

New Physics Searches with Top Quarks: Flavor Changing Neutral Currents (FCNC)

Efe Yazgan

on behalf of the ATLAS and CMS Collaborations

Standard Model at the LHC 2024 Rome, 10 May 2024

FCNCs

- Transitions that change the flavor of a fermion w/o changing charge.
- Forbidden at tree level in the SM.
- Suppressed at higher orders due to GIM mechanism.
 - Due its high mass, Top-Higgs FCNC transitions have the largest suppression in the SM.
- Occurs only at the level of quantum loop corrections.

Standard Model of Elementary Particles three generations of matter interactions / force carriers hosons mass ≈2.2 MeV/c ≈1.28 GeV/c2 ≈173.1 GeV/c² ≈125.11 GeV/c2 С ⁴³ ⁴² ℓ Η g u 0 1∕2 gluon charm higgs up top ≈4.7 MeV/c2 ≈96 MeV/c² ≈4.18 GeV/c² -^{1/3} b d ^{-+/3} ^{1/2} S Y bottom photon down strange

 \rightarrow Any evidence of FCNC indicates the existence of new physics: In this talk, recent searches for FCNC interactions of both SM particles and new scalar particles with « model-independent » *Effective Field Theory (EFT)* approaches and model-dependent direct searches.

- Charged-Lepton-Flavor Violation (cLPV)
- Baryon-Number Violation (BNV)

covered in Sergio's talk (and in the backup)

FCNC Signatures

 In all searches of FCNC interactions of SM particles in this talk: t and tt
 in single analysis: in general only N_{jets} different in the signal signature.

• FCNC interactions of new scalar particles: 1 lepton, 2 same-sign lepton, 3, 4 leptons + jets

Signal simulation: **ATLAS:** NLO QCD with MG5_aMC or POWHEGv2 (except g2HDM) **CMS:** LO QCD with MG5_aMC.

Top- γ and Top-Z FCNC couplings

FCNC interactions of top quark with a photon

PRD 109 (2024) 072004

more sensitivity to $t\gamma u$ (PDF effect).

similar sensitivity to $t\gamma u$ and $t\gamma c$.

• Nonprompt lepton & photon, e misidentified as γ , and other bkgs. estimated from data except $t\gamma$ and $VV\gamma$.

FCNC interactions of top quark with a photon

PRD 109 (2024) 072004

 Likelihood fit combining 12 BDTs: 2 channels (e, μ), 2 SRs, 3 data-taking years w/ separate nuisances for tγu and tγc.

Obs.(Exp.) limits on anomalous FCNC couplings (κ) and branching ratios (\mathscr{B}): $\kappa_{tu\gamma} < 6.2(6.9) \times 10^{-3}$, $\mathscr{B} (t \to u\gamma) < 0.95(1.20) \times 10^{-5}$ $\kappa_{tc\gamma} < 7.7(7.8) \times 10^{-3}$, $\mathscr{B} (t \to c\gamma) < 1.51(1.54) \times 10^{-5}$

- Dominant uncertainties: *nonprompt-γ, Zγ+jets and Wγ+jets normalizations, and misidentified-γ.*
- Adding another signal region, i.e. SR2 ($t\bar{t}$) and electron channel, increased cross section at 13 TeV (and larger integrated luminosity) \rightarrow **limit significantly improved for** $\mathscr{B}(t \rightarrow c\gamma)$
 - 100x w.r.t. 8 TeV CMS JHEP 04 (2016) 035
 - $\sim 3x$ improvement w.r.t to the ATLAS previous best result PLB 842 (2023) 137379

FCNC interactions of top quark with a Z boson

 $\Delta R(\ell, \ell)$

N_{jets}

 $p_T^j(u/c)$

 p_T^Z, p_T^b

 m_t^{SM}

 $\Delta R(Z,b)$

 $\Delta R(\ell,\ell)$

similar sensitivity to tZu and tZc.

more sensitivity to tZu (PDF effect).

- 3 leptons, 1 b-tag + jets and MET.
- BDT training done separately for left-handed (LH) and right-handed (RH) FCNC operator samples in each SR.
 - D_1 : Single discriminant for tZu and tZc in SR1.
 - D_2^u : Training for *tZu* in SR2
 - D_2^c : Training for *tZc* using FCNC in $t\bar{t}$ decay (SR1) + in single-top production (Sr2)

PRD 108 (2023) 032019

FCNC interactions of top quark with a Z boson

BDT for tZc using FCNC in $t\overline{t}$ decay and in single-top production (D_2^c)

• Simultaneous profile likelihood fit in SRs and CRs.

