
Dániel Barta
barta.daniel@wigner.hun-ren.hu

In collaboration with: Balázs Kacskovics, Mátyás Vasúth (†)

Related papers: arXiv:2212.04885 & 1908.02808
Supported by NKFIH under OTKA grant agreement No. K138277

Constructing slowly and rapidly rotating 
equilibrium configurations of relativistic stars

BGL-2024
XII Bolyai–Gauss–Lobachevsky Conference
Budapest, 2nd May, 2024



To study the observable parameters
of rotating relativistic compact stellar
models based on the angular velocity
and on the equations of state.

• For slowly and uniformly rotating equilibrium solutions in a Hartle–
Thorne approximation (quartic order in the angular velocity).

• For rapidly and uniformly rotating stars, we solve the coupled
system of non-linear elliptic PDEs that are associated with the
Einstein field equations (by implementing multi-domain spectral
methods in the LORENE/rotstar codes).

Additional angular velocity can 
counteract the extra gravitational force

Rotating compact stars can support a larger mass 
than their non-rotating counterparts.1)

2)

Motivation

Oscillation  modes are unstable to 
gravitational wave emission
→ r-mode or f-mode oscillations



Stellar structure model in hydrostatic equilibrium

At the stellar center (𝑟𝑟 = 0): 
• 𝑀𝑀 0 = 0: the mass function vanish
• 𝜌𝜌0 ≡ 𝜌𝜌 0 : central density is freely specified
At the stellar surface (𝑟𝑟 = 𝑅𝑅):
• 𝑀𝑀 ≡ 𝑚𝑚 𝑅𝑅 : total mass of the star
• 𝑝𝑝 𝑅𝑅 = 0: the isotropic pressure vanishes
• 𝑒𝑒𝜈𝜈 𝑅𝑅 = 1 − 2𝑀𝑀/𝑅𝑅: normalizing the time coordinate at 

spatial infinity

Gravitational mass: 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝑟𝑟2𝜌𝜌

Gravitational potential: 𝑑𝑑𝜈𝜈
𝑑𝑑𝑑𝑑

= 2𝑚𝑚+8𝜋𝜋𝑟𝑟3𝑝𝑝
𝑟𝑟(𝑟𝑟−2𝑚𝑚)

Hydrostatic equilibrium: 𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

= − (𝜌𝜌+𝑝𝑝)(𝑚𝑚+4𝜋𝜋𝑟𝑟3𝑝𝑝)
𝑟𝑟2(1−2𝑀𝑀/𝑟𝑟)

(Tolman–Oppenheimer–Volkoff equation)

Relativistic 
corrections

Structure

Boundary 
conditions

Macroscopic observables: 
Mass–radius relationsMicrophysics: EOS

Metric tensor: 𝑑𝑑𝑑𝑑2 = −𝑒𝑒𝜈𝜈𝑑𝑑𝑡𝑡2 + 𝑒𝑒𝜆𝜆𝑑𝑑𝑟𝑟2 + 𝑟𝑟2 𝑑𝑑𝜃𝜃2 + sin2 𝜃𝜃 𝑑𝑑𝜑𝜑2
where 𝑚𝑚 𝑟𝑟 ≡ 𝑟𝑟(1 − 𝑒𝑒−𝜆𝜆)/2 is the „gravitational mass” inside radius 𝑟𝑟

fundamental laws of conservation of energy and momentum 

Energy–momentum tensor (perfect fluid):
𝑇𝑇𝜇𝜇𝜈𝜈 = 𝜌𝜌 + 𝑝𝑝 𝑢𝑢𝜇𝜇𝑢𝑢𝜈𝜈 + 𝑝𝑝𝑔𝑔𝜇𝜇𝜈𝜈

The energy density and the pressure of the fluid are 
related by an equation of state:

𝑝𝑝 = 𝑝𝑝 𝜌𝜌 𝑇𝑇 = 0 Description of the
state of matter 

We are searching for three equations, which come from some
combination of equation of local conservation of energy and
momentum (𝛻𝛻𝜇𝜇𝑇𝑇𝜇𝜇𝜈𝜈 = 0) and the Einstein equations (𝐺𝐺𝜇𝜇𝜈𝜈 = 8𝜋𝜋𝑇𝑇𝜇𝜇𝜈𝜈):



egendre polynomial of order 2;

Exact solution of Einstein’s equations describing spacetime in the vicinity of a perfect fluid, 
stationary and axially symmetric and slowly rotating star:

Hartle (1967), Hartle–Thorne (1968), Chandrasekhar–Miller (1974), Miller (1977):
• Slow-rotation approximation: Ω2 ≪ 𝐺𝐺𝐺𝐺/𝑅𝑅3 = ΩKepler2

