

The pole nature of the $\Lambda(1405)$: A lattice QCD calculation

Hadron Spectroscopy with Strangeness Workshop University of Glasgow

Bárbara Cid-Mora

April 3-5, 2024

TECHNISCHE UNIVERSITÄT DARMSTADT

Two-pole nature of the $\Lambda(1405)$ from lattice QCD

Lattice QCD study of $\pi\Sigma - \bar{K}N$ scattering and the $\Lambda(1405)$ resonance

John Bulava,¹ Bárbara Cid-Mora,² Andrew D. Haulon,³ Ben Hörz,⁴ Daniel Mohler,^{5,2} Colin Morningstar,⁶ aona tanasa, tanana Carsaona, Anarew D. Ianaon, Den Ianz, Janue aonary – Ann anarangear, Joseph Maccos, Any Nicholson, Fernando Romero L/2007, Sarah Skimer, and André Waller-Loud⁹ ³ Deutsches Elektronen-Synchrotron (DESY), F ⁴Intel Deutschland GmbH, Dornacher ⁵Institut für Kernphysik. Techr Schlosspartenstrasse 2, 64 ⁶Department of Physics, Carnegie Mellon Uni ⁷Department of Physics and Astronomy, University (⁸ Center for Theoretical Physics, Massachusetts In ⁹Nuclear Science Division, Lawrence Berkeley This letter presents the first lattice QCD cor

ing amplitudes at energies near 1405 MeV. Th ing amplications as energies using the strangenesis S = -1 and isospin, spin, and pa whether there is a single resonance or two n theoretically and experimentally. Using singl finite-volume stationary-state energies to obquark masses corresponding to $m_\pi \approx 200$ Me exhibit a virtual bound state below the $\pi\Sigma$ inst below the $\bar{K}N$ threshold. Several parar to fit the lattice QCD results, all of which : symmetry and unitarity.

Licher Synchrotienn (Db5 1), a John Bulava,¹ Bárbara Cid-Mora,² Andrew D. Hanlon,³ Ben Hörz,⁴ Daniel Mohler,^{5,2} Colin Morningstar,⁶ ²GSI Helmkoltz Center for Horay In Joseph Moscoso,⁷ Amy Nicholson,⁷ Fernando Bonnes, Long & C. Lander M. Lander, ^{5,2} Colin Morningstar,⁶ Deukchen Ekknowersen Ekknowersen for Hawy im ... 2051 Helnholtz Centre for Hawy im ... 2051 Helnholtz Cen (for the Baryon Scattering (BaSc) Collaboration) ¹Deutsches Elektronen-Synchrotron (DESY). Platanenallee 6, 15738 Zeuthen, Germany ²GSI Heimholtz Centre for Heavy Ion Research, 64291 Darmstadt, Germany ³ Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA ⁴ Intel Deutschland GmbH, Dornacher Str. 1, 85622 Feldkirchen, Germany ^bInstitut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 2, 64289 Darmstadt, Germany ⁶Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA ⁷Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27516-3255, USA ⁸ Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ⁹ Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA (Dated: February 7, 2024)

A lattice QCD computation of the coupled channel $\pi\Sigma$ - $\bar{K}N$ scattering amplitudes in the $\Lambda(1405)$ region is detailed. Results are obtained using a single ensemble of gauge field configurations with $m_s \approx 200$ MeV and $m_K \approx 487$ MeV. Hermitian correlation matrices using both single baryon and meson-baryon interpolating operators for a variety of different total momenta and irreducible representations are used. Several parametrizations of the two-channel scattering K-matrix are utilized to obtain the scattering amplitudes from the finite-volume spectrum. The amplitudes, continued to the complex energy plane, exhibit a virtual bound state below the $\pi\Sigma$ threshold and a resonance pole just below the \overline{KN} threshold.

The two-pole nature of the $\Lambda(1405)$ from Lattice QCD * Lattice QCD study of $\pi\Sigma - \bar{K}N$ scattering and the $\Lambda(1405)$ resonance **

* Letter: PRL 132 (2024) 5 ** Long paper: PRD 109 (2024) 1

University of Glasgow - Hadron Spectroscopy with Strangeness 2024

1/18Bárbara Cid-Mora

Table of Contents

\bigcirc About the $\Lambda(1405)$

⊙ Lattice QCD

Finite-volume energy spectra

🕥 Scattering amplitude analysis

⊙ Summary

One or two-pole picture?

1 About the $\Lambda(1405)$

Λ resonances

[PDG, PTEP 2022 (2022) 083C01]

Hadron	J^P	status
$\Lambda(1116)$	$1/2^{+}$	(* * **)
$\Lambda(1380)$	$1/2^{-}$	(**)
$\Lambda(1405)$	$1/2^{-}$	(* * **)
•		

Is $\Lambda(1380)$ a second pole of the scattering amplitude in the complex energy plane in the $\Lambda(1405)$ region?

