Leptoquark and Z' / W' Searches @ ATLAS and CMS

Jie Zhang **On behalf of the ATLAS and CMS Collaborations** Shandong University (Qingdao)

- - SM@LHC 2024, Rome
 - May 8, 2024

Physics Motivation

The Standard Model (SM) of particle physics has been extremely successful with the discovery of Higgs. Some new physics are needed to address the phenomena like neutrino mass or dark matter. Hints for lepton flavor universality (LFU) violation have been observed in charged and neutral current processes in B-physics:

- R_D/R_{D*} : 3.3 σ deviation in global average by BaBar

This talk!

8 May 2024

Analysis Results Covered Today

All Run-2 results at 13 TeV

ATLAS	CMS			
LQLQ → tete/tµtµ				
$LQ \rightarrow b\tau b\tau$				
$LQ \rightarrow b\tau$				
tion LQ combination				
$QLQ \rightarrow t\nu bl$	LQLQ \rightarrow bµbµ			
	$LQ \rightarrow \tau q$			
w mass Z' in the 4µ channel (CMS: 77.3/fb)				
Z' in the 3µ channel				
$W' \rightarrow \tau \nu$				
W' \rightarrow tb 0/1-lepton				

Leptoquarks Overview

Leptoquarks (LQs) are hypothetical particles predicted by many BSM theories

- Scalar or vector boson
- Carrying color charge and fractional electric charge
- Non-zero baryon number and lepton number
- Decaying into quark-lepton pair

Production modes:

 Pair-production is the dominant process

Production and decay determined by:

- LQ mass m_{LQ}
- Yukawa couplings λ to lepton and quark
- Branching fractions β to a given lepton and quark flavors, assuming $\beta(LQ \rightarrow q_i l) = 1 \beta(LQ \rightarrow q'_i \nu)$
- Coupling parameter κ in case of vector LQs (coupling with the SM gauge fields)

Jie Zhang (Shandong University)

4

LQ-t- $l(l = e, \mu)$: Pair Production @ ATLAS

arXiv:2306.17642

LQ-t- $l(l = e, \mu)$: Pair Production @ ATLAS

No significant excess observed and 95% CL limits on the production cross-section times branching ratio are derived as a function of the LQ mass.

Here only shows the limits on the production cross-section on scalar LQ:

tete: $m_{LQ_{mix}^d} < 1340 \text{ GeV}$

Jie Zhang (Shandong University)

arXiv:2306.17642

<u>CMS arXiv:2202.08676</u>, see more details in Backup

6

tµtµ: $m_{LQ_{mix}^d}$ < 1420 GeV

LQ-b- τ : Pair Production @ ATLAS

Focuses on 3^{rd} generation LQ pair-production Event selections:

- \geq 2 jets, \geq 1 b-jet
- Two channels: $\tau_{had} \tau_{had}$ and $\tau_{lep} \tau_{had}$ $(l = e, \mu)$

Final discriminant variable: Parametric Neural Network (PNN)

Jie Zhang (Shandong University)

8 May 2024

LQ-b- μ : Pair Production @ CMS

Event selections:

- 2 μ , \geq 2 jets, \geq 1 b-jet
- $S_T = p_T^{\mu_1} + p_T^{\mu_2} + p_T^{j_1} + p_T^{j_2} > 300 \text{ GeV}$
- *m*_{µµ} > 250 GeV

Final discriminant variable: BDT (trained for each LQ mass) No significant excess seen, **most stringent limits to date**!

arXiv:2402.08668

Jie Zhang (Shandong University)

ATLAS arXiv:2210.04517,

LQ-b-r: All Production Modes @ ATLAS

Single + Pair + Non-resonant production are considered • Single: scalar (\tilde{S}_1) and vector (U_1^{Min} and U_1^{YM}) LQ models Event selections:

- \geq 1 jets, \geq 1 b-jets (p_T > 25 GeV)
- Two channels: $\tau_{had} \tau_{had}$ and $\tau_{lep} \tau_{had}$ $(l = e, \mu)$

Final discriminant variable: $S_T = p_T^{\tau_1} + p_T^{\tau_2} + p_T^{bjet}$

8 May 2024

arXiv:2305.15962

Jie Zhang (Shandong

LQ-b-*t*: All Production Modes @ CMS

no b-tagged jets.

arXiv:2308.07826

11

Focus on decays into 3^{rd} generation quarks Aim to improve sensitivity through statistical combination of analyses Inputs from 9 analyses: 6 dedicated searches & 2 SUSY re-interpretations (\mathbf{x}) & 1 SUSY re-optimization (\mathbf{x}) Signal regions designed to be orthogonal, overlapping events identified & removed All final states from $l(e/\mu)$, τ_{had} , (b-)jets and E_T^{miss} , with different selection criteria based on analysis Interpretations:

- 5 signal models covered by combining 3~4 analyses for each $(LQ_3^{u/d}, LQ_{mix}^{u/d}, U_1^{YM/MC})$
- 1 additional re-interpretation of search in $t\tau t\tau$ final state ($\tilde{U}_1^{YM/MC}$)

Most stringent results to date for majority of the models.