(or mass-to-radius ratio 𝐺𝐺𝐺𝐺/𝑐𝑐2/𝑅𝑅≿0.1 )
• Terms up to 2nd order in Ω are taken into account

𝑑𝑑𝑠𝑠2
= 𝑒𝑒2𝜈𝜈0 1 + 2ℎ0 𝑟𝑟 + 2ℎ2 𝑟𝑟 𝑃𝑃2 cos𝜃𝜃 𝑑𝑑𝑡𝑡2

+ 𝑒𝑒2𝜆𝜆0 1 +
𝑒𝑒2𝜆𝜆0
𝑟𝑟

2𝑚𝑚0 𝑟𝑟 + 2𝑚𝑚2 𝑟𝑟 𝑃𝑃2 cos𝜃𝜃 𝑑𝑑𝑟𝑟2

+ 𝑟𝑟2[1 + 2𝑘𝑘2 𝑟𝑟 𝑃𝑃2(cos𝜃𝜃)] 𝑑𝑑𝜃𝜃2 + 𝑑𝑑𝑑𝑑 − 𝜔𝜔 𝑟𝑟 𝑑𝑑𝑑𝑑 2 sin2 𝜃𝜃

• 𝜔𝜔 𝑟𝑟 – 1st order in Ω
• ℎ0 𝑟𝑟 , ℎ2 𝑟𝑟 , 𝑚𝑚0 𝑟𝑟 , 𝑚𝑚2(𝑟𝑟), 𝑘𝑘2 𝑟𝑟 – 2nd order in Ω, functions of 𝑟𝑟

Hartle–Thorne slow-rotation approach

Within the slow rotation approximation only quantities up to 2nd 
order in Ω are taken into account:
 𝐽𝐽 – specific angular momentum
 𝑀𝑀 – total gravitational mass
 𝒬𝒬 – dimensionless quadrupole moment

Parameters that fully describing the star within HT approx.

2nd-order Legendre polynomial:
𝑃𝑃2 cos𝜃𝜃 = (3 cos2 𝜃𝜃 − 1)/2



1. Computation of angular momentum 
From (𝑡𝑡𝜑𝜑) component of Einstein 
equation 
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• Equation is solved with proper 
boundary condition

• We want to calculate models for a 
given Ω – rescaling
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2. Computation of mass
Calculation of the spherical perturbation 𝑙𝑙 = 0 quantities:

𝑚𝑚0 𝑟𝑟 :
𝑑𝑑𝑚𝑚0
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𝑟𝑟 − 2𝑚𝑚
• Total gravitational mass of the rotating star:
𝑀𝑀 𝑅𝑅 = 𝑀𝑀0 𝑅𝑅 + 𝑚𝑚0 𝑅𝑅 + 𝐽𝐽/𝑅𝑅3

3. Computation of quadrupole moment: Calculation of the deviation from spherical symmetry
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where 𝐾𝐾 comes from matching of internal and external solutions



Stationary and axisymmetric approach

We suppose that there exists two Killing vector fields:
• 𝝃𝝃 (timelike) to account for stationarity;
• 𝝌𝝌 (spacelike) with closed orbits for axisymmetry

Symmetries

Under such conditions, it is possible to choose adapted coordinates, such that the metric depends
only on two coordinates (𝑟𝑟,𝜃𝜃) and takes the following form:

𝑑𝑑𝑑𝑑2 = −𝑁𝑁2𝑑𝑑𝑡𝑡2 + 𝐴𝐴2 𝑑𝑑𝑟𝑟2 + 𝑟𝑟2𝑑𝑑𝜃𝜃2 + 𝐵𝐵2𝑟𝑟2 sin2 𝜃𝜃 𝑑𝑑𝑑𝑑 − 𝜔𝜔𝜔𝜔𝜔𝜔 2

The coordinates (𝑡𝑡,𝑟𝑟,𝜃𝜃,𝜑𝜑) with an only (𝑟𝑟,𝜃𝜃)-
dependent line element are called quasi-
isotropic coordinates.

Quasi-isotropic coordinates

𝐴𝐴 = 𝐴𝐴 𝑟𝑟, 𝜃𝜃 is defined by 𝑔𝑔𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑏𝑏= 𝐴𝐴2(𝑑𝑑𝑟𝑟2 +
𝑟𝑟2𝑑𝑑𝜃𝜃2)
All metrics are conformally related in 2 dimensions. 
They differ from each other only by a scalar factor 𝐴𝐴2.