[Isgur & Karl, PRD 18 (1978) 4187]

[Oller & Meißner, PLB 500 (2001) 263]

[Roca & Oset, PRC 88 (2013) 055206]

[Mai & Meißner, EPJA 51 (2015) 30]

[Anisovich et al., EPJA 56 (2020) 139]

[Scheluchin et al., PLB 833 (2022) 137375]

[Wickramaarachchi et al., EPJ 271 (2022) 07005]

[Aikawa et al., PLB 837 (2023) 137637]

[Acharya et al., EPJC 83 (2023) 340]

* [Bulava et al., PRL 132 (2024) 5]

* [Bulava et al., PRD 109 (2024) 1]

Table of Contents

\bigcirc About the $\Lambda(1405)$

⊙ Lattice QCD

O Finite-volume energy spectra

 $\odot\,$ Scattering amplitude analysis

O Summary

- Quarks and gluons in a finite size discretized grid
- Observables estimated by sampling gauge configurations
- Correlation functions are computed
- Finite-volume energy spectrum extraction

Importance of lattice QCD to study the $\Lambda(1405)$

- → Predictions once quark masses and couplings fixed
 - \rightarrow Facilitates exploration of the elastic region $\pi\Sigma \bar{K}N$

 \rightarrow Resulting motion of poles under variation of quark masses

Details of the *D*200 ensemble generated by the Coordinated Lattice Simulations consortium (CLS) [Bruno et al., JHEP o2 (2015) 043]:

a[fm]	$(L/a)^3 imes (T/a)$	m_{π}	m_K
0.0633(4)(6)	$64^3 \times 128$	$pprox 200~{ m MeV}$	$pprox 487~{ m MeV}$

⊞ 2000 gauge configurations Open temporal boundary conditions

Single hadron operator in the latice (Λ)

Multihadron operators in the lattice ($\pi \Sigma$ and \overline{KN})

- $\begin{array}{ll} & & \Lambda[\vec{P}] \\ & & \pi[\vec{P}_1] \sum [\vec{P}_2] \\ & & & \bar{K}[\vec{P}_1] N[\vec{P}_2] \end{array}$

$\Lambda(\mathbf{d}^2)$	Operators
$G_{1g}(0)$	$ \begin{split} & \Lambda[{\cal G}_{1g}(0)] \\ & \bar{K}[A_2(1)] {\it N}[{\cal G}_1(1)] \\ & \pi[A_2^-(1)] \Sigma[{\cal G}_1(1)] \end{split} $

• Correlation matrices \rightarrow Stochastic LapH method (sLaph)

[Peardon et al., PRD **80** (2009) 054506] (Original distillation) [Morningstar et al., PRD **83** (2011) 114505]

$$\mathcal{C}(t) = \langle \mathcal{O}_1(t) \bar{\mathcal{O}}_2(0) \rangle = \sum_n A_n \mathrm{e}^{-t E_n}$$

 $\blacktriangleright \ \ \, {\sf Extraction of energy spectra} \quad \rightarrow \quad {\sf Solving the GEVP}$

[Michael & Teasdale, NPB **215** (1983) 433] [Blossier et al., JHEP **04** (2009) 094]

$$\mathcal{C}(t_{\mathrm{d}})ec{v}_{n}(t_{o},t_{\mathrm{d}}) = \lambda_{n}(t_{o},t_{\mathrm{d}}) \ \mathcal{C}(t_{o}) \ ec{v}_{n}(t_{o},t_{\mathrm{d}})$$

Single Pivot & Rolling Pivot

Center-of-mass finite-volume energy spectra results under variation of implementation of the GEVP method.

Table of Contents

\bigcirc About the $\Lambda(1405)$

⊙ Lattice QCD

⊙ Finite-volume energy spectra

 $\odot\,$ Scattering amplitude analysis

⊙ Summary

Single hadrons results: π effective mass and variety of fits to Lattice data using different values of t_{\min} .

Bulava et al., PRD 109 (2024) 1

Multihadron results: Variety of fit forms to lattice data vs t_{min} in the energy laboratory frame. (Lowest level of the $G_{1u}(0)$ irrep)

Bulava et al., PRL 132 (2024) 5

10/18 Bárbara Cid-Mora

Table of Contents

\bigcirc About the $\Lambda(1405)$

⊙ Lattice QCD

O Finite-volume energy spectra

 \odot Scattering amplitude analysis

⊙ Summary

The recipe for scattering amplitudes goes as

[M. Lüscher, NPB 354 (1991) 53] [M. Lüscher, NPB 364 (1991) 237; and extensions.]

