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Introduction

I Theories with extra spatial dimensions have become quite
traditional since the times when they were put forward in
the famous works by Kaluza and Klein.

I Theories with more than one time dimensions look much
less intuitive and plausible.

I An impressive series of papers devoted to the so called
two time or 2T physics was produced by I. Bars and his
co-authors beginning from 1996.

I Classical and quantum physics of simple systems such as
non-relativistic particle, massive and massless relativistic
particles, harmonic oscillator, hydrogen-like atoms can be
described in the framework of 2T-physics from a unifying
point of view.



I In the book
I. Bars and J. Terning, Extra Dimensions in Space and
Time, Springer, New York, 2010
different one time physical systems arise as some
“shadows” in the Plato’s cave, which is nothing but the
world with one additional temporal dimension and one
additional spatial dimension.

I The language of the two time physics is quite adapted
also for the description of field theories and of the gravity.

I A new approach to cosmology, inspired by two time
physics has open the way to an interesting treatment of
the problem of passing through the cosmological
singularities.

I Relations between the two time physics and the Carroll
symmetry were not explored before.



Two time physics

I From the point of view of the 2T Physics, usual physical
systems living in a one time world represent projections
from the spacetime with one additional temporal
dimension and one additional spatial dimension.

I These additional dimensions are introduced to construct a
new gauge theory, based on the localization of the
phase-space symmetry described by the symplectic group
Sp(2,R).

I The usual physics with 1T is obtained by means of a
gauge fixing.



The phase-space coordinates for the two time world

XM =
(
X 0′ ,X 1′ ,X µ

)
PM =

(
P0′ ,P1′ ,Pµ

)
.

The indices 0′ and 1′ label an extra time and an extra space
dimensions.
The extra space dimension is necessary to get the right
number of degrees of freedom in the 1T theory.
The index µ = 0, . . . , d − 1 labels usual coordinates in one
time world.

XM
i =

(
XM ,PM

)
,

where i = 1, 2 labels mean the position and momentum
respectively.
The two types of phase variables can be mixed through
Sp(2,R) transformations.



The worldline action for a free particle in a flat two time
spacetime

S =
1

2

∫
dτ εijηMN ∂τX

M
i XN

j ,

where ηMN = Diag(-1,1,-1,1,. . . ,1) is the flat metric, with
signature (2, d), and εij is the antisymmetric tensor with
ε12 = 1. τ is a proper time parameter.



The action is invariant under the global Sp(2,R)
transformations

δωX
M
i = εijω

jkXM
k .

The transformation parameters ωjk are symmetric in j , k .
When ωij → ωij(τ), we need to introduce a connection that
takes into account the new gauge symmetry.
The covariant derivative is

∂τX
M
i → DτX

M
i = ∂τX

M
i − εijAjk(τ)XM

k ,

where Ajk(τ) is symmetric in the indices i , j and belongs to
the adjoint representation of the Lie algebra of Sp(2,R) (that
we call sp(2,R)).
It transforms as a gauge field under the Sp(2,R) group

δωA
ij(τ) = ∂τω

ij + ωikεklA
lj + ωjkεklA

li .



The worldline action invariant under these gauge
transformations is

S =
1

2

∫
dτ εijηMNDτX

M
i XN

j

=

∫
dτ

[
ηMN∂τXMPN − Aij(τ)Qij

]
,

where

Q11 =
1

2
X · X , Q22 =

1

2
P · P ,

Q12 = Q21 =
1

2
X · P

are the sp(2,R) conserved currents o constraints.



The gauge fields Aij are not dynamical and play the role of
Lagrange multipliers.
When a gauge is chosen, the following constraints must be
satisfied

X · X = 0,

X · P = 0,

P · P = 0.

These constraints lead to a non-trivial parameterization of the
1T spacetime only when the starting theory has more than one
timelike dimension.



When the gauge is fixed and the constraints are satisfied, one
gets the right number of 1T variables
XM
i (τ) = XM

i (~x(τ), ~p(τ)).
The action is

S =

∫
dτ
(
~̇x · ~p − H

)
,

where H is the Hamiltonian of the 1T theory.
Different gauge fixings correspond to different choices of the
Hamiltonian (and different choices of the time).
The different systems in the 1T physics are described by a
unique two time model.
These systems are dual to each other under local Sp(2,R)
transformations.



