Results and future prospects from LHCb

Mark Whitehead

Hadron Spectroscopy with Strangeness 2024 University of Glasgow

Science and Technology Facilities Council

03/04/2023

- Hugely successful experiment, > 600 publications
- Significant discoveries
 - CPV observed in new systems
 - Rare decays
 - 64 of 72 new hadrons discovered at the LHC
- Broad physics programme
 - World leading for core topics, but also
 - Heavy ions
 - Fixed target
 - Electroweak
 - Dark Sector

10.5

LHCb Upgrade I

- Major project achieved on budget
 - All sub detectors installed
 - Commissioning to detector and dataflow ongoing
 - Detector performance studies underway
 - 90% of channels upgraded
 - Replaced readout electronics
 - Operate at 30 MHz
 - Peak luminosity x5 w.r.t. Run 1

 $2 \times 10^{33} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$

LHCb Upgrade II

- Complete new detector required
 - Vertexing: Pixel detector with timing
 - Hadron PID: RICH with timing and better resolution, TORCH for low momentum tracks
 - Tracking: New magnet stations and pixel mighty tracker
 - Calorimeter: Better resolution and timing information
 - Muon system: New technologies for high occupancy regions

LHC

03/04/2023

- Following the mass fits
 - Select events in a 15 MeV window around the signal peaks.
 - Signal yield: 1750 ± 50
 - sWeight to subtract the background
- Search for pentaquarks in $m^2(J/\psi\Lambda)$
 - Main aim of the analysis
- Model Ξ resonances in $m^2(\Lambda K^-)$
 - Necessary to achieve the above
 - New results would be a bonus!

03/04/2023

- First step is to describe the ΛK^- projection correctly
 - If this doesn't fit well in the other projections, add exotic candidates in other channels

State	$M_0 \; ({\rm MeV})$	$\Gamma_0 (MeV)$	LS couplings	J^P examined
$\Xi(1690)^{-}$	1690 ± 10	< 30	4(6)	$(1/2, 3/2)^{\pm}$
$\Xi(1820)^{-}$	1823 ± 5	24^{+15}_{-10}	3~(6)	$3/2^{-}$
$\Xi(1950)^{-}$	1950 ± 15	60 ± 20	3~(6)	$(1/2, 3/2, 5/2)^{\pm}$
$\Xi(2030)^{-}$	2025 ± 5	20^{+15}_{-5}	3~(6)	$5/2^{\pm}$
NR ΛK^-	-	-	4(4)	$1/2^{-}$

This left a peak clearly unaccounted for in $m^2(J/\psi\Lambda)$

- First step is to describe the ΛK^- projection correctly
 - If this doesn't fit well in the other projections, add exotic candidates in other channels

This left a peak clearly unaccounted for in $m^2(J/\psi\Lambda)$

- Add a pentaquark state in the $J/\psi\Lambda$ channel
 - If this doesn't fit well in the other projections, add exotic candidates in other channels

03/04/2023

- Add a pentaquark state in the $J/\psi\Lambda$ channel
 - If this doesn't fit well in the other projections, add exotic candidates in other channels

State	$M_0 \; ({ m MeV})$	$\Gamma_0 \ ({\rm MeV})$	FF (%)
$P_{cs}(4459)^0$	$4458.8 \pm 2.9^{+4.7}_{-1.1}$	$17.3 \pm 6.5 ^{+8.0}_{-5.7}$	$2.7^{+1.9+0.7}_{-0.6-1.3}$
$\Xi(1690)^{-}$	$1692.0 \pm 1.3 ^{+1.2}_{-0.4}$	$25.9 \pm 9.5 {}^{+14.0}_{-13.5}$	$22.1_{-2.6-8.9}^{+6.2+6.7}$
$\Xi(1820)^{-}$	$1822.7 \pm 1.5 {}^{+1.0}_{-0.6}$	$36.0 \pm 4.4 ^{+7.8}_{-8.2}$	$32.9^{+3.2+6.9}_{-6.2-4.1}$
$\Xi(1950)^{-}$	1910.6 ± 18.4	105.7 ± 23.2	$11.5^{+5.8+49.9}_{-3.5-9.4}$
$\Xi(2030)^{-}$	2022.8 ± 4.7	68.2 ± 8.5	$7.3^{+1.8+3.8}_{-1.8-4.1}$
NR	_	_	$35.8^{+4.6+10.3}_{-6.4-11.2}$

- Results for the Ξ resonances
 - Precise measurements of the mass and width of two states

 $M(\Xi(1690)^{-}) = 1692.0 \pm 1.3^{+1.2}_{-0.4} \text{ MeV}, \quad \Gamma(\Xi(1690)^{-}) = 25.9 \pm 9.5^{+14.0}_{-13.5} \text{ MeV},$ $M(\Xi(1820)^{-}) = 1822.7 \pm 1.5^{+1.0}_{-0.6} \text{ MeV}, \quad \Gamma(\Xi(1820)^{-}) = 36.0 \pm 4.4^{+7.8}_{-8.2} \text{ MeV}.$