𝐵𝐵 = 𝐵𝐵 𝑟𝑟,𝜃𝜃 is defined by 𝐵𝐵2 = 𝑔𝑔𝜑𝜑𝜑𝜑
𝑟𝑟2sin2𝜃𝜃

𝜔𝜔 = 𝜔𝜔 𝑟𝑟, 𝜃𝜃 is defined as the normalized
scalar product of the two Killing vectors:

𝜔𝜔 ≡ −
𝝃𝝃 � 𝝌𝝌
𝝌𝝌 � 𝝌𝝌

⟹
𝑔𝑔𝑡𝑡𝑡𝑡 = 𝝃𝝃 � 𝝌𝝌
𝑔𝑔𝜑𝜑𝜑𝜑 = 𝝌𝝌 � 𝝌𝝌

⟹ 𝑔𝑔𝑡𝑡𝑡𝑡 = −𝜔𝜔𝑔𝑔𝜑𝜑𝜑𝜑

The minus sign ensures that for a rotating star, 𝜔𝜔≥0



In this gauge, the Einstein’s field equations for rigidly rotating stars at the frequency Ω turn into a
system of four coupled non-linear elliptic partial differential equations:

NON-LIN. ELLIPTIC PDES DIFFERENTIAL OPERATORS

with the following notations: 𝜈𝜈 ≔ ln𝑁𝑁, 𝛼𝛼 ≔ ln𝐴𝐴, 𝛽𝛽 ≔ ln𝐵𝐵
• fluid 3-velocity in the 𝜑𝜑-direction: 𝑈𝑈 = 𝐵𝐵𝐵𝐵 sin𝜃𝜃(Ω − 𝜔𝜔) /𝑁𝑁
• total energy density: 𝐸𝐸 = 𝛤𝛤 𝜀𝜀 + 𝑝𝑝 − 𝑝𝑝

Both measured by a locally 
non-rotating observer

𝛤𝛤 = 1 − 𝑈𝑈2 – Lorentz factor

Laplacian in a 3-
dimensional flat space

Laplacian in a 2-
dimensional flat space

Field equations in QI coordinates



A perfect fluid at zero temperature is a good approximation for a neutron star (except immediately after its birth)

Using log-enthalpy

𝑇𝑇𝜇𝜇𝜇𝜇 = 𝜀𝜀 + 𝑝𝑝 𝑢𝑢𝜇𝜇𝑢𝑢𝜈𝜈 + 𝑝𝑝𝑔𝑔𝜇𝜇𝜇𝜇

where 𝑢𝑢𝜇𝜇 is the fluid 4-velocity, 𝑝𝑝 its
pressure and 𝜀𝜀 its total energy density.

Stress–energy tensor (perfect fluid):
𝜀𝜀 = 𝜀𝜀 𝑛𝑛b
𝑝𝑝 = 𝑝𝑝(𝑛𝑛b)

EOS (𝑇𝑇=0):
Energy–momentum conservation: 𝛻𝛻𝜇𝜇𝑇𝑇𝛼𝛼𝛼𝛼 = 0
Baryon-number conservation:  𝛻𝛻𝜇𝜇(𝑛𝑛b𝑢𝑢𝜇𝜇) = 0

Conservation laws

• The only non-trivial hydrostationary equation is the relativistic Euler’s equation of motion (which 
can be obtained from the spatial sector of the local energy–momentum conservation equation):

𝜀𝜀 + 𝑝𝑝 𝑢𝑢𝜇𝜇𝛻𝛻𝜇𝜇𝑢𝑢𝛼𝛼 + 𝛿𝛿𝛼𝛼
𝜇𝜇 + 𝑢𝑢𝜇𝜇𝑢𝑢𝛼𝛼 𝛻𝛻𝜇𝜇𝑝𝑝 = 0

• In the stationary, axisymmetric and circular case, Euler’s equation turns into a simple first integral:
𝐻𝐻 + 𝜈𝜈 − ln𝛤𝛤 = const. (along a fluid line)

with the log-enthalpy

𝐻𝐻 = ln
𝜀𝜀 + 𝑝𝑝
𝑛𝑛b𝑐𝑐2

As before, notations for the metric function and 
the Lorentz factor: 𝛤𝛤 = 1 − 𝑈𝑈2, 𝜈𝜈 = ln𝑁𝑁



LORENE (Langage Objet pour la RElativité NumériquE) is a set of C++ classes to solve various
problems arising in numerical relativity, and more generally in computational astrophysics.

1. The first region, the so-called nucleus, is a spheroidal domain,
for which the surface is adapted to the stellar surface.

2. The second region is a shell region surrounding the nucleus.
The inner boundary of this shell is the same as the outer
boundary of the nucleus, while the outer boundary of the shell
is a sphere with twice the radius of the nucleus at the equator.

3. The third region is a compactified external domain that
extends from the outer boundary of the shell to spatial infinity.
The compactified external domain allows us to impose exact
boundary conditions at spatial infinity.

The computational domain of LORENE/rotstar is composed of three regions

 The elliptic equations are solved in each computational domain, and matching conditions are imposed so
that values of the metric functions and their derivatives agree on both sides of each domain.

