Baryon Spectroscopy at J-PARC

M. Naruki (Kyoto Univ.) 2024/4/5, Glasgow Hadron Spectroscopy with Strangeness workshop

Introduction

• Hadron Physics at J-PARC

Physics cases at new beamline

- Cascade baryon spectroscopy (E97)
- Charm baryon spectroscopy (E50)
- Omega baryon spectroscopy (PXX)

Japan Proton Accelerator Research Complex

Σ production cross section

 $\pi^+ + p \rightarrow K^+ + \Sigma^+ @ 1.38 \text{ GeV/c} \qquad \pi^- + p \rightarrow K^+ + \Sigma^- @ 1.38 \text{ GeV/c}$

K. Shirotori et al., PRL 109 (2012) 132002

operative precise measurement by J-PARC E19

High-momentum beam line

- opposite protons branches off from the primary line at SM1
- 30 GeV primary proton $(10^{10}/s)$
- 8 GeV primary proton for COMET
 secondary particles (~20 GeV/c) : *π20*

Beam line specifications

Name	Particles	P _{max}	Intensity	
K1.8	п, К, р	2.0 GeV/c	10 ⁶ K⁻ ′s	
K1.8BR	п, К, р	1.1 GeV/c	10 ⁶ K⁻ ′s	
KL	neutral K			
K1.1BR	п, К, р	0.8 GeV/c	10 ⁶ K⁻ ′s	
High-p	proton	31 GeV/c	10 ¹⁰ p	2020 May~
п20 (High-p secondary)	п/K/p (unseparated)	20 GeV/c	10 ⁶ K⁻ ′s	planned
K10	п, К, р	10 GeV/c	10 ⁶ K⁻ ′s	J

 $\sqrt{s} = 2.2 \text{ GeV} \rightarrow \sqrt{s} = 6.2 \text{ GeV}$ in 20GeV/c np/Kp reactions

N* spectroscopy at JLab

Experiment State PDG PDG N((mass)J^P 2010 2018 N(1710)1/2+ *** **** N(1880)1/2+ *** N(2100)1/2+ * *** N(1895)1/2-**** N(1900)3/2+ ** **** *** N(1875)3/2 N(2120)3/2-*** *** N(2060)5/2-

V.D. Burkert, EPJ WoC 241 (2020) 01004

quark-diquark model Ouark Model

1/2* 3/2* 5/2* 7/2* 9/2* 1/2 3/2 5/2 7/2 9/2*

K⁻p Spectrometer Experiment Jenkins at al., PRL51('83)951

- Ξ^* production in 5 GeV/c K⁻p \rightarrow K⁺X at Medium Energy Separated Beamline at AGS
- Ξ* up to 2.5GeV are identified on the missing mass spectra.

FIG. 1. MPS (top view). K_A and K_B are K^+ detectors, single lines are proportional multiwire chambers, and rectangles are spark chambers.

		K_A and/or K_B		
State	PGD	σ (μb)	Mass (MeV)	
Ξ(1320)	4	7.2 ± 0.6	1320 ± 6	
王(1530)	4	2.8 ± 0.6	1541 ± 12	
三(1630)	2	< 1.0		
$\Xi(1680)$	2°	< 1.0		
Ξ (1820)	3	3.1 ± 0.5	1822 ± 6	
Ξ(1940)	2	< 0.8		
$\Xi(2030)$	3	1.7 ± 0.4	2022 ± 7	
$\Xi(2120)$	1	< 1.1		
Ξ(2250)	1	1.0 ± 0.3	2214 ± 5	
$\Xi(2370)$	2	0.9 ± 0.3	2356 ± 10	
$\Xi(2500)$	2	1.0 ± 0.5	2505 ± 10	

Ξ(1820) 1932 Events Events per 0.075(GeV/c²)² (c) Кд Ξ(2500) 80 (d) Events per O.I (GeV/c²)² O O O O 1255 Events E(2250) (Missing Mass)² (GeV/c²)² $\Xi(2025)$ $\Xi(2370)$ ΔM~30MeV

