What is the physical and philosophical
consequence of Hilbert's famous theorem,
according to which Bolyai-Lobachevskii
plane geometry cannot be implemented
globally as internal geometry of a surface
in 3-dimensional space?
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In my presentation, | would like to draw the audience's
attention to two important papers in the history of science.The
first is on Hilbert's very important theorem, which he published
In Grundlagen der Geometrie, the second is on one of
Coxeter's interesting but less cited papers. e

David Hilbert Harold Scott MacDonald "Donald" Coxeter
Born: 23 January 1862,Kénigsberg or Wehlau, Born: 9 February 1907 London, England,
Kingdom of Prussia Died: 31 March 2003 (aged 96), Toronto,
Died: 14 February 1943 (aged 81), Gottingen, Ontario, Canada

Germany



Hilbert published the perfect system of Euclidean
geometry in 1901. As Hilbert mentioned, many people did
not even understand why this monumental work was
needed at the beginning of the 20th century. On the other
hand, Hilbert, who Is also the creator of the formalist
mathematical philosophical trend, felt the need to finally
clarify the system of Euclidean geometry after 2000 years.
This was required by the formalist worldview itself, In
order to place the mathematical structure of the world on
an absolutely logically pure basis. Of course, In this
monumental work, Hilbert also laid the logical
foundations of Bolyal-Lobacevskii's geometry.



And he gifted the mathematical community with one more great
theorem, namely his theorem that there is no complete surface
with negative constant curvature in 3-dimensional space! Today,
In the language of modern differential geometry, we formulate
this as saying that the Bolyai-Lobachevskiy plane cannot be
embedded in 3-dimensional space.What does this mean? In my
opinion, this means that Bolyai-Lobacevskil geometry is not
realized in 3-dimensional space! Of course, many people do not
like this strong statement: because what does mathematical
existence mean? However, we are working with these concepts
step by step. If someone says that he has found a right-angled 3-
angle in which the Pythagorean theorem is not true, we
Immediately think that something is wrong with the person
making the statement. Well, it's similar to when someone says that
some gadget works according to Bolyai-Lobacevsky geometry in
3-dimensional space. Because such a gadget does not exist!



This was built, this table, the chairs on which the honored
participants sit, were designed based on Euclidean geometry. But
they cannot make a chair based on Bolyai-Lobachevskiy
geometry. This is what Hilbert's famous theorem means.

Of course, in guantum mechanical dimensions, it might be
possible there... Because in the infinite, countable dimensional,
separable Euclidean space, Bolyai-Lobachevskii geometry can
already be realized. (Because Ludwig Bieberbach proved this).

Ludwig Georg Elias Moses Bieberbach
Born: 4 December 1886, Goddelau, Grand Duchy of Hesse, German Empire
Died: 1 September 1982 (aged 95), Oberaudorf, Upper Bavaria, West Germany



Mathematics is an exact science, its statements are true a priori, there are no
exceptions. So, no matter how depressing it is, Bolyai-Lobachevskii geometry is
not realized in its entirety in the 3-dimensional Euclidean space. Let me give you
a not-so-good analogy: just as the Klein bottle cannot be realized in 3-

dimensional space, Bolyai-Lobachevskii's planar geometry cannot be realized
either.
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It was not by chance that Hilbert included this theorem in his Grundlagen
der Geometrie. He knew, felt and understood the importance and
epistemological background of this proposition.

Unfortunately, we forgot about this later! (Note that on the pseudosphere
and on all surfaces with negative constant curvature, the Bolyai-Lobachevskii
plane geometry is realized in a small (very small range).




Alexis Claude Clairaut (French pronunciation: [aleksi klod kleso]; 13 May 1713 — 17 May
1765) was a French mathematician, astronomer, and geophysicist. He was a prominent
Newtonian whose work helped to establish the validity of the principles and results that
Sir Isaac Newton had outlined in the Principia of 1687. Clairaut was one of the key figures
in the expedition to Lapland that helped to confirm Newton's theory for the figure of the
Earth. In that context, Clairaut worked out a mathematical result now known as "Clairaut's
theorem". He also tackled the gravitational three-body problem, being the first to obtain a
satisfactory result for the apsidal precession of the Moon's orbit. In mathematics he is also
credited with Clairaut's equation and Clairaut's relation.

According to Clairaut's theorem:
the radius on the surface of
rotation multiplied by the
elevation angle of the geodetic will
be CONSTANT! With this, we
follow the path of the geodetics.
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\fi 525g)
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https://en.wikipedia.org/wiki/Help:IPA/French
https://en.wikipedia.org/wiki/Astronomer
https://en.wikipedia.org/wiki/Geophysicist
https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Principia_Mathematica_Philosophiae_Naturalis
https://en.wikipedia.org/wiki/S%C3%A1pmi
https://en.wikipedia.org/wiki/Figure_of_the_Earth
https://en.wikipedia.org/wiki/Symmetry_of_second_derivatives
https://en.wikipedia.org/wiki/Three-body_problem
https://en.wikipedia.org/wiki/Apsidal_precession
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Clairaut's_equation
https://en.wikipedia.org/wiki/Clairaut's_relation
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Isn't the name of this conference
Bolyai-Lobachevskii-Gauss?