Interpretation										
Searc	h		S	calar		Ve	ctor	Si	gnal Regi	on
Final State	Citation	LQ_3^u	LQ_3^d	LQ ^u _{mix}	LQ ^d _{mix}	$U_1^{\rm YM/MC}$	$ ilde{U}_1^{ m YM/MC}$	N_ℓ	$N_{ au_{ ext{had}}}$	Nbjets
tvb au		\checkmark	\checkmark	_	_	\checkmark	_	0	1	≥ 2
b au b au		\checkmark	_	_	_	\checkmark	_	$\{0, 1\}$	$\{1, 2\}$	$\{1, 2\}$
\star $t\tau t\tau$		_	\checkmark		—	—	\checkmark	$\{1, 2, 3\}$	≥ 1	≥ 1
tvbl		_	_	\checkmark	\checkmark	_		1	_	≥ 1
$b\ell b\ell$		—	—	\checkmark	—	—	—	2	—	$\{0, 1, 2\}$
$t\ell t\ell \ (2\ell))$		—	—	_	\checkmark	_	—	2	—	—
$t\ell t\ell \ (\geq 3\ell)$		_	—		\checkmark	—		$\{3, 4\}$	—	≥ 2
t v t v		\checkmark	_	\checkmark	_	\checkmark		0	0	≥ 2
\star bvbv		—	\checkmark		\checkmark	—	—	0	—	≥ 2

Combination of searches for scalar up-type and down-type LQs decaying into 3^{rd} or $1^{st}/2^{nd}$ generation leptons Exclusion limits improved by up to 100 GeV w.r.t individual analyses

14

No combination possible in case of $ilde{U}_1$ Set lower limit on mass of 1810 GeV for $ilde{U}_1^{YM}$ and 1540 GeV for $ilde{U}_1^{MC}$

$LQ-\tau-b/LQ-\tau-q@CMS$

arXiv:2308.06143

New Z' Vector Boson in 4μ Events @ ATLAS

Experimental signature: 4μ opposite-charge pair events around Z pole

Basic selections to select 4μ events in the mass region of [80, 180] GeV, excluding Higgs region [110, 130] GeV

Events further split into low mass ($m_{Z'}$ < 42 GeV) and high mass ($m_{Z'}$ > 42 GeV) region

Parameterized deep neural network (pDNN) score to categorize 4μ events as signal or background at different Z' hypothesis masses

Final discriminant variable: m_{Z1} or m_{Z2} after pDNN cut

Jie Zhang (Shandong University)

arXiv:2301.09342

New Z' Vector Boson in 4μ Events @ ATLAS

Exclusion limits on coupling strength $g_{Z'}$ vary from 0.003 to 0.2

Observed exclusion limits @ CMS: 0.004 < $g_{Z'}$ < 0.3, using 2016+2017 dataset 77.3 fb^{-1}

arXiv:2301.09342

<u>CMS arXiv:1808.03684</u>, see more details in Backup

Jie Zhang (Shandong University)

18

New Z' Vector Boson in 3μ Events @ ATLAS

• Model contains two additional parameters $\{g_{Z'}, M_{Z'}\}$

Search for Z' in mass region from 5 to 81 GeV

Candidate events in the signal region:

- Exactly 3 isolated muons
- Large missing transverse momentum

New Z' Vector Boson in 3μ Events @ ATLAS

Combination

Statistical combination with previous search using neutral-current Drell-Yan process (4μ final state)

Common parameter of interest: coupling parameter $g_{Z'}$

Significant improvement relative to the previous search, up to 40% in the high mass region ($m_{Z'}$ > 65 GeV)

arXiv:2402.15212

τ -lepton + Missing Transverse Momentum @ ATLAS

Target high mass resonances $W' \rightarrow \tau \nu \rightarrow \tau_{had-vis} \nu \nu$

• B(
$$\tau \rightarrow \tau_{had}$$
) = 65%

Profit from improved τ -ID w.r.t Run1, complement light lepton W' searches for flavor-universal model (SSM)

