The study of unconventional baryon structure via strangeness photoproduction with the BGOOD experiment

Tom Jude, on behalf of the BGOOD collaboration

Physikalisches Institut, University of Bonn

jude@physik.uni-bonn.de

Hadron Spectroscopy with Strangeness, Glasgow 4th April 2024 Supported by the DFG PN 388979758 & 405882627 &

the EU Horizon 2020 research & innovation programme, grant agreement 824093

Status of N^* spectroscopy

Constituent quark models vs. experiment

- *Missing resonances* & parity ordering problems of lowest states persists, despite:
- Wealth of γN data ELSA, MAMI, GRAAL, CLAS
- Sophisticated PWA, eg Bonn-Gatchina
- Improved understanding of known N*, but few new states observed

		PDG status in		
state	JP	2010	2020(N γ)	
N(1860)	5/2+	*	*	
N(1875)	3/2-		**	
N(1880)	1/2+		**	
N(1895)	1/2-		****	
N(1900)) 3/2+	****	****	
N(1990)	7/2+	**	**	
N(2000)	5/2+	**	**	
N(2060)	5/2-		***	
N(2100)	1/2+	*	**	
N(2120)	3/2-		***	
N(2190)	7/2-	****	**	
N(2220)	9/2+	****	**	
N(2250)	9/2-	****	**	

Relevant degrees of freedom?

- 3 quark states only?
- Molecule-like states, meson-baryon degrees of freedom?

Glozman & Riska, Phys. Rep. 268 (1996) 263, Garcia-Recio et al., PLB 582 (2004) 49, Lutz & Kolomeitsev, PLB 585 (2004) 243

Exotic phenomena in the **charmed** sector*

*Not what we study at BGOOD!

Pentaguarks at LHCb

Forsaken pentaquark particle spotted at CERN

Exotic subatomic species confirmed at Large Hadron Collider after earlier false sightings

dynamically generated states?

& Zou, PRL 105.

232001 (2010)

 $X(3872) \rightarrow \pi^+\pi^- J/\psi$ - most cited paper from Belle PRL91, 262001 (2003)

XYZ states in the charmed meson sector

Motivation: Structure of the $\Lambda(1405)$

Back to the uds sector accessible at BGOOD!

Previous CLAS data:

 Considered a K
 *K*N molecule prior to the quark model

Dalitz & Tuan, PRL 2 (1959) 425

- Lies between the $\pi\Sigma$ & $\bar{K}N$ thresholds
- Difficult to reconcile within a CQM:
 - Mass too low compared to $N^*(1535)$
 - Large spin orbit splitting to $\Lambda(1520)$

- Λ(1405) dynamically generated by meson-baryon interactions? Nacher, Oset, Toki, Ramos, & Meißner, NPA725 (2003)181 Molina & Döring, PRD 94, 056010 & 079901 (2016)
- LQCD: Hall et al., PRL 114 (2015) 132002

Motivation: Cusp in the $\gamma p \to K^0 \Sigma^+$ cross section Previous CBELSA/TAPS data:

Σ*

Parallels between charmed & strange sectors?

	Charmed-sector		Strange-sector	
	Meson	Baryons	Meson	Baryons
State(s) π exchange transition Quantum numbers 3-body threshold Closed flavour thresh.	$X(3872) \ D^{*0}ar{D}^0ar{D}^0ar{D}^{*0} \ D^{*0} \ D^{*0} \ D^{*0} \ D^{*0} \ J^{PC} = 1^{++} \ D^0ar{D}^0\pi^0 \ J/\psi\omega$	$P_{c}^{*}(4380/4457) \\ \Lambda_{c}^{*}\bar{D} + \Sigma_{c}\bar{D}^{*} \\ J^{P} = 3/2^{-} \\ \Sigma_{c}^{+}\bar{D}^{0}\pi^{0} \\ \chi_{c1}p$	$f_1(1285) \ K^*ar{K}/Kar{K}^* \ J^{PC} = 1^{++} \ Kar{K}\pi \ \phi f_0(500)$	$N^{*}(2030/2080)$ $\Lambda^{*}\bar{K} + \Sigma\bar{K}^{*}$ $J^{P} = 3/2^{-}$ $\Sigma\bar{K}\pi^{0}$ ϕp

Experimental requirements

- Charged particle identification at extremely forward angles reaction dynamics at very low momentum exchange
- Reconstruction of complicated, mixed charge final states eg $K^+\Lambda(1405) \rightarrow K^+(\pi^0\Sigma^0) \rightarrow K^+\pi^0\gamma p\pi^-$

BGOOD at the ELSA facility, Bonn

Also at BGOOD -

Coherent reactions off the deuteron at forward angles,

 η^\prime photoproduction \ldots

The BGOOD experiment at ELSA

Exotic structures in the light quark sector?

