53, 4.42]	[-3.27, 3.44$]$	[-6.56, 6.44]	[-5.55, 5.60]
	$c_{\text {Hq }}$	[-2.39, 1.37]	[-1.88, 0.705]	[-3.24, 2.16]	[-2.82, 1.61]
dim-8	$f_{T 0}$	[$-1.02,1.08$]	[-0.774, 0.842]	[$-1.52,1.58$]	[-1.32, 1.38]
	$f_{T 1}$	[$-0.426,0.480]$	[$-0.319,0.381$]	[-0.640, 0.695]	[-0.552, 0.613]
	$f_{T 2}$	[-1.15, 1.37]	[-0.851, 1.12]	[$-1.75,1.98$]	[-1.51,1.76]
	$f_{\text {M0 }}$	[-9.89,9.74]	[-8.07,7.70]	[-14.6, 14.5]	[-13.1, 12.8]
	$f_{M 1}$	[-12.5, 13.3]	[-9.54, 11.15]	[-18.7,19.6]	[-16.4,17.7]
	$f_{M 7}$	[-20.3,19.2]	[-17.6, 15.3]	[-29.9, 28.8]	[-27.6, 25.8]
	$f_{S 0}$	[-11.6, 12.0]	[-9.60,9.82]	[-17.4, 17.9]	[-15.9,16.1]
	$f_{S 1}$	[-37.4,38.8]	[-40.9, 41.3]	[-57.2,58.6]	[-60.9,61.8]
	$f_{S 2}$	[-37.4,38.8]	[-40.9, 41.3]	[-57.2,58.6]	[-60.9,61.8]

Di-Boson Interaction

$$
\mathrm{qq} \rightarrow \mathrm{ZZ} \rightarrow 4 \mathrm{I}
$$

$$
\mathrm{gg} \rightarrow \mathrm{ZZ} \rightarrow 4 \mid
$$

$$
\mathrm{gg} \rightarrow \mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow 4 \mid
$$

What Else?

CMS - TriboSon VYY $\quad \mathcal{L}=137 \mathrm{fb}^{-1} @ 13 \mathrm{TeV}$

- e/ μ channels are used and combined in this measurement
- Background dominated by misid-jet and misid electrons
- Sensitive to the dim-6 and dim-8 operators, but lower statistics than di-bosons results in much weaker limits
- EFT constraints set via $p_{T, \gamma \gamma}$

	$\mathrm{W} \gamma \gamma\left(\mathrm{TeV}^{-4}\right)$		$\mathrm{Z} \gamma \gamma\left(\mathrm{TeV}^{-4}\right)$	
Parameter	Expected	Observed	Expected	Observed
$f_{\mathrm{M} 2} / \Lambda^{4}$	$[-57.3,57.1]$	$[-39.9,39.5]$	-	-
$f_{\mathrm{M} 3} / \Lambda^{4}$	$[-91.8,92.6]$	$[-63.8,65.0]$	-	-
$f_{\mathrm{T} 0} / \Lambda^{4}$	$[-1.86,1.86]$	$[-1.30,1.30]$	$[-4.86,4.66]$	$[-5.70,5.46]$
$f_{\mathrm{T} 1} / \Lambda^{4}$	$[-2.38,2.38]$	$[-1.70,1.66]$	$[-4.86,4.66]$	$[-5.70,5.46]$
$f_{\mathrm{T} 2} / \Lambda^{4}$	$[-5.16,5.16]$	$[-3.64,3.64]$	$[-9.72,9.32]$	$[-11.4,10.9]$
$f_{\mathrm{T} 5} / \Lambda^{4}$	$[-0.76,0.84]$	$[-0.52,0.60]$	$[-2.44,2.52]$	$[-2.92,2.92]$
$f_{\mathrm{T} 6} / \Lambda^{4}$	$[-0.92,1.00]$	$[-0.60,0.68]$	$[-3.24,3.24]$	$[-3.80,3.88]$
$f_{\mathrm{T} 7} / \Lambda^{4}$	$[-1.64,1.72]$	$[-1.16,1.16]$	$[-6.68,6.60]$	$[-7.88,7.72]$
$f_{\mathrm{T} 8} / \Lambda^{4}$	-	-	$[-0.90,0.94]$	$[-1.06,1.10]$
$f_{\mathrm{T} 9} / \Lambda^{4}$	-	-	$[-1.54,1.54]$	$[-1.82,1.82]$

Summary \& Outlook

- As nTGCs and aQGCs are direct hints to BSM physics, the re-interpretation is become one main part of bosonic electroweak analysis.
- nTGCs limits are set by diboson $Z Z$ or $Z \gamma$ production. aQGCs limits are obtain by VBS and Tri-boson production. All results are compatible with SM so far.
- Unfolded analysis allows test of new models in the future.

Thank you!

- Challenges:
- Current analysis set constraints on one parameter / two parameters in simultaneously. How about more parameters and even full model?
- Unitarity violation when including higher energy overflow contribution
- Higher order correction of BSM model is absent, current analysis uses EFT model generated in tree-level
- LHC Run3 is on-going. Higher statistic and higher enegy \rightarrow Higher sensitivity to BSM physics! Moreover, new global fit of Run 2 is await to be conducted.

Backup

nTGCs summary in 2020

nTGCs summary in 2018

aQGCs summary in 2020

aQGCs summary in 2020

aQGCs summary in 2020

