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Einstein's theory in a nuthsell

Definition 1.1. Relativistic spacetime

A relativistic spacetime is a pair (M, g) consisting of
(i) a smooth 4-dimensional manifold M,

(if) an at least piecewise C? (but usually smooth) Lorentzian metric g of
signature (—, +, +, +).

Remark: Note that the second condition puts a topological restriction on M,
namely x(M) = 0.

Theorem 1.2. Existence and uniqueness of the Levi-Civita connection

o
On a relativistic spacetime (M, g) there exists a unique connection V, which satisfies

o o o
Vg=0, and VxY—VyX—[X,Y] =0 forall X,YeTI(TM).

Einstein's gravitational dynamics are given by

o

Ruo — %ng—i- Agvo = kKTys, where k= %; ~2.07x 10" *#¥N 1,
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Further topological restrictions

One usually assumes a more rigid structure on M, namely
@® M is orientable, or equivalently allows for a globally defined volume form,
® M has no closed timelike curves,
©® M is connected,
@ M is globally hyperbolic.
Remark: The last condition is equivalent to any of the following conditions
- the existence of a Cauchy surface,
- the existence of a SL(2,C) spin-structure,
- M= R x %, where X is a 3-dimensional oriented manifold.
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@ Geometrical preliminaries
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Fundamental objects of non-Riemannian geometry

A general affine connection is fully characterized by its torsion and
non-metricity

Quup = ~Viuguvp, T, =T",, —T",.
With the help of these, the affine connection can be decomposed as

1 N 1 A
Fuup - ’}’Hup + 58# (QupA + Qp)\u - Q)\Vp) - igﬂ (Tpu)\ - T)\pu + Tl/p)\)-
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Figure 1: The effects of non-metricity (left panel) and torsion (right panel) are
depicted. Non-metricity changes the lengths of vectors, while torsion measures to
what extent the parallelogram law fails infinitesimally.
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Landscape of non-Riemannian geometries

Metric-Affine Geometry
R#A0,T#0,Q#0

Torsionless Geometry
R#0,Q+#0,T=0

Riemannian Geometry
R#0, T=0, Q=0

Minkowski Geometry
R=0,T=0,Q=0
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Some special cases

Vectorial geometries

® Weyl geometry: Qu., = wugup, T = 0 - special case of torsionless
geometry.

® Semi-symmetric metric geometry: Q =0, T",, = 7,0 — 7,6} - special
case of Riemann-Cartan geometry.

© Schrédinger geometry: Q%,, = g m* — 1 (60m +65m,), T=0.

4= (ko) ~= (to)

v(t1) v(t1)

Figure 2: lllustration of the effect of non-metricity on autoparallel transport. On the
left panel, one can see a Schrédinger-type non-metricity, which preserves lengths of
autoparallely transported vectors, while on the right panel the effect of a general
non-metricity is depicted.
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Motivation for semi-symmetric metric geometry

Main four reasons
@ Ehlers-Pirani-Schild axiomatization of GR. arXiv:2112.14063
@® Torsion-non-metricity duality in {R) gravity. arXiv:1810.06602
® Einstein-Cartan theory. arXiv:0711.1535
O Non-relativistic limit. arXiv:2308.07100

Q#0,R=0,T=0 T#0,R=0,Q=0

§ =35 [y d'zv/lglQ 8= =g [y d*z/lg| T
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Semi-symmetric metric geometry

Definition 2.1. Semi-symmetric metric connection

On a relativistic spacetime (M, g), a connection V is called semi-symmetric metric
if it is metric compatible and there exists © € I'( T* M), such that

VxY = VyX—[X, Y] = (V)X — m(X)Y,¥X, Y € T(TM).

In this case, torsion can be described globally and locally as

T(w, X, Y) =7(Y)w(X) — 7(X)w(Y) and T*,, = 7,0, — w85, respectively.

Theorem 2.2. Existence and uniqueness of semi-symmetric metric connection

Let (M, g, V) be a relativistic spacetime with a semi-symmetric metric connection

]
and denote by V the Levi-Civita connection. Then

o
VXY = VxY+m(¥)X — g(X, VP,
where P is the dual vector field associated to =, i.e. g(X, P) = m(X).