12

Ξ production in Kp reaction

- Reaction: 8 GeV/c $K^- p \rightarrow K^{*0} \Xi^{*0}$
- Missing mass technique: K⁺ / K^{*0} tagging
- Decay measurement: $\Sigma^+ \text{K}^- / \Xi^- \pi^+$
 - Decay products measured with missing-mass technique

Physics cases at high-momentum beamline

• Primary proton beam

- Dilepton measurement in pA reaction (E16) ongoing
- Medium modification with ϕ ->KK decays (E88)
- Dilepton measurement in HI collision (P87)
- Intrinsic charm with J/ψ (P91)

п20 - Secondary beam

- Beamline commissioning (P93)
- Cascade baryon spectroscopy (E97)
- Charm baryon spectroscopy (E50)
- Search for dibaryon with I=3 (E79)

MARQ Spectrometer

Multi-purpose Analyzer for Resonances and Quark dynamics

- Multi-purpose spectrometer
- High resolution, Large acceptance & High-rate capability
 - acceptance (50% for K* / 60% for D*)
 - high-resolution (dp/p=0.2%)
 - Cope with reaction rate of 5M /spill
 - upstream part is ready,
 - R&D for downstream part is ongoing
 - backward: DC almost ready, TOF in R&D
 - Main part of construction budget is secured.

combined with decay measurements

PDG mass & width AGS

	State	Jp	Mass [MeV/c ²]	Г [MeV]	σ [ub]
	Ξ(G.S.) ⁰	1/2+	1314.9	-	7.2±0.6
	Ξ(1530) ⁰	3/2+	1531.78±0.34	9.1±0.5	2.8±0.6
	Ξ(1620) ⁰	?	≈1620	21±7	<1
				40±15	
)	Ξ(1690) ⁰	?	1690 ± 4	20±15	<1
	Ξ(1820) ⁰	3/2-	1823±5	24±5	3.1±0.5
	Ξ(1950) ⁰	?	1950 ± 15	25~140	<0.8
	Ξ(2030) ⁰	1/2 (>5/2)	2025.1±2.4		1.7±0.4
	Ξ(2120) ⁰	?	≈2120	25±12	<1.1
	Ξ(2250) ⁰	?	≈2250	46±27	1.0 ± 0.3
83 77 75 [73C 69 69				130 ± 80	
	Ξ(2370) ⁰	?	≈2370	75±69	0.9±0.3
				80±25	
fidence	Ξ(2500) ⁰	?	≈2500	150+80-40	1.0 ± 0.5
				59±27	

Λ_c - Expected spectrum in π -p \rightarrow D*-Y_c*+ reaction

• Y_c^{*+} yields: 2k events assuming $\sigma_{G.S}$. = 1 nb in 100 days • $\Delta M=8 \text{ MeV}$

Ω – Expected mass spectrum: K- p \rightarrow K*⁰ K⁺ Ω*-

* Background events Generated by K⁻ p reaction @ 8 GeV/c

20

- Ω*- events: 3.3×10⁵ events (100days, 63 nb: assuming for all resonances)
 Acceptance : 30~50%, Mass resolution: ΔM ~5 MeV < Width (several 10 MeV)
- Background reduction by decay event: $\Omega^{*-} \rightarrow \Xi^{*0} \text{ K}^-$ (Br = 0.3) \Rightarrow S/N×10

• LQCD calculation for Ξ^* , Λ_c^* , Ω^*

• How

- the level scheme
- decay pattern
- production rate

changes depending on the internal structure

• QM, q-diquark

Schedule

Listed as 1st priority in KEK Project Implementation Plan 2022

Beam Intensity at high-momentum secondary beamline

Beam Particle Identification

- Π/K separation for beam particle is key • I_{π}/I_{κ} - 100
- 5 GeV/с К 20 GeV/с п
- RICH type detector
- Expected sensitivity
 - #photon 10
 - cf. #photon(dark current) ~2
 - $\Delta \theta = 5 \text{mrad}/1 \text{ p.e.}$