Unfortunately, we didn't hear or talk
about how Gauss got here. Or where
are the German colleagues who
would defend Gauss or explain
Gauss's  position regarding the
discovery of non-Euclidean geometry.



GAUSS-BOLYAL

Gottingen 1832, 111, 6,

Durch Deine beiden, mir durch Herrn Zeyk zugestellten Briefe hast Du,
mein alter unvergesslicher Freund, mich sehr erfreuet. Ich zdgerte nach Empfang
des Ersten, Dir sogleich zu antworten, weil ich erst die Ankunft der verspro-
chenen kleinen Schrift erwarten wollte, ausserdem auch durch mancherlei Lebens-
verhiltnisse in eine hochst triitbe Stimmung versetzt war, welche im Laufe der
Zeit gemindert werden kann, aber insofern die Ursachen fortdauern, schwerlich
vor meinem Ende ganz verschwinden wird.

Seit jener Zeit ist denn in meinen Lebensverhiiltnissen eine Hauptepoche
eingetreten. Ich habe meine zweite Gattin, mit der ich 21 Jahre verbunden war,
durch den Tod verloren. Den grdssten Theil jener ganzen Zeit hatte sie gekrin-
kelt; seit den letzten g Jahren aber hat sie, mit abwechselnden Erleichterungen,
unbeschreiblich gelitten. Wie schwer ein solches Leiden driickt, und wie manche
Nebenleiden im Gefolge davon erscheinen, brauche ich Dir nicht zu sagen, da Du
Ahnliches erlebt hast. Wenn ich ihr nun Gliick wiinschen darf, von den Lei-
den endlich befreit zu sein: so fiihle ich mich selbst dagegen nun so allein-
stehend !

110 XXXV. GAUSS-BOLYAI, GOTTINGEN, 1832. IIL 6.

geschlagen: als ein Specimen fiige ich einen rein geometrischen Beweis (in den
Hauptziigen) von dem Lehrsatze bei, dass die Differenz der Summe der Winkel
eines Dreiecks von 180° dem Flicheninhalte des Dreiecks
b ¢ proportional ist.

I. Der Complexus dreier Geraden ab, cd, ef, die so
beschaffen sind dass ab///de, cd//ife, ef///ba, bildet eine Figur,
“’/_d._..___\ a die ich T nenne. Es lisst sich beweisen, dass solche immer

in einem Planum liege.

II. Derjenige Theil des Planums, welcher zwi-
schen (¥) den drei Geraden ab, ed, ef, liegt, hat eine bestimmte endliche Area:
sie heisse t

III. Indem zwei Geraden ab, ac gich in a unter dem Winkel ¢ schneiden,
moge eine dritte Gerade de so beschaffen sein, dass ab///ed, ac///de: es liegt dann

auch de mit ab u. ac in Einem Planum
a und die Area der Fliiche zwischen die-
(Y sen Geraden ist endlich, und nur von
dem Winkel ¢ abhiingig; offenbar bil-
S den in 2, de und bac nur Eine gerade
b /7 \ c Linie, wenn ¢ =— 180° ist, und folglich ver-
e schwindet der Werth jener Area mit
180°— ¢: man setze also allgemein die
Area = [(180°— ¢), wo [ ein Functionalzeichen hezeichnet.
IV. Lehrsalz. Es ist allgemein fe + f (180°— ¢) = L.

Let's look at the facts: Gauss's letter written o
in March 1832, the picture of which | am

showing, and which he wrote to Farkas A S S —
Bolyai, really testifies to such a great o s v s
expertise and knowledge of the subject that

we must say that only someone who had

already thoroughly immersed himself could

give such a professional answer in the

subject!
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(*) Bei einer vollstiindigen Durchfithrung miissen solche Worte, wie «zwischen» auch



XXXV. GAUSS-BOLYAT. GOTTINGEN, 1832, IIL 6.

II1

Den Beweis gibt die Figur, wo bac = ¢, bad = 180°— ¢, ac//ife, ef!//ab,
ab/ithg, ad//{gh, und wo der Fldcheninhalt roth eingeschrieben ist.
V. Lehrsaiz. BEs ist allgemein fo 4+ fif + f(180°—¢ —¢) = {. Der Beweis er-

hellet leicht aus der Figur, wo die drei
Fliichentheile (1), (2), (3) die Werthe haben

(1) = [ (180°— ¢ — ¢)

(2) = fo
B =f
und ihre Summe = { wird.

VI. Corollarium. Es ist also fe + f¢
=t [ (180° — ¢ — ) =g+

woraus leicht folgt dass :; = Constans,
t .
und zwar = T80° ist.

VII. Lehrsaiz. Der Flicheninhalt

eines Dreiecks, dessen Winkel A, B, C

Q 1
sind, ist — Igo_l(go%_ﬁjlg >< 1.

