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Finsler spaces

Finsler spaces (Finsler, 1918): metric spaces, with the distance ds between
x = (x') and x + dx = (x! + dx')

ds§ = F (x,dx).

Finsler metric function F: positively homogeneous of degree one function
in dx, satisfying

F (x, Adx) = AF (x, dx) , forA > 0.
Canonical coordinates (x,y) = (x/, y') of the tangent bundle TM, where

y= y’—,, is a tangent vector at x.
_ ox!" A
Finsler metric tensor gy,

N 10%F2(x,y)
g/J(Xay)_§ 8}/,(9_)/']
Metric in Finsler geometry:

ds? =gy (x,y)y'y’
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Finsler geometry

gu(x,y) =g (x), y' = dx'-Riemann geometry
ds? = g(x)dx’dx?
Cartan tensor C(x,y):
¢ L108u(x.y)
UK =5 g K
Randers spaces (Randers, 1941):
1 M2 I
F = |gu(x)dx'dx ] +A(x)dx! = a + B,
Kropina spaces (Kropina, 1959):
1J\X (@7
F(x.y) = 820

(a, B) metrics (Matsumoto, 1972): F(«, 5),
o (x,y) = [gu(x)ax'dc’]"/? and B (x,y) = A(x)y!
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Finsler geometry

General (a, 8) metrics:

F(avﬂ) :agb(ﬁ/a) :agb(s)vs:B/O‘:(b:(b(s)

Metric tensor of the (a, §) metric

R L, Lo Log
gulx,y) = —h/J + =iy 4 —— (y/AJ + Y A1) + LggAlAy,

where L = F2/2, and

Palxy) _ iy
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The Barthel connection

Let (M", F) be a Finsler space, defined on a base manifold M". On M" a
vector field Y(x) # 0 is also defined.
We define a particular mathematical structure (M", F(x,y), Y(x)), a
Finsler space (M", F(x, y)) with a tangent vector field Y (x).
If the vector Y that does not vanish in any point on M, g(x,y) generates
the Y-Riemann metric

By(x) =&(x,Y)
Let's assume that a point vector field Y/(x) and a Finsler metric tensor

g(x,y) are given.
The absolute differential of the vector Y:

DY! = dY' + YKbley(x, Y)dx",

bl (x, Y) are the coefficients of the Barthel connection (Barthel, 1953)
are obtained with the help of the generalized Christoffel symbols 4 4
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The Barthel connection

.1 <3§J/ 08iH aéHJ)
Aum = 5 -

oxH = oxJ  ox!
/ 2l ~R \/S Al
bkr =k — ks Y Cru-
Interesting properties of the Barthel connection:
-It depends on the vector field on which it acts - very different to the

connections in Riemann geometry

- The dependence is only on the direction of the vector field, and not on
its magnitude

- Keeps the metric function unchanged by the parallel transport

- Permits a transition to the Cartan geometry of the Finsler spaces

- The Barthel connections do not live on the base manifold M, but on the
total space of the tangent bundle

- Major differences between the geometrical Riemann and Finsler
gravitational theories
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The Y osculating Riemann geometry

The osculating approach (Nazim, 1936) associates to a complex
geometric structure, like, for example, a Finsler geometry, and a Finsler
connection, a simpler mathematical format, like a Riemann metric, or an
affine or a linear connection.  Thus the simpler, osculating structure,
approximates, in some sense, the most complicated one.

Hence, one can obtain mathematical results that allow the understanding
of the properties of the mathematically more complicated geometries.

Let's consider now a local section Y of mpy : TM — M. By taking into
account that gy o Y is a function defined on U, we can introduce a new
metric

81(x) == 8u(x,¥)ly=v(), x€U. (1)

The pair (U, g1;) correspond to a Riemannian manifold, while g;;(x)
represents the Y-osculating Riemannian metric corresponding to (M, F).
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The Y osculating Riemann geometry

The Christoffel symbols of the first kind for the metric (1)

k) = 3 { g Wl YOOI + e Lt Y ()

o [ YO

~ n . oYL .~ oYt N
Yk (x) = Fuk (6 ¥) |y =y (x) 2 (CIJLax_K + CIKLW — CJKLW)

y=Y(x)

If a non-vanishing global section Y of TM does exist, with the property
Y (x) # 0, Vx € M, the osculating Riemannian manifold (M, g;) can
always be defined.
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The case of the («, 3) metrics

For the (c, 3) metrics we take Y/ = A!, with A" = gHA,.
We define the A osculating Riemannian manifold (M, g;;), with

B(x) == By(x, A), 3 = A A = a2 (x, A), Y (x, A) = A,

N Ly Ly Los L,
Bu(x)=— 81+ (N—Q 4228 Lgg — —3) AlAy.
2 ly=A(x) @ Jly=Ax)
Cik (x, A) = 0.
Ak (<) = Ak (<, )|y = a0 - (2)

For an («, 8)-metric, the Barthel connection is the Levi-Civita connection
of the A -Riemannian metric.