Locally, we have I'*,, = +",, — 7l g, + T, 05
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Yano's fundamental theorem

Theorem 2.3. Yano

Let (M, g, V) be a relativistic spacetime with a semi-symmetric connection that is

o
metric-compatible and denote with V the Levi-Civita connection. Moreover, denote
by Riem the curvature tensor of the semi-symmetric metric connection V and by

o] o
Riem the curvature tensor of the Levi-Civita connection V. Then, the following
equation

Riem(w, Z, X, Y) = Riem(w, Z, X, Y) — w(S(Y, 2)X)
T+ w(S(X 2)Y) — w(g Y, 2)AX)
+ w(g(X, 2)A(Y)),

is satisfied for all one-forms w, and vector fields X, Y, Z, where
o 1
50 ¥) = (¥ ) (V) = 7(Xm(¥) + n(PIa(X. )

and Ais a (1,1)—tensor field defined by
g(AX), Y) = S(X, V).
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Curvature tensors of semi-symmetric ric geometry

In a local coordinate system, the Riemann tensor of a semi-symmetric metric
connection takes the form

o
Riem", ,, =Riem",, ,, — Sz,04 + Spu 6k — go'usp)\g)\u + 8o Sorg™,
where the tensor S, is defined as
o 1 N
So’u =VoTy — TeTy + ggo'uﬂ')\ﬂ' .
We thus immediately obtain that the Ricci tensor and scalar of a semi-symmetric
metric connection are given by
o o [e]
(/) Ricci tensor: Ruy = Ruy — 2V, + 2mymy, — 2gm,7r,\7r>‘ — gm,V)Jrk.
[} ]
(i) Ricci scalar: R= R— 6V om® — 677,
Upon symmetrization, there is a formal analogy with the Weyl geometry, where we
have

o o o o
(/) Ricci tensor: Ry = Ry + 8uuvVaw® +3Vow, — Vwy — 28, wow? + 2w, w,, .

o o
(ii) Ricci scalar: R= R+ 6Vaw® — 6w w™.
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© Proposed theory and its cosmological applications
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Semi-symmetric metric gravity

First of all, we postulate that

1
R(,,U) — §guaR = 871'TUJ.

Post-Riemannian expansion leads to

o ]_ o o o o N
Rm77§gm7R* Vo, = VuTo + 2Ty + 285, VA" + gvffTrpWP =8nTuo.
Observations

@ In the limit 7 — 0, we recover GR as expected.

® The torsion vector is fully determined by a vectorial part, and it has
contributions to the usual EFE, which could be thought of as a geometric
type dark energy.

® There are no dynamics for torsion! This has to be imposed separately.
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Cosmological applications

Assumptions and setup

Assume homogeneous, isotropic, spatially flat FLRW metric
ds® = —dt® + a°(t)8;dx dx.
The matter content is given by a perfect fluid with energy-momentum tensor
Tvo = puyts + p(Uy s + 8uo).
The problem is taken into account in a comoving frame
u, =(-1,0,0,0) <= v =(1,0,0,0).
The cosmological principle implies

m = (—w(t),0,0,0) < 7" = (w(t),0,0,0).
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Cosmological applications

Friedmann equations

Theorem 3.1. Friedmann equations in semi-symmetric metric gravity

3H? = 8mp — 3w? + 6Hw,
2H+ 3H* = —8mp + 4Hw — w* + 2.

The previously mentioned interpretation can now be made explicit as

3H? = 8mp — 3w? + 6Hw = 87 (p + pesr) = 8T prot,

2H+ 3H* = —8np + 4Hw — w? + 20 = —87 (p + per) = —8TPtot,
where we have denoted
1

Peff = oy

(6Hw — 3w?), per = —8% (4Hw — w® + 20)

while pior = p + pefr and prot = P + Perr.
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Cosmological applications

Model 1

We impose the conditions
1
8T

1

2\ _
(6Hw — 3w™) = A, &

(4Hw — w* +20) = %K)\.
To get rid of signs and factors, we redefine A = 87\, k = —K to obtain
3w(@2H—w) = A, 4Hw —w® + 20 = gkA,

respectively, where k and A > 0 are constants. Eliminating H yields the
equation

2w+w2+2(1—k)%=0,

which admits an analytical solution

w(t) = wtanh |:
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Cosmological applications

Model 1

The Hubble function is given by

_ VA V (k=1)A(t—tp) 2 | V(k=1)A(t—tp) B
H(t) = 3/o0D tanh {7\/6 } X {coth [7\/6 ] +2(k 1)}

The matter density 8mp = 3H?> — A reads

8rp(t) = 8(kA—1){ coth [ @ (t— to)]

—2(k— l)tanh[ W(t— to)} } .

Pressure can also be obtained analytically

8mp(t) = 24(:\_1){(“ 7)csch? [ % (t— to)]

k—1)A

+4(k — 1)*sech® [ ( G (t—to)

+4k? —4k—3}.
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Cosmological applications

Model 1

The scale factor of this cosmological model is given by

a(t) = ap sinh?**~Y { % (t— to)] x cosh¥® { % (t— to):| .