- 4 independent fits to extract LH, RH for \mathscr{B} and effective coupling strengths (Wilson coefficients C_k) for tZu and tZc couplings.
- Dominant uncertainties: *statistical, SM tZ background normalization and diboson modeling.*

Observable	Vertex	Coupling	Observed	Expected	
	SRs+CRs				
$\mathcal{B}(t \to Zq)$	tZu	LH	6.2×10^{-5}	$4.9^{+2.1}_{-1.4} \times 10^{-5}$	_
$\mathcal{B}(t \to Zq)$	tZu	RH	6.6×10^{-5}	$5.1^{+2.1}_{-1.4} \times 10^{-5}$	
$\mathcal{B}(t \to Zq)$	tZc	LH	13×10^{-5}	$11^{+5}_{-3} \times 10^{-5}$	
$\mathcal{B}(t \to Zq)$	tZc	RH	12×10^{-5}	$10^{+4}_{-3} \times 10^{-5}$	
$ C_{uW}^{(13)*} $ and $ C_{uB}^{(13)*} $	tZu	LH	0.15	$0.13 \substack{+0.03 \\ -0.02}$	_
$ C_{uW}^{(31)} $ and $ C_{uB}^{(31)} $	tZu	RH	0.16	$0.14 \stackrel{+0.03}{_{-0.02}}$	Λ = 1 Te
$ C_{\mu W}^{(23)*} $ and $ C_{\mu B}^{(23)*} $	tZc	LH	0.22	$0.20 \stackrel{+0.04}{_{-0.03}}$	
$ C_{uW}^{(32)} $ and $ C_{uB}^{(32)} $	tZc	RH	0.21	$0.19 \stackrel{+0.04}{_{-0.03}}$	

• Thanks to the added single-top quark channel, MVA, and higher integrated luminosity 5(3)x improved expected limits for $\mathscr{B}(t \to Zu)$ ($\mathscr{B}(t \to Zc)$) w.r.t. previous 13 TeV ATLAS results JHEP 07 (2018) 176.

Top-Higgs FCNC Couplings

FCNC top-Higgs-u/c couplings with multi-leptons

- \geq 2 leptons (w/ same-sign charge (e, μ)) + \geq 1 jet (w/ 1 b-tag).
- Separate BDTs for tHc and tHu signals

• e.g. inputs: N_e, N_i, N_b , b/c tagging discriminator scores, ...

- Likelihood fit including nonprompt lepton and charge mis-id control regions.
- Dominant uncertainties: *signal modeling, b/c tagging estimation, nonprompt lepton and charge-flip backgrounds.*

FCNC top-Higgs-u/c couplings with multi-leptons

• \geq 2 leptons (w/ same-sign charge (e, μ)) + w/ 1 b-tag.

- Separate deep neural networks (DNNs) for tcH and tuH signals and four signal regions (2ℓ prod&decay and 3ℓ prod&decay).
 - e.g. inputs: $m(\ell_{OS}, \ell_{SS,1}), m(\ell_{OS}, \ell_{SS,0}), m(\ell_t, b_t), H_T, \dots$
- Likelihood fit including nonprompt lepton and $t\overline{t}W$ and $t\overline{t}Z$ control regions.
- Dominant uncertainties: heavy flavor bkg.

11

FCNC top-Higgs-u/c couplings with di-photons

SM@LHC 2024 Efe Yazgan

JHEP 12 (2023) 195

- BDT selection to improve sensitivity for hadronic and leptonic top decay channels separately.
- Likelihood fit to diphoton mass in categories based on hadronic and leptonic top quark decays, N_{jets} and charm-tagging.
- Results dominated by statistical uncertainty, photon energy resolution, $\sigma_{t\bar{t}'} \ \mathcal{B}(H \to \gamma \gamma)$.

 $Br(t \rightarrow Hu) < 0.038 \% (0.039\%)$ $Br(t \rightarrow Hc) < 0.043 \% (0.047\%)$

• **tcH**: 1.5x better sensitivity than the ATLAS analysis with $36 fb^{-1}$ [JHEP 10 (2017) 129] thanks to better event reconstruction and categorization & extra background rejection with BDTs.