Scattering amplitude parametrization

4 Scattering amplitude analysis

Analytic structure of Scattering amplitude

4 Scattering amplitude analysis

(Left) Scattering amplitude results based on different parametrizations (Right) "Preferred" parametrization of the scattering amplitude

Example I of motion of the poles vs m_π

4 Scattering amplitude analysis

Trajectories of the two poles of $\Lambda(1405)$ as functions of the pion mass m_{π} from 137 MeV to 497 MeV. Critical masses are labeled by solid squares, between which the points are equally spaced. ($z_R = m_R - i\Gamma_R/2$) [Xie et al., PRD 108 (2023) 11]

16/18 Bárbara Cid-Mora

Example II of motion of the poles vs m_π

4 Scattering amplitude analysis

Motion of the poles from the SU(3) limit to the physical values of the particle masses. Blue, red and green lines denote the $\Lambda(1380)$, $\Lambda(1405)$ and $\Lambda(1680)$, respectively. Left panel: Weinberg-Tomozawa term; Right panel: includes NLO. [Guo et al., PLB 846 (2023) 138264]

Table of Contents

\bigcirc About the $\Lambda(1405)$

⊙ Lattice QCD

O Finite-volume energy spectra

🕟 Scattering amplitude analysis

- First Lattice QCD study of coupled-channel $\pi\Sigma-\bar{\textit{K}}\textit{N}$ in the $\Lambda(1405)$ region
- Every parametrization used found two poles in this region
 - * **NOTE:** These parametrizations could accommodate zero, one or two poles
- Our results show qualitative agreement with phenomenological extractions [See PDG, section 83] **Lower Pole:** $E_1 = 1392(9)_{stat}(2)_{model}(16)_a$ MeV

Higher Pole: $E_2 = [1455(13)_{stat}(2)_{model}(17)_a - i11.5(4.4)_{stat}(4.0)_{model}(0.1)_a]$ MeV

Reference Results: $\mathcal{R}e(E_1) = 1325 - 1380 \text{ MeV}; \quad \mathcal{R}e(E_2) = 1421 - 1434 \text{ MeV}$

- Future work:
 - Explore quark masses dependence of the poles: strange mass dependence
 - Explore impact of three particle operators
 - Study lattices with a closer to physical m_π

Thanks

Table of Contents

Wickramaarachchi et al., EPJ Web Conf. 271 (2022) 07005, [e-Print: 2209.06230]

Ensemble **D200** generated by CLS was used. Its properties are:

- Dynamical mass-degenerate *u* and *d*-quarks (heavier than physical), and *s*-quarke (lighter than physical).
- Tree-level improved Lüscher-Weisz gauge action.
- Non-perturbatively $\mathcal{O}(a)$ -improved Wilson fermion action.

The effective mass is calculated as:

$$m_{eff}(t+1/2) = \ln\left(rac{\mathbf{C}(t)}{\mathbf{C}(t+1)}
ight)$$
 $\chi^2 = \sum_{t,t'=t_{min}}^{t_{max}} \left(\mathbf{C}(t) - f(t)\right) rac{1}{\mathbf{Cov}_N(t,t')} \left(\mathbf{C}(t') - f(t')
ight)$

where

$$f(t) = A_i \mathrm{e}^{-E_i t}$$

and

$$\mathcal{Cov}_N(t,t') = rac{1}{N-1} \langle (\mathcal{C}(t) - \langle \mathcal{C}(t)
angle_N) \left(\mathcal{C}(t') - \langle \mathcal{C}(t')
angle_N
ight)
angle_N$$

t, t': lattice time E_i : Energy N: Nr. samples $\langle \dots \rangle_N$: statistical average

18/18 Bárbara Cid-Mora

(Top) Ratios of variances for fits to m_{π} versus $N_{\rm bin}$ for jackknife and bootstrap resampling.

(Bottom) Correlated- χ^2 of twoexponential fit to m_{π} versus $N_{\rm bin}$. In both panels, the final binning choice is illustrated as a blue solid square.

Several fit forms used to extract the finite-volume energy spectra:

 $C(t) = A_n e^{-tE_n}$ (Single exponential)

 $\mathcal{C}(t) = A_n \mathrm{e}^{-tE_n} + A_1 \mathrm{e}^{-tD^2}$ (Two-exponential)

 $\mathcal{C}(t) = rac{A_n \mathrm{e}^{-t E_n}}{1 - B \mathrm{e}^{-M t}}$ (Geometric)

$$R_n(t)=rac{D_n(t)}{\mathcal{C}_A(\mathbf{d}_A^2,t)\mathcal{C}_B(\mathbf{d}_B^2,t)}=A_n\mathrm{e}^{-t\Delta E_n}$$
 (Ratio of correlators)

am_{π}	0.06533(25)	am_K	0.15602(16)	am_N	0.3143(37)
am_Λ	0.3634(14)	am_Σ	0.3830(19)	am_{Ξ}	0.41543(96)

Table: Summary of hadron masses in Lattice units.

am_{π}	~ 200	am_K	~ 487	am_N	~ 980
am_Λ	~ 1120	am_Σ	~ 1194	am_{Ξ}	~ 1295

Table: Summary of hadron masses in MeV units.