Also motivated by models which favor $\tau \nu$:

• Non-Universal Gauge Interaction Models (**NUGIM**)

• Non-universality of couplings to SM fermions parameterized as θ_{NU} Final discriminant variable:

• transverse mass $m_T = \sqrt{2E_T^{miss}p_T(1 - cos\Delta\phi)}$

τ -lepton + Missing Transverse Momentum @ ATLAS

SSM \rightarrow Excluded W' mass up to 5 TeV

arXiv:2402.16576

NUGIM \rightarrow Excluded W' mass vary from 3.5 to 5.0 TeV

Observed exclusion limits @ CMS:

Jie Zhang (Shandong University)

<u>CMS arXiv:2212.12604</u>, see more details in Backup

$W' \rightarrow tb$ in 0/1-lepton Final States @ ATLAS

arXiv:2308.08521

$W' \rightarrow tb$ in Leptonic Final States @ CMS

One muon or electron, at least two AK4 jets, and one neutrino • AK4 jets: jets clustered with a radius parameter of R = 0.4Categorization based on b-tagging condition of top jet and W' jet Final discriminant variable: $M_{l\nu ii}$

The largest local (global) significance 2.6 σ (2.0 σ) for $m_{W'}$ at 3.8 TeV with a relative decay width of 1% 138 fb⁻¹ (13 TeV)

arXiv:2310.19893

Conclusions and Outlook

ATLAS and CMS performed extensive search programme for BSM during Run-2

- Only a handful of the latest results presented here
- See the list of all public results on the <u>AtlasPublic twiki</u> and <u>CMS Publications</u>

No clear **new physics** evidence in the full LHC Run-2 dataset in searches for:

- Leptoquarks: limits are mostly at masses of 1 1.5 TeV for scalar and 1.5 2 TeV for vector LQs
- Exotic vector bosons Z' and W'

Run-3 of the LHC is ongoing, with 13.6 TeV collision energy and the inclusion of <u>multiple upgrades</u> Looking forward to further sensitivity improvements with this dataset

Thanks for your attention!

Leptoquarks: State of the art

8 May 2024

Overview of CMS leptoquark searches

	CMS Preliminary			Augus
$LQ(ej), BR(LQ \rightarrow ej) = 1, j = u, d$	1811.01197		0.2–1.44 TeV	
$LQ(ej) + LQ(ej)LQ(v_ej), LQ, j = u, d$	1811.01197		0.2–1.27 TeV	
$(e_j), BR(LQ \rightarrow e_j) = 1, \lambda = 1, j = u, d$	1509.03750			0.3–1.76 TeV
$DLQ(et), BR(LQ \rightarrow et) = 1$	2202.08676		0.2–1.34 TeV	
$C(\mu c), BR(LQ \rightarrow \mu c) = 1$	1808.05082		0.2–1.53 TeV	
$E(LQ(\mu c) + LQ(\mu c)LQ(v_{\mu}s), BR(LQ \rightarrow \mu c, v_{\mu}s) = 0.5, 0.5$	1808.05082		0.2–1.29 TeV	
$uj), BR(LQ \rightarrow \mu j) = 1, j = u, d$	1509.03750	0.3–0.66 TeV		
$DLQ(\mu t), BR(LQ \rightarrow \mu t) = 1, \lambda = 1$	1809.05558		0.3-1.42 TeV	.3-1.7 TeV
$DLQ(\mu t), BR(LQ \rightarrow \mu t) = 1$	2202.08676		0.2-1.42 TeV	0.3-2.05 Tev
$D(LQ(\mu b), BR(LQ \rightarrow \mu b) = 1, \lambda = 1$	CMS-PAS-EXO-21-019			0.3–1.81 TeV
$D)LQ(\tau b), BR(LQ \rightarrow \tau b) = 1$	1811.00806	0.3–1.02 TeV		
$D)LQ(\tau b), BR(LQ \rightarrow \tau b) = 1$	2308.07826	0.	6–1.25 TeV 0.6–1.53 TeV	
rb), BR(LQ → τb) = 1, λ = 1	1806.03472	0.2–0.74 TeV		0,6–1,86 TeV
τb), BR(LQ → τb) = 1, λ = 1	2308.07826	0.6–0.75 TeV 0.6–1.12 TeV		
)LQ($v_{\tau}b$) + $v_{\tau}LQ(\tau t)$, Equal LQ coupling to τt , $v_{\tau}b$, $\lambda = 2.5$	2012.04178	0.5–1.02 TeV	0.6–1.33 TeV	
$D(LQ(v_{\tau}t) + \tau LQ(v_{\tau}t))$, Equal LQ coupling to τb , $v_{\tau}t$, $\lambda = 2.5$	2012.04178		0.5-1.41 TeV	
$LQ(\tau t), BR(LQ \rightarrow \tau t) = 1$	2202.08676	0.2–1.12 TeV		0.5–1.73 TeV
$BR(I \cap \tau u) = 1, \lambda = 1$	2308 06143			0.6–2.07 TeV
$BR(I O \to \tau d) = 1 \lambda = 1$	2308.06143			0.6-1.8 TeV
$P(I_{(0,1)} = 1, \lambda = 1)$	2200.00142			0.6–1.93 TeV
$P(LQ \to tS) = 1, N = 3$	2308.00143	0.6–1.08 TeV		
$(LQ \rightarrow LD) = 1, \Lambda = 3$	2506.00145			
$(\mu)j)LQ(v_{e(\mu)}j), BR(LQ \rightarrow v_{e(\mu)}j) = 1, j = u, d, s, c$	1909.03460	0.5–1.14 Te	V0.5–1.55 TeV	0.5–1.98 TeV
b)LQ($v_{\tau}b$), BR(LQ $\rightarrow v_{\tau}b$) = 1	1909.03460	0.5-1	1.2 TeV 0.5–1.55 TeV	0.5–1.93 TeV
$t)LQ(v_{\tau}t), BR(LQ \rightarrow v_{\tau}t) = 1$	1909.03460	0.5–1.14 Te	V 0.5–1.47 TeV	0.5-1.81 TeV
$u)LQ(v_eu) + v_eLQ(v_eu), BR(LQ \rightarrow v_eu) = 1, \lambda = 1$	2107.13021		1–1.5 TeV	
0. calar Vector(k=0) Vect of observed exclusion limits at 95% CL (theory uncertainties	00 0.25 or(k=1)	0.50 0.75 1.00 Mass Scal	1.25 1.50 e [TeV]	1.75 2.00