FCNC top-Higgs-u/c couplings — Combinations

New scalar resonances in FCNC

New Scalar Bosons in FCNC with g2HDM

- 2HDM introduces five scalar bosons: H^{\pm} , H, h, A
- \mathbb{Z}_2 symmetry is dropped in 2HDM to allow FCNC \rightarrow generalized 2HDM (g2HDM)
 - Many parameters and extra processes arise.
 - Alignment ($\cos \gamma_{H-h} \approx 0$) emerges when no \mathbb{Z}_2 symmetry and all extra Higgs quartic couplings are $\mathcal{O}(1)$
 - h becomes h_{125}
 - No HVV, AVV interactions.
 - Suppresses FCNC interactions for h but allows FCNC for H and A
 - Electroweak baryogenesis, lack of FCNC (e.g. $t \to ch_{125}/uh_{125}$ or $h_{125} \to \mu \tau/e \tau$), ... could be explained.
 - sub-TeV H^{\pm}, H, A bosons may still exist

 $\longleftrightarrow \Lambda_{\!N\!P} \,{<}\, \mathcal{O}(10 \,\, TeV) \,\text{(opposite assumption to that of EFT)}.$

New Scalar Bosons in FCNC with g2HDM JHEP 12 (2023) 081

- ρ_{tu}/ρ_{tc} -induced same-sign top quark and ρ_{tt} -induced triple/four-top quark in the same umbrella with a general multi-lepton signature.
- 17 Signal categories based on lepton-multiplicity, total lepton charge, multi-output DNN classifiers (2LSS-DNN w/ 5 output nodes and 3L-DNN w/ 3 output nodes) to discriminate between different signals.
- Another DNN trained in each SR to discriminate signal from backgrounds.
- Maximum-likelihood fit performed across signal and background categories.
- No A-H interference

New Scalar Bosons in FCNC with g2HDM JHEP 12 (2023) 081

- Dominant uncertainties: $t\overline{t}W$, $t\overline{t}Z$, $t\overline{t}h$, and $t\overline{t}t\overline{t}$ modeling, statistical.
- Only existing search targeting BSM production of three top quarks.
- No limit on ρ_{tt} when ρ_{tc} (or ρ_{tu})=0, but e.g. ρ_{tt} =0.4, $\rho_{tc} = \rho_{tu} = 0.2$, m_H = 200-620 (200-840) GeV excluded.

2.8 σ local deviation from 55% $tt\overline{q}$, 31% tt, 14% $tt\overline{t}$

New Scalar Bosons in FCNC with g2HDM PLB 850 (2024) 138478

• Focus on ρ_{tu}/ρ_{tc} -induced same-sign top

quark in same-sign lepton final states

Considered no A-H interference and A-H

interference cases (with $m_A - m_H = 50$ GeV)

independently.

- DeepJet algorithm: Flavor identification using global variables, charged/ neutral particle and secondary vertex kinematics in the jets. JINST 15 (2020) P12012
- For this analysis, calibrated using DY and $t\overline{t}$ control regions.

- 138 fb⁻¹ (13 TeV) CMS Postfit Events/bin 10² **VBS** [53] VV [91] Others [202] = ttH [421] ttW [567] tt [351] Data [3791] Total unc. Nonprompt [2103] g2HDM Signal(x2.5) 10^{6} $m_A = 350 \text{ GeV}, \rho_{tc} = 1.0$ 10⁵ Interference $m_{A} - m_{H} = 50 \text{ GeV}$ 10⁴ 10³ 10^{2} 10 1.1 dx 1.1 dx 0,00s/Ex -0.6 -0.4 -0.2 0.2 06 0.8 0 04 **BDT** score
- BDTs trained independently for each era x [10 mass (w/o interference) + 9 mass (w interference)] x $(\rho_{tu} = 0.4 \text{ and } \rho_{tc} = 0.4) \longrightarrow$ 152 BDTs in total.

New Scalar Bosons in FCNC with g2HDM PLB 850 (2024) 138478

- 4 bins of BDT score in each decay mode simultaneously fit to extract limits for each signal mass-coupling hypothesis.
- Dominant uncertainties: *Flavor tagging, nonprompt lepton, tī W cross section, statistical.*
- ho_{tu} largely excluded, but still a large portion of the phase space not constrained for ho_{tc} .
- Final limits on (real parts of) ρ_{tu} and ρ_{tc} (w/o A-H interference) similar in ATLAS and CMS.
 - Limits w/o A-H interference weaker than w/ interference.
- First search based on g2HDM considering A-H interference.

	Observed (expected) mass limit [GeV]					
	without	with	with			
	interference	interference	interference			
	$m_{\rm A}$ or $m_{\rm H}$	$m_{\rm A}$	$m_{ m H}$			
$ ho_{\mathrm{tu}}$						
0.4	920 (920)	1000 (1000)	950 (950)			
1.0	1000 (1000)	1000 (1000)	950 (950)			
$ ho_{ m tc}$						
0.4	no limit	340 (370)	290 (320)			
1.0	770 (680)	810 (670)	760 (620)			

New Scalar Bosons in FCNC top-quark decays $t \rightarrow qX$ (q = u, c), with $X \rightarrow b\overline{b}$

Conclusions

- Top quark continues to be an important particle to look for new physics effects.
- All results in good agreement with the Standard Model.
- No sign of Flavor Changing Neutral Currents (Charged Lepton Flavor Violation, or Baryon Number Violation).
- Significant improvements in many searches thanks to
 - considering interactions both in top quark production and decay,
 - improved signal extraction techniques,
 - combinations, or increased collision energy.
- Top quark modeling and heavy flavor tagging crucial in many searches.
- Limits getting closer to the predictions from specific models.
- Many searches performed for FCNCs and extra Higgs bosons but *FCNC in extended Higgs sector* still remains to be studied in more detail.

