

Particle Therapy Masterclass

Treatment planning : How to localize and

accurately irradiate a tumor

Dr. Amit Bennan & Dr. Niklas Wahl Contact: a.bennan@dkfz-heidelberg.de

Group "Radiotherapy Optimization" Division of Medical Physics in Radiation Oncology

Radiation therapy - structure

Adapted from W. Schlegel & A. Mahr: 3D Conformal Radiation Therapy Springer Multimedia DVD

A treatment plan should ...

- ... fulfil clinical requirements ("The physician prescribes") ...
- ... based on biological processes (cell death) ...
- ... induced by chemical & physical processes (reactions & interactions) ...
- ... by means of numerical simulation (dose calculation / optimization)

→ Interdisciplinary inverse problem

Imaging: X-ray

[1] anonym (https://commons.wikimedia.org/wiki/File:Roentgen2.jpg), "Roentgen2", marked as public domain, more details on Wikimedia Commons: https://commons.wikimedia.org/wiki/Template:PD-EU-no author disclosure

[2] Wilhelm Röntgen; current version created by Old Moonraker. (https://commons.wikimedia.org/wiki/File:X-ray_by_Wilhelm_Röntgen_of_Albert_von_Kölliker's_hand_-_18960123-02.jpg), "X-ray by Wilhelm Röntgen of Albert von Kölliker's hand - 18960123-02", marked as public domain, more details on Wikimedia Commons: https://commons.wikimedia.org/wiki/Template:PD-old

dkfz.

[3] Photograph: JonathunderMedal: Erik Lindberg (1873-1966) (https://en.wikipedia.org/wiki/File:Nobel_Prize.png), "Nobel Prize", marked as public domain, more details on Wikimedia Commons: https://commons.wikimedia.org/wiki/Template:PD-US

Imaging: Computed tomography

"3D X-ray"

[2]

[1] FDA – Radiation emitting products – Medical X-ray Imaging – What is Computed Tomography? - Accessed from https://www.fda.gov/radiation-emitting-products/medical-x-ray-imaging/what-computed-tomography on 15.02.2021. [2] daveynin from United States (https://commons.wikimedia.org/wiki/File:UPMCEast_CTscan.jpg), "UPMCEast CTscan", https://creativecommons.org/licenses/by/2.0/legalcode

CT scans for treatment planning

transversal slices

Slide by courtesy of Dr. Simeon Nill

CT scans for treatment planning

Delineating volumes of interest

W. Schlegel & A. Mahr: 3D Conformal Radiation Therapy Springer Multimedia DVD

Slide by courtesy of Dr. Simeon Nill

The ideal dose distribution

- High / prescribed dose in the tumor
- No dose in normal tissue

Modern 3D-planning with photons

Photon beam

\rightarrow Adaptation of the photon beam to the tumor shape

4/29/2024 | Amit Bennan - Radiotherapy Optimization - Department of Medical Physics in Radiation Oncology -

A realistic dose distribution

Can we do better?

[1] The Obama-Biden Transition Project (https://commons.wikimedia.org/wiki/File:Poster-sized_portrait_of_Barack_Obama_OrigRes.jpg), "Poster-sized portrait of Barack Obama OrigRes", size adapted, https://creativecommons.org/licenses/by/3.0/legalcode

4/29/2024 | Amit Bennan - Radiotherapy Optimization - Department of Medical Physics in Radiation Oncology -

The concept of the "pencil beam"

- "Multi-leaf" collimator are able to generate fine beams (pencil beams)
- We calculate their dose using various algorithms. Examples:
 - Analytical Pencil beam

Precomputed / measured dose curves in water are "scaled" to the patient

 \rightarrow deterministic, very quick, but inaccurate

Monte Carlo

Simulation of individual particle trajectories ("histories") through the patient

 \rightarrow stochastic, slow, but mostly more accurate

i.e.: We are able to simulate and "modulate" our beams

The concept of the "pencil beam"

+

+

+

= homogeneous beam

4/29/2024 | Amit Bennan - Radiotherapy Optimization - Department of Medical Physics in Radiation Oncology -

Intensity modulation with pencil beams

Pencil beams form "pixel" in the beam cross-section (or the fluence, respectively)

= "bixel" (**B**eam + P**ixel**) We weight all pencil beams (more/less photons) differently

Intensity modulation with pencil beams

Different bixel weights

- = intensity modulated beam
- Number of pencil beams: ~100-1000 per beam
- Number of beams: 5 to 12
- \rightarrow Not manually determinable

Objective functions for minimization

• Clinical requirements for the radiation plan are translated into mathematical functions

" Irradiate the tumor homogeneously with 54 Gy...."

" with minimal average radiation dose in the tissue"

$$f_{\text{Tumor}} = \frac{1}{N_T} \sum_{i \in T} \left(d_i - d_T \right)^2$$

$$f_{\text{OAR}_1} = \frac{1}{N_S} \sum_{i \in S} d_i$$

", and simultaneous reduction of dose in an organ at risk below 10 Gy.

$$f_{\text{OAR}_2} = \frac{1}{N_S} \sum_{i \in S} \Theta \left(d_i - d_M \right) \left(d_i - d_M \right)^2$$

> Minimization of these functions under consideration of the physical beam properties!

... the intensity profiles are determined by means of 'Inverse Planning' by minimizing a quadratic objective function on a discrete patient anatomy.

Optimizing the weights – finding the minimum by Newton's method

Intensity modulated treatment plan – dose distribution

How do we analyze a plan / a dose?

Evaluation of the 2D tomographic images

Dose statistics: Mean, maximum, minimum dose

Dose-volume histograms 2D display of the 3D dose distribution

Dose-volume histograms

With particles it gets much better...

 particle accelerators produce "natural" pencil beams improved dose distribution (Bragg-Peak) in theory

[1] Quora – In which ways could gold atoms, protons or neutrons be brought safely into human brain tissue – IBragg Peak and the Proton Difference. Accessed from https://www.quora.com/In-which-ways-could-gold-atoms-protons-or-neutrons-be-brought-safely-into-human-brain-tissue on 15.02.2021.

Problem: Dealing with uncertainties

Animations courtesy of Paul Merca & Markus Stoll

Summary

- a CT with delineated organs / tumors servers as a basis for treatment planning
- we can calculate the dose in the CT
- using numerical optimization we are able to weight particle beams differently to obtain suitable dose distributions
- finally, we are able to statistically analyze our plans with dedicated methods

(e.g. dose-volume histograms)

Questions?

4/29/2024 | Amit Bennan - Radiotherapy Optimization - Department of Medical Physics in Radiation Oncology -