- 1. Motivation parallels in the strange & charmed quark sectors?
- 2. The BGOOD experiment at ELSA, Bonn
- 3. Exotic structure in associated strangeness photoproduction?
 - K^0 photoproduction driven by molecular N^* states?
 - $K^+\Lambda(1405)$ evidence of triangle singularity mechanism
 - Cusp at forward $K^+\Sigma^0$ photoproduction at the $K\bar{K}p$ threshold

The BGOOD experiment, Eur. Phys. J. A 56:104 (2020) Spokespersons: T.C Jude (Bonn) & P. Levi Sandri (Frascati)

- ELSA a 3 stage accelerator continuous e^- beams up to 3.2 GeV
- BGOOD BGO calorimeter (central region) & Forward Spectrometer combination

BGOOD central region

BGOOD forward region

Forward K^+Y identification

- K^+ identified in the Forward Spectrometer, $\cos \theta_{\rm CM}^K > 0.9$
- The study of Y^* states in an extremely low momentum transfer region

The BGOOD experiment at ELSA

Exotic structures in the light quark sector?

- 1. Motivation parallels in the strange & charmed quark sectors?
- 2. The BGOOD experiment at ELSA, Bonn
- 3. Exotic structure in associated strangeness photoproduction?
 - K^0 photoproduction driven by molecular N^* states?
 - $K^+\Lambda(1405)$ evidence of triangle singularity mechanism
 - Cusp at forward $K^+\Sigma^0$ photoproduction at the $K\bar{K}p$ threshold

Strange pentaquarks driving the reaction $\gamma n \rightarrow K^0 \Sigma^0$? K. Kohl, T.C. Jude, et al., EPJA 59 (2023) 254

Dynamically generated meson-baryon states? - $\Lambda^* K + \Sigma K^*$

$\gamma n \rightarrow K^0 \Sigma^0$ at BGOOD

- ${\cal K}^0
 ightarrow 2\pi^0$ in the BGO Rugby Ball
- Identify $\Sigma^0 o \gamma \Lambda$ & angle cut on $\Lambda o p \pi^-$

Strange pentaquarks driving the reaction $\gamma n \rightarrow K^0 \Sigma^0$?

K. Kohl, T.C. Jude, et al., EPJA 59 (2023) 254

- Predicted peak "smoking gun" for reaction mechanism
- Dynamically generated meson-baryon states? $\Lambda^* K + \Sigma K^*$
- Further data & new analysis methods -Adrian Sonnenschein, PhD thesis (in preparation)
 blue squares - Akondi et al. (A2) EPJA 55 11, 202 (2019)

$$\gamma {m p}
ightarrow {m K}^+ \Lambda(1405)
ightarrow {m K}^+ (\Sigma^0 \pi^0)$$

G. Scheluchin, T.C Jude et al. Phys. Lett. B 833 (2022) 137375 • $K^+\Lambda(1405) \rightarrow K^+\Sigma^0\pi^0 \rightarrow K^+\gamma\Lambda\pi^0 \rightarrow K^+3\gamma p\pi^-$ & kinematic fit

$$\gamma {m
ho} o {m K}^+ \Lambda(1405) o {m K}^+ (\Sigma^0 \pi^0)$$

G. Scheluchin, T.C Jude et al. Phys. Lett. B 833 (2022) 137375

- Line shape 2 peak structure at 1395 & 1425 MeV/c²?
- Close to the Λ(1405) proposed 2-pole structure Oller & Meißner, PLB 500, 263 (2001)

CLAS: Moriya, et al PRC 87, 035206 (2013) ANKE: Zychor et al, PLB 660, 167 (2008) Dashed line: Nacher et al, PLB 455, 55 (1999)

$\gamma p ightarrow K^+ \Lambda(1405) ightarrow K^+ (\Sigma^0 \pi^0)$

G. Scheluchin, T.C Jude et al. Phys. Lett. B 833 (2022) 137375

- Cross section of "poles" appears to change at forward angles
- K^+ in the forward spectrometer ($\sigma_{\rm Mass} \sim 13 \, {\rm MeV/c^2}$, $\cos \theta_{\rm CM}^K > 0.86$):

• Further data taken and being analysed - A.J.C. Figueiredo (PhD in preparation)

Forward $\gamma p \rightarrow K^+ \Lambda(1520)$ differential cross section

E. O. Rosanowski, T.C Jude et al., paper in preparation

Forward $\gamma p ightarrow K^+ \Lambda$, Eur. Phys. J. A (2021) 57:80

- Low t data constraint on hypernuclei electroproduction
- Forward angles sensitive to high spin N*

Forward $\gamma p \rightarrow K^+ \Sigma^0$ - Motivation

- Limited data at forward K^+ angles
- At the K^+K^-p threshold (1900 MeV), many predictions:
 - ϕN bound systems

Gao, Huang, Liu, Ping, Wang & Z. Zhao, PRC, 95:055202, 2017

• Molecular $K\Sigma$ states, $J^P = 1/2^- \& 3/2^$ consistent with $N^*(1875) \& N^*(2100)$

Huang, Zhu & Ping, PRD 97:094019, 2018.