Carroll symmetry

It is well known that the Poincaré group possesses the
contraction, obtained by sending the speed of light to infinity
c →∞. This limit leads to the Galilean group that describes
non-relativistic models.
What does happen when we consider the opposite limit:
c → 0 ?
Let us define the new variables

t =
1

c
x0 ~̂v =

1

c
~β, b =

1

c
a0,

requiring that they remain constant after c is sent to zero.



We get the following transformations{
t ′ = t + ~̂v · (R~x) + b,
~x ′ = R~x + ~a.

These transformations form the Carroll group.

J.-M. Lévy-Leblond, Une nouvelle limite non-relativiste du
groupe de Poincaré, Ann. Inst. Henri Poincaré 3, 1 (1965).

N. D. Sen Gupta, On an Analogue of the Galilei Group, Nuovo
Cimento 44, 512 (1966).



Carroll Lie algebra

[Lij , Lkl ] = δikLjl + δjlLik − δilLjk − δjkLil ,
[Lij ,Pk ] = δikP j − δjkP i ,

[Lij ,Bk ] = δikB j − δjkB i ,

[Lij ,H] = 0,

[P i ,P j ] = 0,

[P i ,B j ] = δijH ,

[P i ,H] = 0,

[B i ,B j ] = 0,

[B i ,H] = 0.



Carroll particle in two time spacetime:

classical theory

The Carrol particle with non-zero energy should be always in
rest.
The Carroll particle with zero energy is always moving.
These two cases are not connected.
The Carroll boosts do not change the value of the energy in
contrast to the Lorentzian and Galilean boosts.



The Lie algebra generators corresponding to the Lorentz
boosts have the form:

t
∂

∂x
+ x

∂

∂t
,

the Galilean boosts can be represented by the generators

t
∂

∂x
,

while the Carroll boosts are

x
∂

∂t
.

The Hamiltonian is always proportional to the operator

∂

∂t
.



The Carroll boost commutes with the Hamiltonian in contrast
to the Lorentz boost and Galilei boost.
One cannot change the value of the energy making a boost in
the Carroll world and should treat the cases of the vanishing
and non-vanishing energy separately.
the conservation of the energy-momentum tensor implies the
disappearance of the flux of energy, if the energy is different
from zero.
The action for the Carroll particle can be represented as

S = −
∫

dτ {ṫE − ẋ · p − λ (E − E0)} ,

where τ is the proper time, t is the physical time, E
represents the classical Hamiltonian and x i and pi are the
space coordinates and the momenta, for i = 1, . . . , d − 1.



E0 6= 0 represents the rest energy of the Carroll particle and λ
plays the role of a Lagrange multiplier.
This action is invariant under the transformations generated by

Lij = x ipj − x jpi , B i = Ex i , pi and E .

Their Poisson brackets satisfy the Carroll algebra.
The equations of motion:

ṫ = λ, Ė = 0,

ẋ i = 0, ṗi = 0.

We would like to obtain this action from the 2T action.



Let us introduce the light cone coordinates

X+ =
1

2

(
X 1′ + X 0′

)
, X− =

1

2

(
X 1′ − X 0′

)
.

We fix the gauge fields as

A11 = A12 = 0, A22 = λ = const.

The two time coordinate and momenta are

X+ = E0t,

X− =
xip

i

E0
+

t

E0

(
E − E0 +

pip
i

2

)
,

X 0 =
√

xix i ,

X i = x i + tpi ,



P+ = E0,

P− =
1

E0

(
E − E0 +

pip
i

2

)
,

P0 = 0,

P i = pi .

In terms of this parametrization (gauge-fixing) the constraints
are

X · X = −2t2(E − E0),

X · P = −2t(E − E0),

P · P = −2(E − E0)

and are satisfied if and only if E = E0.



Substituting the above parametrization into the 2 time action
we obtain one-time action for a Carroll particle.
The system possesses also the symmetry with respect to
SO(2, d) two time Lorentz group.
The generators of the group SO(2, d) are

LMN = XMPN − XNPM ,

and are invariant under Sp(2,R) transformations.



Written in terms of our reparametrization the are

Lij = x ipj − x jpi ,

L0i =
√

x jxj p
i ,

L+i = −E0x
i

L−i = −E − E0

E0
x i − pjp

j

2E0
x i +

pjxj
E0

pi ,

L+− = −pixi ,

L−0 = −
√

xix i
(
E − E0

E0
+

pip
i

2E0

)
,

L+0 = −E0

√
xix i .

The Poisson brackets of these generators do not form an
so(2, d) algebra, unless the constraint E − E0 = 0 is satisfied.