Large time limits yield

, (3 —2k)? , 4k — 4k — 3
1 =—"A, 1 =—A.
dim p(t) = gy A im () =

Comments

® For k= 2 in the large time limit we have

tlim p(t) = tlim p(t) = 0,indicating that the Universe ends in a vacuum
— 00 — 00

state. For other values of k the cosmological evolution ends in constant
density and pressure thermodynamic phase.

® The deceleration parameter can also be computed analytically. In
particular, it can be shown that lim q(t) = —1: the Universe ends in a de
t— 00

Sitter type phase.
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Cosmological applications

Model 2

We assume a linear equation of state
Peff(z) = 70'(2) reff(z) — A,
and consider CPL parametrization

o(z) =00+ 0a

where oo and o, are constants.

q(z)

Flgure 3. Variations as a function of the redshift z of the dimensionless Hubble function (left panel), and of the deceleration
parameter q(z) (right panel) for Model II, for A = 0.79, r(0) = 0.311, oy = —0.10, and different values of o5: o4 = 0.04
(dotted curve), o5 = 0.06 (short dashed curve), o5 = 0.08 (dashed curve), o, = 0.10 (long dashed curve), and o, = 0.12
(ultra-long dashed curve), respectively. The predictions of the ACDM model are represented by the red curve.
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Cosmological applications
Model 2

Figure 4: Variations as a function of the redshift z of the dimensionless matter density
r(z) (left panel), and of the torsion vector component §2(z) (right panel) for Model II,
for A = 0.67, r(0) = 0.311, o9 = —0.10, and different values of o,:05 = 0.04 (dotted
curve), o0, = 0.06 (short dashed curve), o, = 0.08 (dashed curve), o5 = 0.10 (long
dashed curve), and o, = 0.12 (ultra-long dashed curve), respectively. The predictions
of the ACDM model are represented by the red curve.
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Cosmological applications

Model 2
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Figure 5: Behavior of the function Om(z) for Model Il, for A = 0.79, r(0) = 0.311,
oo = —0.10, and different values of o,: o, = 0.04 (dotted curve), o, = 0.06 (short
dashed curve), o, = 0.08 (dashed curve), o, = 0.10 (long dashed curve), and

o5 = 0.12 (ultra-long dashed curve), respectively. The predictions of the ACDM
model are represented by the red curve.
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Cosmological applications

Model 3

We impose a polytropic equation of state Py = Kr’g.

h(z)
a(z)

Figure 6: Variations of the dimensionless Hubble function h(z)(left panel), and of the
deceleration parameter q(z) (right panel) for Model Ill with K= —2 and initial
conditions 2(0) = 0.35 (dotted curve), 2(0) = 0.37 (short dashed curve), ©(0) = 0.39
(dashed curve) , ©(0) = 0.41 (long dashed curve), ©2(0) = 0.43 (ultra-long dashed
curve),respectively. The observational data for the Hubble function are represented
with their error bars, while the red curve depicts the predictions of the ACDM model.
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Cosmological applications
Model 3

Figure 7: Variations of the dimensionless matter energy density r(z) (left panel), and of
the torsion vector ©(z) (right panel) for Model Il with K = —2 and initial conditions
Q(0) = 0.35 (dotted curve), 2(0) = 0.37 (short dashed curve), ©2(0) = 0.39 (dashed
curve) , 2(0) = 0.41 (long dashed curve), ©(0) = 0.43 (ultra-long dashed
curve),respectively. The red curve represents the predictions of the ACDM model.

Lehel Csillag UBB Cluj

Sel mmetric metric



Cosmological applications
Model 3

0.10;[

Figure 8: Behavior of the function Omz for Model Il with K = —2 and initial
conditions ©2(0) = 0.35 (dotted curve), ©2(0) = 0.37 (short dashed curve), 2(0) = 0.39
(dashed curve), ©(0) = 0.41 (long dashed curve), ©(0) = 0.43 (ultra-long dashed
curve), respectively. The red curve represents the predictions of the ACDM model.
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@ Thermodynamical interpretation
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Thermodynamical quantities

It can be easily shown that if we impose conservation of matter, the theory
reduces to Einstein relativity. Thus, we interpret the non-conservation to be
related to particle creation. Hence, we introduce the thermodynamical
quantities

@ Particle flux N* = nu", where n is the particle number density.

@ Entropy flux vector S* = su* = nou", where s is the entropy density, and
o is the entropy per particle.