 In LORENE, functions of 𝑟𝑟 and 𝜃𝜃 are expanded in Chebyshev polynomials and trigonometric functions,
respectively, and the latter are re-expanded in Legendre polynomials when it is advantageous.

Solving the elliptic equations

1st region

2nd region
3rd region



 At low energy densities both overestimate the mass
compared to the one determined by LORENE.

 At higher energy densities the difference slightly
decreases, and note that the slow-rotating approach
starts to underestimate LORENE, which remains a
characteristic feature of slow-rotating approach.

Static configurations computed
by three different methods



Departure from the slow-rotation approximation

 The mass-shedding limit imposes a lower limit on the εc at each frequency

 On low εc increasing departure from the slow-rotation approximation, as
the frequency reaches the Keplerian limit

 At 300 Hz, the overestimation of the static case at low-energy density is
still visible.

 As approaching fK, the difference in the computed Mmax grows at an 
increasing rate

 At the mass-shedding limit, the discrepancy between the two methods
is 6.67%, and maximum masses are 2.34M⊙ and 2.49M⊙, respectively.

B. Kacskovics, D. Barta and M. Vasúth. Astron. Nachr., 334:220121 (2023)



Limits on the stability of rotating relativistic stars

∂M(ρc, J)
∂ρc 𝐽𝐽

= 0 : Turning-point method to

locate the points where secular instability sets in
for uniformly rotating relativistic stars.

Secular axisymmetric instability:
For the Hartle–Thorne external solution, the Keplerian (or
mass-shedding) angular velocity can be written as:

ΩK =
𝐺𝐺𝐺𝐺
Req3

1 − 𝑗𝑗F1 Req + 𝑗𝑗2F2 Req + 𝑞𝑞F3(Req)

where 𝑗𝑗 = 𝐽𝐽/𝑀𝑀2 and 𝑞𝑞 = 𝑄𝑄/𝑀𝑀3 are the dimensionless
angular momentum and quadrupole moment.

Mass-shedding instability:

The solid lines represent sequences
computed by LORENE, and dashed lines
represent those of our slow-rotating HT
model on different frequencies.



Static configurations

Keplerian sequences

Boundary limits on observables: Gravitational mass & equatorial radius

D. Barta. Class. 
Quantum Grav. 
38(18):185002–
185036, 2021.

 For rotating stars, the turning point is a sufficient but not a necessary condition for instability: 
The onset of instability is at a configuration with slightly lower εc (for fixed angular momentum) 
than that of the star with Mmax. [Friedman & Stergioulas, 2013]

Critical points



Current and future research

Add new representative EOS tables into CompOSE
→ LORENE/rotstar loads tabulated EOS models in
CompOSE format.
• CompOSE: online repository of EOS for use in

nuclear physics and astrophysics

Inclusion of new EOS tables into CompOSE

The background quantities for fast-rotating stationary
configurations will be computed by
LORENE/rotstar. We assume small deviations for the
fluid variables and study their linearized perturbations.

Study of GW-radiating oscillation modes

Exploration of the region of stable
configurations for compact stars with
various nucleonic and hybrid EOS in
their cores.

Neutron star oscillations as sources of 
gravitational waves: f- and r-mode 
oscillations



Thank you very much for your attention!



A perfect fluid at zero temperature is a good approximation for a neutron star (except immediately after its birth)

𝑇𝑇𝜇𝜇𝜇𝜇 = 𝜀𝜀 + 𝑝𝑝 𝑢𝑢𝜇𝜇𝑢𝑢𝜈𝜈 + 𝑝𝑝𝑔𝑔𝜇𝜇𝜇𝜇

where 𝑢𝑢𝜇𝜇 is the fluid 4-velocity, 𝑝𝑝 its
pressure and 𝜀𝜀 its total energy density.

Stress–energy tensor (perfect fluid):
𝜀𝜀 = 𝜀𝜀 𝑛𝑛b
𝑝𝑝 = 𝑝𝑝(𝑛𝑛b)

EOS (𝑇𝑇=0):
Energy–momentum conservation: 𝛻𝛻𝜇𝜇𝑇𝑇𝛼𝛼𝛼𝛼 = 0
Baryon-number conservation:  𝛻𝛻𝜇𝜇(𝑛𝑛b𝑢𝑢𝜇𝜇) = 0

Conservation laws

P. Kovács, J. Takátsy, J. Schaffner-Bielich, and Gy. Wolf. Phys. Rev. D 105 (2022), 103014, arXiv:2111.06127

Table. Nuclear properties of symmetric nuclear matter described by
the SFHo and DD2 RMF models as well as some properties of
neutron stars described by these models.

Axial-vector meson-extended quark–meson model describes the quark matter in the NS core.
New equation of state (SFHo)
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