Additional Slides

Charged Lepton Flavor Violation (CLFV)

- Neutrino oscillations \rightarrow CLFV but might be unobservable as CLFV suppressed by the « negligible » m_{ν}^2 [PRD 95 (2017) 015022]
- Many BSM scenarios predict significant LFV [arXiv:2209.00142].
- In SM EFT, CLFV appears at dim. 6. \rightarrow used for parametrizing the CLFV interactions.

In production (High p_T leptons)

Charged Lepton Flavor Violation (CLFV)

- Triple-lepton final states: $e^{\pm}\mu^{\mp}$ + another e or μ + \geq 1 jet (with \leq 1 b-jet).
- Profile likelihood fit to separate BDTs trained for the « decay » and « production » regions and 3 data-taking years, simultaneously.

SM@LHC 2024 Efe Yazgan

- Dominant uncertainties: nonprompt lepton., additional jets mismodeling in WZ/ZZ samples, QCD scales, and parton shower initial/final state radiation.
- Limits most stringent to date w/ an order of magnitude improvement!

arXiv:2312.03199

 $t(\overline{t})+X(X)$

Nonprompt

- CLFV top production ($\mu_{e\mu tu}^{vector} = 0.05$) - CLFV top decay ($\mu_{e\mu tu}^{vector} = 3$)

Data

VV(V)

138 fb⁻¹ (13 TeV)

CMS

eμl SR

450__

400

350

300 250

CLFV - ATLAS

- Same processes but in (hadronic) τ and μ final states: $\mu^{\pm}\mu^{\pm}\tau^{had}$ +1 bjet.
- Results with EFT and also assuming a scalar leptoquark (S_1) obtained from a simultaneous profile-likelihood fit to H_T in signal and control regions. High p_T leptons \rightarrow High $H_T \rightarrow$ CLFV
- Result limited by statistical uncertainty
- Dominant systematic unc.: $t\bar{t} + X$ and VV modeling.

10⁻⁶

→μτ c) ×

B(t –

10⊢*atlas*

8-cLFV μτqt

√s=13 TeV. 140 fb⁻¹

0.1

95% CL limits

Scalar

Vector

Tensor

0.4

 $B(t \rightarrow \mu \tau u) \times 10^{-6}$

0.5

Obs.

Obs.

0.3

 $\mathscr{B}(t \to \mu \tau q) < 0.87 \ (0.50) \times 10^{-6}$

(Assuming all EFT operators are equal)

0.2

0^L 0.2 0.3 0.4 0.5 0.1 Ic^{μτut}I First limits on EFT couplings w/ μ and τ flavors.

 \leftarrow Couplings of S_1 to each generation of quarks and leptons fixed relative to one another \rightarrow reduces 10 degrees of freedom to only 2 to set limits on coupling-mass.

Baryon Number Violation (BNV)

- Baryon number conservation
 - Needed for *absolute* stability of matter.
 - An approximate symmetry
 - (a global symmetry w/o an associated mediator unlike stability of electron based on charge conservation)
 - Even tiny BNV would have deep implications in the evolution of the Universe. e.g. see <u>PRD85(2012)016006</u>, <u>PRD72(2005)095001</u>

Fermion-flavor-dependent effective BNV interactions.

Single-top production

 $t\overline{t}$ decay

Baryon Number Violation (BNV)

arXiv:2402.1862

Fermion-flavor-dependent effective BNV interactions.

Single-top production *for the first time*. Dominant signal process, and harder final state.

combinations for the first time.

 $t\overline{t}$ decay (Added for completeness)

- Dilepton (e^+e^- , $e^\pm\mu^\mp$, $\mu^+\mu^-$) + 1 b-tagged jet.
- Maximum likelihood fit performed in the signal region for three years and three channels simultaneously.
- Dominant uncertainties:
 - tW modeling, muon energy scale, top quark p_T in $t\overline{t}$

The results improve the previous bounds [PLB 02 (2014) 033] by 3 to 6 orders of magnitude.

Most stringent limits on BRs.