A direct computation shows that

{L−i , L−j} = −2
E − E0

E0
Lij ,

which is a new element of the algebra.
When E − E0 = 0 these Poisson brackets vanish and all the
generators form the so(2, d) algebra, described by

{LMN , LRS}
= ηMRLNS + ηNSLMR

− ηMSLNR − ηNRLMS .



Carrol particle in two time spacetime: quantum

theory

The commutation relation for the position and momentum
operators in the standard d − 1-dimensional space are

[x i , pj ] = i δij .

When we quantize some classical functions of these operators,
the problem of the choice of the ordering arises.
All the operators should be Hermitian, but this requirement is
not sufficient.



For example,

p2r → pi rp
i ,

which is clearly Hermitian. This ordering is not unique
ordering providing the Hermiticity. We can choose another
form of the operator

p2r → rpi r
−1pi r = pi rp

i − d − 3

2r
.

In a more general case

p2r → rλpi r
1−2λpi rλ = pi rp

i +
λ(λ− d + 2)

2r
.

We have to resort to the covariant quantization in the 2T
spacetime.
The generators LMN which become operators should constitute
the Lie algebra with respect to the commutators.



This requirement also does not define the ordering in the
quantum generators in a unique way and one should use also
the properties of the Casimir operators of the unitary
representations of both the groups SO(2, d) and Sp(2,R).
The constraints play the role of the generators of the
symmetry with respect to the Sp(2,R) group.
They should be applied to the acceptable quantum states of
the system according to the prescription of the Dirac
quantization of systems with first-class constraints:

Q|Ψ〉 = 0.

The same should be valid also for the Casimir operators.



If we choose the basis of the Hermitian quantum generators of
the Sp(2,R) group as follows

J0 =
1

4
(P2 + X 2), J1 =

1

4
(P2 − X 2),

J2 =
1

4
(X · P + P · X ),

Then

[J0, J1] = iJ2, [J0, J2] = −iJ1,
[J1, J2] = −iJ0.

The quadratic Casimir operator is defined as

C2(Sp(2,R)) = J2
0 − J2

1 − J2
2 .



Using the commutation rules

[XM ,PN ] = iηMN ,

we can show that

C2(Sp(2,R) =
1

4

(
XMP2XM − (X · P)(P · X ) +

d2

4
− 1

)
.

On the other hand one defines the quadratic Casimir operator
for the SO(2, d) group as

C2(SO(2, d)) =
1

2
LMNL

MN

and the direct calculation shows that

C2(SO(2, d)) = 4C2(Sp(2,R) + 1− d2

4
.



If the generators of the Sp(2,R) select quantum states and
their quadratic Casimir operator should be equal to zero, the
quadratic Casimir operator on the same quantum states
treated as belonging to a representation of the SO(2, d) group
should be equal to 1− d2

4
.

It is this requirement that fixes the ordering in the generators
of the SO(2, d) group.
In paper
I. Bars, Conformal symmetry and duality between free particle,
H - atom and harmonic oscillator, Phys. Rev. D 58, 066006
(1998)
this technique was implemented to reproduce the quantization
scheme and the spectrum for the hydrogen-like atom.



If we manage to fix the ordering in the generators of SO(2, d)
group at τ = 0 , then the same ordering will be conserved.
Our parametrization of the variables XM ,PM at τ = 0
coincides with that used for the description of the hydrogen
atom provided we have already put E = E0.
It is amazing because these physical systems are quite different
and their actions are also different.
We can use this fact to quantize our Carroll particle.
It does not mean that we shall obtain the discrete spectrum.
The combination of the squared momentum and the inverse
radius is not connected with the Hamiltonian.
The momentum is not connected with the velocity (which is
equal to zero).



What is the role of the momentum?
It enters into the commutation relations and, hence, the
Heisenberg inequality of uncertainties

∆x i ·∆pj ≥ 1

4
δij

is valid.
In contrast to the standard non-relativistic quantum
mechanics, we can choose the quantum states with a
dispersion of the coordinate ∆x as small as we wish, because
the growth of the dispersion of the momentum ∆p is not
important.
Thus, a particle can be localized with an arbitrary high
precision.



Concluding remarks

I We have found such a parametrization of the phase space
variables in two time spacetime, which permits to describe
a Carroll particle in rest in the one time spacetime.

I In quantum theory we have seen an amusing
correspondence between our parametrization and that
used for the description and quantization of the hydrogen
atom.

I The case of the always moving particle (Carroll tachyon)
is more complicated. It is under study.

I Another direction of research: field-theoretical systems
with Carroll symmetry in the two time world.