Den Beweis gibt die Figur. Es ist nimlich

der Inhalt o = fA = A

180°

-t

A

+B+C

c bz

180°
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And it is not only us
Hungarians who say this,
but one of the excellent
constructive geometers of GAUSS AS A GEOMETER

the 20th century, the BY e S M. CONETER,
Canadian COXETER’ also UNIVERSITY OF TORONTO. TORONTO M5S 1A1

Says thls COXETER a|SO ‘his paper was presented on 4 June 1977 at the Royal Society of
. | Janada's Gauss Symposium at the Ontario Science Centre in Toromto,
believes that Hungarians

HISTORTA MATHEMATICA 4 (1977)., 379-3%6

should be proud of this SUMMARIES

Ietter and not interpret |t In an attempt to reveal the breadth of Gauss's
. . . interest in geometry, this account is divided into

Wlth ad negatlve Slgn, six chapters. The first mentions the fundamental

theorem of algebra, which can be proved only with
the aid of geometric ideas, and in return, an
application of algebra to geometry: the connection
between the Fermat primes and the construction of
reqular polygons. Chapter 2 shows his essentially
'modern’ approach to quaternions. Chapter 3 is a
sample of his work in trigonometry. Chapter 4
deals with his approach to the geometry of numbers.
Chapter 5 sketches his differential geometry of
surfaces: his use of two parameters, the elements
of distance and area, his theorema egregium, and
the total curvature of a geodesic polygon. Finally,
Chapter 6 shows that he continually returned to

the subject of non-Euclidean geometry, which
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Gauss defines parallel lines by letting a ray rutate cluck-
wise about 4, beginning with the position a8 (Figure 51, so
that the angle at & gradually increases. Among such rays, there
is no last one that meets the ray B¥, but there is a first one
that fails to meet BV, Thiz ray AM is said to be parallal to
&%, In other words, AM is the Dedekind cut between the rays
that meet BN and these that do not. He extends the netiom from
Tays to lines by proving that a can be replaced by any other
point on the line AW, and B by any other point on the line BN.
He proves that this relation of parallelism is symmetric and
transitive, and that parallel lines do not meet when extended
hackwards. The details are straightforward but tricky, making
use of Pasch's ideas on order, long before Pasch was born
[Coxeter 1960, 176-100, 265-268].

Two months later, Gauss wrote to Schumacher again, goinling
out an error in the latter's 'proof’ that the angle sum of a
triangle is v. In pon-Euclidean geometry, he said, there are
no similar figures that are not congruent. It is possible for
all three sngles of a triamgle to be 2Zero, in which case one
might draw it as in Flgure &.

FIGURE &

[The middle one of these three versions is almost the way
Foincaré would have drawn it in his inversive model, fifty years
laterl)

Referring to Figure 7, Gauss remarked that, Bs C recedes
from A, the difference

¥ DBC - 3 DAC

does mot tend to zero (as it would in Euclidean geometry). In
this remark he came close to Lobachevsky's proposed test for
the nature of astropomical space, using parallax [Bonola 1306,
94].

Apother significant remark: in mon-Buclidean geometry 8
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Indeed, Gauss writes that he is very happy that his good
friend's son is the one who preceded him in this discovery!
Furthermore, Gauss gave the names hypercycle and
paracycle. And we can say that Gauss's comment is
decisive, that although the area of the triangle on the
hyperbolic plane can be derived very easily, its spatial
analogy, the cubic content of the tetrahedron, is already
hopelessly difficult. And indeed, the derivation of the cubic
content of the tetrahedron was only given long after the
death of Lobacsevskij and Janos Bolyai!



The volume of given tetrahedra in hyperbolic and spherical
space is determined by their solid angles. The relationship
is given by the Murakami—Yano formula. Since in Euclidean
geometry, the angles of the tetrahedron are defined only
to the extent of similarity, the formula cannot be applied in
Euclidean space.

Murakami, Jun & Yano, Masakazu (2005), "On the
volume of a hyperbolic and spherical tetrahedron”,

Communications in Analysis and Geometry 13 (2):
379-400, MR2154824, ISSN 1019-8385,



Finally, some interesting pictures that can only be illustrated with computer
graphics: The hyperbolic plane can be embedded in the 6-dimensional Euclidean
space, as Danilo Blanusa, a Croatian mathematician, showed in 1955.

The Russian mathematician Efimov generalized Hibert's theorem by proving that
not only a complete surface with negative constant curvature does not exist in 3-
dimensional space, but also a complete surface in 3-dimensional Euclidean space

whose curvature Sup K(u,v) < 0 does not exist. So the curvature supremum is strictly
less than zero.
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Danilo Blanusa's complete hyperbolic plane in 6-dimensional Euclidean space!
Attention, this is a computer option to project from 6 dimensions into 3 dimensions.
This is just an illustration of what computer graphics can do

The entire hyperbolic plane does not fit in 3-dimensional Euclidean
space!



An immersion of Balnusa's former embedding into 5-dimensional
Euclidean space (author's implementation)
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Thank you very much for your
respectful attention!