The particle flux satisfies
VN =+ 3Hn= n¥,

where WU is the particle generation rate. From the second law of
thermodynamics we have

V.S =né+ no¥ > 0.
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Thermodynamical interpretation

The total thermodynamic energy balance equation, u,V, T"" = 0, gives the
generalized energy conservation equation in the presence of particle creation

p+3H(p+p+p)=0.
The Gibbs law in presence of matter creation is given by
an(f) — nTdo = dp— 2 Pan.
n n
From the Friedmann equations, upon some manipulations we can read off
H 2w

W

Pe 8w

Some easy algebra gives the particle creation rate

H 2w
oy tH-w

Pec 3Hw

U= —3H =—
p+p 8 (p+ p)
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Thermodynamical interpretation

The entropy production rate is given by

3no Hw

V.S =—-3nocH Pe = 2qH + 2w + 2w

(p+p)  8m(p+p) H '
We assume the equations of state
p=p(nT), p=p(nT).
In this case, the temperature evolution takes the form
T dp n 2N 2 2 Pc
—=(Z£) = =Z- = U —3H)=-3cH|(1 1
! (8p)nn ¢t —cw-sm——scu(1e E)

where ¢ = (9p/dp), is the speed of sound. Hence, in the semi-symmetric
metric gravity theory, the time variation of the temperature of the newly
created particles is given by
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Non-static Einstein manifolds with torsion

Geometric setup

Definition 5.1. Einstein metric

A semi-Riemannian metric g on a smooth manifold M is called an Einstein
metric if there exists a smooth function A : M — R, such that

R,u,l/ = Ag,u,u . (2)

Remark: Note that for a general affine connection V equation (2) does not
make sense, as R, is not symmetric in general. Hence, we will symmetrize in

our following definition accordingly.

Definition 5.2. Generalized Einstein manifold

A relativistic spacetime (M, g) equipped with an affine connection V is called
a generalized Einstein manifold if there exists a smooth function A : M — R

such that

Ry = Aguw-
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Non-static Einstein manifolds with torsion

Results

Proposition 5.3. Characterization of semi-symmetric Einstein manifolds

Let (M, g) be a relativistic spacetime equipped with a semi-symmetric metric
connection. Then the following are equivalent:
(i) (M, g) is a generalized Einstein-manifold.

o o

o o o
(”) Rp,u — V/ﬂTu — Vuﬂ'p, + 271'1/77;4 + %gWVMTA - %gHVﬂ')\ﬂ)\ = igHVR'

Trivially, a relativistic spacetime (M, g) equipped with a semi-symmetric
connection and an Einstein metric is a generalized Einstein manifold iff

o o

1 & a1 A
Vum, = Vym, +2m,m, + igw,er — S8 = 0.

Theorem 5.4. Existence of Einstein manifolds with torsion

There exists a generalized Einstein manifold (M, g), where g is neither an
Einstein metric, nor static.
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Non-static Einstein manifolds with torsion

Proof

Fix M = R* and equip with with the metric
ds’ = —dt® + a(t)*6;dx dx,
where we assume that g = Hy is a non-zero constant. Moreover, we equip

(R*, ds*) with a semi-symmetric connection. The constructed tuple is a
generalized Einstein manifold iff

o o

o 1 o 2 1 N 1 o
Ry —Vum, = Vo7, 4+ 2m,m, + EgWVMT - ig;wﬂxﬂ’ = ZgWR

is satisfied. As the metric possesses high symmetry, we choose
. = (¥(¢),0,0,0) < =" = (—(¢),0,0,0).
Hence, we have to satisfy the following system of differential equations for v (t)
a . | . 3 1o, 6(3 &
33 Vv 2(¢ 331/}) 21/1— 4(a+a2 ’

o oe2 o Lo A 1o, 6,(3 &
aa+23a 2+ ca (—¢v-3Y|+tzay =-a |-+
2 a 2 4 a
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Non-static Einstein manifolds with torsion

Proof continuation

By introducing the Hubble parameter Hy = g we obtain
S Ho— SHE+ S~ S+ Su* + SHop =0,
—%Ho —~ %Hﬁ + %HS + %Holﬁ — %@H %wQ =0.
Our assumption that Hp is constant implies
~Sd+ S0P+ SHop =0,

1 1. 1 5

~Hop — = —1)° = 0.

SHov = S+ v
We can see that the two equations are identical. Hence, we can solve for
example the first one, i.e.

¢ —4* = Hoyp =0,
which is a Bernoulli type differential equation. The solution is given by

HOeHo(fo+t)
V() =~ oo -1
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