Basically one searches for the zero's of the following equation, using the finite-volume energy spectra as constrain.

$$\det \left[\underbrace{\begin{pmatrix} \widetilde{K}_{\pi\Sigma \to \pi\Sigma} & \widetilde{K}_{\pi\Sigma \to \bar{K}N} \\ \widetilde{K}_{\bar{K}N \to \pi\Sigma} & \widetilde{K}_{\bar{K}N \to \bar{K}N} \end{pmatrix}}_{\text{Multi-channel Matrix}} + \underbrace{\begin{pmatrix} F_{\pi\Sigma}^{-1}(E_n, \vec{P}, L) & 0 \\ 0 & F_{\bar{K}N}^{-1}(E_n, \vec{P}, L) \end{pmatrix}}_{\text{Zeta Function}} \right] = 0$$

One fits with respect to the energy shifts of the non-interacting energies:

$$\Delta E_i = E_{
m cm}^{latt} - E_{
m cm}^{free}$$

Where one minimize correlated χ^2 :

$$\delta_i = \Delta E_{\rm cm,i} - \Delta E_{\rm cm,i}^{\rm QC}$$

And the preferred fit is based on lowest Akaike Information Criterion:

$$AIC = \chi^2 - 2n_{dof}$$

18/18 Bárbara Cid-Mora

The following quantity is defined proportional to the scattering transition amplitude and to \widetilde{K} as:

$$t^{-1} = \widetilde{K}^{-1} - i\hat{k}$$

where $\hat{k} = {\sf diag}(k_{\pi\Sigma},k_{ar{K}\!N})$, and

$$egin{aligned} k_{\pi\Sigma}^2 &= rac{1}{E_{ ext{cm}}^2} \lambda_K \left(E_{ ext{cm}}^2, m_\pi^2, m_\Sigma^2
ight) \ k_{ar{k}}^2 &= rac{1}{E_{ ext{cm}}^2} \lambda_K \left(E_{ ext{cm}}^2, m_{ar{k}}^2, m_N^2
ight) \end{aligned}$$

where λ_K is the Källén function. Which is equivalent to searching for the ∞ 's of

$$t = rac{m_\pi}{E_{
m cm}-E_{
m pole}} egin{pmatrix} c_{\pi\Sigma}^2 & c_{\pi\Sigma}c_{ar{K}N} \ c_{\pi\Sigma}c_{ar{K}N} & c_{ar{K}N}^2 \end{pmatrix} + \dots \end{cases}$$

18/18 Bárbara Cid-Mora

1. An effective range expansion (ERE) of the form

$$\widetilde{K}_{ij} = \frac{m_{\pi}}{E_{\rm cm}} \Big(A_{ij} + B_{ij} \Delta_{\pi\Sigma}(E_{\rm cm}) \Big).$$
⁽¹⁾

2. A variation of the first parametrization without the factor of $m_\pi/E_{
m cm}$:

$$\widetilde{K}_{ij} = \widehat{A}_{ij} + \widehat{B}_{ij} \Delta_{\pi\Sigma}(E_{\rm cm}).$$
⁽²⁾

3. An ERE of \widetilde{K}^{-1} of the form

$$\widetilde{K}_{ij}^{-1} = \frac{E_{\rm cm}}{m_{\pi}} \left(\widetilde{A}_{ij} + \widetilde{B}_{ij} \Delta_{\pi \Sigma}(E_{\rm cm}) \right).$$
(3)

1. A Blatt-Biederharn parametrization:

$$\widetilde{K} = C F C^{-1}, \tag{4}$$

where

$$C = \begin{pmatrix} \cos \epsilon & \sin \epsilon \\ -\sin \epsilon & \cos \epsilon \end{pmatrix},$$
(5)
$$F = \begin{pmatrix} f_0(E_{\rm cm}) & 0 \\ 0 & f_1(E_{\rm cm}) \end{pmatrix},$$
(6)

and

$$f_i(E_{\rm cm}) = \frac{m_\pi}{E_{\rm cm}} \frac{a_i + b_i \Delta_{\pi\Sigma}(E_{\rm cm})}{1 + c_i \Delta_{\pi\Sigma}(E_{\rm cm})}.$$
(7)

University of Glasgow - Hadron Spectroscopy with Strangeness 2024

18/18 Bárbara Cid-Mora

Scattering amplitude parametrization