After evaluating gjj(x, y) of (M, F) at (x, A(x)), one obtains a Riemannian
metric ga on M, with its own Levi-Civita connection.
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The generalized curvature tensor

The Barthel connection (béc(x)), is an affine connection.
Curvature tensor with local coefficients (M3 (x)):

A A
ox¢  oxP
Kropina metric F = a?/f3, Barthel connection = Levi-Civita connection of
the osculating metric gag(x) = gas (x, A(x)), Ai(x) - components of the
one-form (3, gag - the fundamental tensor of F.

A _~A
bgc = ABc

A E A E A
Rgcp = +eplec — Tl ED-

R a/.?A 8’3"4
A BD BC |, ~E 2A _ ~E ~A
Rgep = xC  axD +YBpVEC — VBCYED>

Rep =3 ‘%éo_a%‘AJrZ VE 2A _ AE ~A
BD = IxA OxD YBDVEA — VTBAVED | | »
A E

Ricci scalar R = RBB.
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The Barthel-Kropina cosmological model

The Barthel-Kropina cosmological model (Hama, Harko and Sabau,
EPJC 82, 385, 2022; EPJC 83 1030, 2023): based on a Finsler type
(a, B) geometry, with

a®  gi(x)dxidx

Fe = BT B0 = & A)

« is a positive non-degenerate Riemann metric, 8 is an one form.
- « is the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric

ds? = (dx°)” = @ (x°) [(o!)” + (x®)” + (o)’
-Validity of the Cosmological Principle - A; = A; (x°)
-The vector A has only one time-like independent component Ag (x°)
Ar=(a(x%) n(x°),0,0,0)

- Matter comoves with the cosmological expansion
- Non-vanishing components of the matter energy-momentum tensor Tap

-’A_(? = PC2, foo = goo ﬁ?, -f/f = —p, -’A'ii = —8ik 7A',-k-
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The Barthel-Kropina cosmological model

- The Einstein gravitational field equations are given in the

Barthel-Kropina geometry by (Hama, Harko and Sabau, EPJC 82, 385,
2022; EPJC 83 1030, 2023)

N 1 N N
Rep — §§BDR = x?Tgp, (3)
(4) = (2 (%) 1 (x5).0,0,0) = (A);
1 0 0 0
o =20 o o |
@ (g/J) - 0 O —32(X0) 0 '
0 0 0 —a%(x9)

Q al,—ap) = a(x%)n(x°);
Q Bly—ap) = [ax°)n(x)]?.
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The generalized Friedmann equations

2 2 a2t
2 / \2 8 G
o1 o _ g _87C P
1 7 7 R
d ArG , ,
an—g (n'a) = — (pc” +p)

AnG | d d 3 8rG H '
— W(pca)andO =32° S 3pc +p) g

The Barthel-Kropina cosmological Friedmann equations reduce to the
Friedmann equations of general relativity in the limit n — +1/a,
8=1(1,0,0,0),
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The generalized Friedmann equations

n(XO) = 2 (x0) [1+¢(X0)],
"2
3(‘;) = 8fch+6(1+w)wH 3 (1) _3(2+¢)wH2_87CT_2Gp+pDE,
25" (a/)2 B 871G p 1/}/ (¢/)2
I (e LR e (e
(U _ 8nG p
+2]__|_¢ - ct (1+w)2 + PDE,

poE = 6(1+ )¢ H — 3 (1) = 3(2 + Y)Y H?,

W (v')? "
1+¢H 3(1+w)2 +21+w

For ¢¥» — 0, and n — 1/a, we reobtain the Friedmann equations of GR

PDE =
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Dark energy from the Barthel-Kropina cosmology

PDE = WPpE,w = constant,
Redshift variable 1 +z=1/a

dy
(1+Z)hE—U,
dh 2 _ o? _h da

h da 2
1 2 2

Matter density parameter

a9

_ K2 2
Q=1+ (1+2) (dz

) +(2+w)¢+2(1+z)(1+w)

w .
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Datasets and methodology

We use the H(z) measurements, and the Pantheon sample (Bouali et al.,
EPJC 83, 121, 2023).