• A 3-hadron $K\bar{K}N$ molecule with $a_0(980)N \& f_0(980)N$ components

Martínez Torre, Khemchandani, Meißner & Oset, EPJA 41:361, 2009.

Previous SPHINX data

Low transverse p requires forward kinematics in photoproduction!

$\gamma oldsymbol{p} ightarrow K^+ \Sigma^0$ T.C. Jude et al., Phys. Lett. B 820 (2021) 136559

- Highest statistics to date for $\cos \theta_{\rm CM}^{K} > 0.9$ (CLAS data in $\cos \theta_{\rm CM}^{K}$ 0.85 to 0.95)
- Resolve discrepancies in world data set & reveals "cusp" at $W\sim 1900\,{
 m MeV}$

• Cusp regarded as a peak before -PWA have attributed $D_{13}(1895)$, $S_{31}(1900)$, $P_{31}(1910)$ & $P_{13}(1900)$

R. Bradford et al. (CLAS), PRC 73, 035202 (2006), B.Dey et al. (CLAS), PRC 82, 025202 (2010), CLAS data in $\cos\theta_{CM}^{K}$ 0.85 to 0.95 interval, K.H. Glander et al. (SAPHIR), EPJA 19, 251 (2004), BnGa PWA - without BGOOD/with BGOOD $\gamma oldsymbol{p}
ightarrow K^+ \Sigma^0$ T.C. Jude et al., Phys. Lett. B 820 (2021) 136559

- Cusp increases quickly with $\cos \theta_{\rm CM}^{K}$ and K^+ transverse momentum (p_T)
- Consistent with the "extent of cusp" seen at CLAS:

$\gamma oldsymbol{p} ightarrow K^+ \Sigma^0$ T.C. Jude et al., Phys. Lett. B 820 (2021) 136559

Data extrapolated to $t_{\min}, \cos heta_{\mathrm{CM}}^{\mathsf{K}} = 1$

 $\begin{array}{l} \mathsf{CLAS} \text{ data extrapolated from: K. Moriya. PhD thesis,} \\ \mathsf{Carnegie Mellon University, 2010.} \\ \mathsf{https://www.jlab.org/Hall-B/general/thesis/Moriya thesis.pdf. \\ \mathsf{LEPS: Mibe et al. PRL.95:182001,2005.} \\ K\bar{K}p \text{ bound state: Mart et al., EPJA, 41:361, 2009.} \\ \phi N \text{ bound state: Gao, et al, PRC, 95:055202, 2017.} \end{array}$

The Cusp is....

- in the same kinematic regime to the X(2000) proposed by SPHINX
- at predicted $K\bar{K}p$ and ϕp bound states
- 20 MeV above predicted bound $\Sigma(1385)K$ state

Channel thresholds:

- A "smooth" transition between $K^+\Sigma^0$ & $p\phi$
- Similar behaviour of $K^+\Sigma^0(1385)$

 $\gamma m{p}
ightarrow K^+ \Sigma^0$ T.C. Jude et al., Phys. Lett. B 820 (2021) 136559

- A bound $K^+\Sigma(1385)$ system? interesting parallels to proposed P_C states
- Peak-like structure on a smooth background?

	C-sector		S-sector		
J ^P	Threshold	State	Threshold	Evidence	
$\frac{1}{2}^{-}$	$\Sigma_c \bar{D}$	P _C (4312)	$\Sigma^0 \kappa^+$	N*(1535)?	
$\frac{3}{2}$ -	$\Sigma_c^* \bar{D}$	$P_{C}(4382)$	$\Sigma^0(1385)K^+$	Peak in $\mathcal{K}^+\Sigma^0$	
<u>3</u> —	$\Sigma_c \bar{D}^*$	P _C (4457)	$\Sigma^0 \kappa^{*+}$	Peak/cusp in $K^0 \Sigma^{0/+}$	
$\frac{1}{2}^{-}/\frac{5}{2}^{-}$	$\Sigma_c^* \bar{D}^*$	-	$\Sigma(1385)^{0}K^{*+}$	-	

Proposed *P_C* states - Du *et al*, PRL 124, 072001 (2020)

Ongoing forward $K^+\Sigma^{(*)}$ studies

The BGOOD experiment at ELSA - the strangeness story so far

- Molecular-like structure in the *uds* sector?
- BGOOD photoproduction at forward angles & low momentum transfer Eur. Phys. J. A 56:104 (2020)
- γn → K⁰Σ⁰ dynamically generated meson-baryon resonance contributions? K. Kohl, T.C. Jude, et al., EPJA 59 (2023) 254
- $\gamma p \rightarrow K^+(\Lambda(1405) \rightarrow \Sigma^0 \pi^0)$ triangle diagram mechanism? G. Scheluchin, T.C Jude et al. Phys. Lett. B 833 (2022) 137375)
- Cusp in $\gamma p \rightarrow K^+ \Sigma^0$ at thresholds & bound state predictions T.C. Jude et al., Phys. Lett. B 820 (2021) 136559, Eur. Phys. J. A (2021) 57:80
- Equivalent spectrum of states to P_C in the charmed sector?