LQ summary

2023	1
	36 fb ⁻¹
	36 fb ⁻¹
	20 fb ^{–1} (8 TeV)
	138 fb ⁻¹
	36 fb ⁻¹
	36 fb ⁻¹
	20 fb ⁻¹ (8 TeV)
	36 fb ⁻¹
	138 fb ⁻¹
	138 fb ⁻¹
	36 fb ⁻¹
	138 fb ⁻¹
	36 fb ⁻¹
	138 fb ⁻¹
	137 fb ⁻¹
	137 fb ⁻¹
	138 fb ⁻¹
	137 fb ⁻¹

$LQLQ \rightarrow tbl\nu$ ($l = e, \mu$): Pair Production @ ATLAS

Target pair-produced up- and down-type LQs with $\beta(LQ \rightarrow q_3l) = 0.5$

- LQs couple simultaneously to a top quark and a light lepton (e or μ)
- Following the notation LQ_{mix}^d (scalar) and \tilde{U}_1 (vector)

Event selections: 1 light lepton, \geq 2 jets, \geq 1 b-jet, $p_T^{miss} \geq$ 250 GeV

Main backgrounds $t\bar{t}$, single top, W+jets

Train neural networks (NNs) for several signals (scalar/vector, up/down, $\beta(LQ_{mix}^u \rightarrow bl))$ in inclusive "training" region

Final discriminating variable: NN score

arXiv:2210.04517

Mis-modeling of high- p_T top quarks \rightarrow data-driven correction of $t\bar{t}$ and single top backgrounds

No significant excess observed. Analysis Results

Observed (expected	d) 95% CL limits at /	$\beta(LQ \to q_3 l)$
	$\beta(LQ \rightarrow q_3 e) = 1.0$	$\beta(LQ \rightarrow q_3\mu)$
LQ^{u}_{mix}	1.44 (1.44) TeV	1.46 (1.44
LQ^d_{mix}	1.39 (1.41) TeV	1.37 (1.38
U_1^{min}	1.62 (1.65) TeV	1.71 (1.66
U_1^{YM}	1.90 (1.93) TeV	1.98 (1.93

LQ-t-l $(l = e, \mu, \tau)$: Pair Production @ CMS

Scalar $LQ(\rightarrow t\mu)$: $m_{LO} < 1.42$ (1.46) TeV Scalar $LQ(\rightarrow t\tau)$: $m_{LO} < 1.12 (1.235)$ TeV

New Z' Vector Boson in 4μ Events @ CMS

arXiv:1808.03684

τ -lepton + Missing Transverse Momentum @ CMS