Estimation of the model parameters w, 0g, ¥, h: chi-square function

57 )
H i I 9 ,h - H i
X%‘l (wv 00, 1/}0’ h) - Z [ th (Z w,00 ;ﬁo ) obs (Z )]
i=1 H(zi)

The Akaike's Information Criterion (AIC.)

2Ni(N; + 1)
Nrot =N =17
Nt and Nt are the number of free parameters, and the total data points.
The model with the minimal AIC. is taken as reference

AAICC = AICc,modeI - AICc,referencea

If 0 < AAIC. < 2, the model is substantially supported by the data
If 4 < AAIC. < 7, the model has less observational support
If AAIC. > 10, the model is not supported by the data

AIC. = X2, +2N; +
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Figure: MCMC confidence contours at 1o and 20, obtained after constraining the
Barthel-Kropina dark energy model with SNla+H(z) data.
18/30

T. Harko (UBB) Cosmological evolution from the osculating April 28, 2024



Model Parameter Prior Best fit Mean
ACDM Qun [0.001,1] | 0.2785970 0130288 | 0.279249700139453
h [0.4,1] | 0.69189275-508881 | 0.69185710-3088838,
Barthel-Kropina w [0,6] 2.0238270 8008 | 25331470 51%007
a0 [-3,3] | 0.619373%0053505 | 0.652573700536742
do | [-3.3] | 0.40882:23%7 | 0.458615°L41TS
h [0.4,1] | 0.684579755108078 | 0.6830521 05195017

Table: Summary of the best fit and of the mean values of the free cosmological
parameters of the Barthel-Kropina dark energy model.

T. Harko (UBB) Cosmological evolution from the osculating April 28, 2024 19/30



Model Xor Xy AIC. | AAIC,
ACDM 1081.5479 | 0.978776 | 1085.56 | O

Barthel-Kropina | 1078.0028 | 0.975568 | 1086.04 | 0.48

o> min

Table: Summary of the 2., , x24 , AlIC. and AAIC,.
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Figure: The evolution of the Hubble parameter H(z) of the Barthel-Kropina and
ACDM models as a function of the redshift z against the Hubble measurements.
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Figure: The evolution of the distance modulus u(z) of the Barthel-Kropina dark
energy model, and of the ACDM model in terms of the redshift z against the
Pantheon data.
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Figure: The variation of the difference between the Barthel-Kropina dark energy
model, and the ACDM model as a function of the redshift z against the Hubble

measurements.
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Figure: Evolution of the deceleration parameter as a function of the redshift z for
the Barthel-Kropina and ACDM cosmologies.
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Figure: The reduced matter density parameters as a function of the redshift z in
the Barthel-Kropina and ACDM cosmological models.
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~——— Barthel-Kropina model

4

Figure: The evolution of the coefficient n(z) = (1 + z)(1 + ¢(z)) of the one form
B of the Kropina metric.
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Figure: The evolution of the Om(z) function in the Barthel-Kropina and ACDM
models.
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Conclusions

© Finsler geometry represents an interesting extension of Riemann
geometry, and it can open some new perspectives on gravitational
theories

@ It allows a natural embedding of new degrees of freedom that
significantly enlarge the physical space of the physical variables

© Finsler geometry in its Barthel-Kropina version provides a natural
explanation for the accelerated expansion of the Universe, and it gives
an excellent description of the observational data

T. Harko (UBB) Cosmological evolution from the osculating April 28, 2024 28 /30



Conclusions

© However, more tests of the Barthel-Kropina geometric gravity models
are necessary to confirm/infirm the basic theory

@ A further interesting field of investigation is related to the black hole
solutions in Barthel-Kropina geometry

© There are a large number of astrophysical effects that allow a detailed
testing of the validity of the black hole solutions

© The tests are local (Solar System) level, or involve high energy
astrophysical processes
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Conclusions

@ From the comparison with the observational data one can obtain
some strong constraints on the model parameters

@ The astrophysical tests impose some important restrictions on the
free parameters of the Finsler type geometric theories of gravity

© These restrictions must be combined with the cosmological predictions
to give a more detailed picture of the full potential of the theory
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