- Spin-parity measurements will require more data
- Run 3 data sample should have 10 times the number of signal events
- Evidence for a new pentaquark state

Mass $4458.8 \pm 2.9^{+4.7}_{-1.1} \text{ MeV}$ Width $17.3 \pm 6.5^{+8.0}_{-5.7} \text{ MeV}$

• Significance of 3.1 sigma

- Workshop outlines 4 different areas
 - excited kaons
 - strangeonia
 - hyperon resonances
 - the nature of Lambda(1405)
 - In principle I think LHCb could contribute to all of them...
 - Excited kaons appear in many channels, where to look?
 - Producing them in B-hadron decays provides extremely clean samples
 - ... but limits the production of the heavier states

- Large samples of $B^+ \to J/\psi \phi K^+$
 - Run 1+2 data gives ~24k events
 - No amplitude analysis yet
 - Rich structures visible up to around 2.2-2.3 GeV

J^P	Contribution		Significance $[\times \sigma]$	$M_0[{ m MeV}]$	$\Gamma_0 [{ m MeV}]$	$\mathrm{FF}\left[\% ight]$
	$2^1 P_1$	$K(1^+)$	4.5 (4.5)	$1861 \pm 10 {}^{+ 16}_{- 46}$	$149 \pm 41^{+231}_{-23}$	
1^{+}	$2^{3}P_{1}$	$K'(1^+)$	4.5 (4.5)	$1911 \pm 37 {}^{+124}_{-48}$	$276 \pm 50 {}^{+ 319}_{- 159}$	
	$1^{3}P_{1}$	$K_1(1400)$	9.2(11)	1403	174	$15 \pm 3^{+3}_{-11}$
2-	$1^1 D_2$	$K_2(1770)$	7.9(8.0)	1773	186	
	$1^3 D_2$	$K_2(1820)$	5.8(5.8)	1816	276	
1-	$1^3 D_1$	$K^{*}(1680)$	4.7(13)	1717	322	$14 \pm 2 {}^{+35}_{-8}$
T	2^3S_1	$K^{*}(1410)$	7.7~(15)	1414	232	$38 \pm 5^{+11}_{-17}$
2^{-}	$2^3 P_2$	$K_2^*(1980)$	1.6(7.4)	$1988 \pm 22 {}^{+ 194}_{- 31}$	$318 \pm 82 {}^{+481}_{-101}$	$2.3 \pm 0.5 \pm 0.7$

03/04/2023

Phys. Rev. Lett. 126 (2021) 122002

- Large samples of $B^+ \to J/\psi \phi K^+$
 - Run 1+2 data gives ~24k events
 - No amplitude analysis yet
 - Rich structures visible up to around 2.2-2.3 GeV

J^P	Con	tribution	Significance $[\times \sigma]$	•	Extrapolation to Run 3: ~100k		3: ~100k
	$2^1 P_1$	$K(1^+)$	4.5(4.5)	•	Likely still well motivated by		
1^{+}	$2^{3}P_{1}$	$K'(1^+)$	4.5(4.5)	exotic searches			
	$1^{3}P_{1}$	$K_1(1400)$	9.2(11)		1403	174	$10 \pm 3 + 11$
2-	$1^1 D_2$	$K_2(1770)$	7.9(8.0)		1773	186	
	$1^3 D_2$	$K_2(1820)$	5.8(5.8)		1816	276	
1-	$1^3 D_1$	$K^{*}(1680)$	4.7(13)		1717	322	$14 \pm 2^{+35}_{-8}$
	2^3S_1	$K^{*}(1410)$	7.7(15)		1414	232	$38 \pm 5 {}^{+11}_{-17}$
2^{-}	$2^{3}P_{2}$	$K_2^*(1980)$	1.6(7.4)	19	$88 \pm 22 {}^{+194}_{-31}$	$318\pm82{}^{+481}_{-101}$	$2.3\pm0.5\pm0.7$

03/04/2023

Phys. Rev. Lett. 126 (2021) 122002

- Workshop outlines 4 different areas
 - excited kaons
 - strangeonia
 - hyperon resonances
 - the nature of Lambda(1405)
 - In principle I think LHCb could contribute to all of them...
 - Strangeonia can appear in many decays, where to look?
 - Producing them in B-hadron decays provides extremely clean samples
 - Challenge is to separate them from eachother

- Amplitude analysis of $\bar{B}^0_s \rightarrow J/\psi K^+ K^-$
 - Just the 2011 dataset
 - ~350k signal candidates, > 97% purity
 - Most of those in the $\phi(1020)$ region
 - Visible structures up to ~2 GeV though

World leading $m_{f'_2(1525)} = 1522.2 \pm 2.8^{+5.3}_{-2.0} \text{ MeV},$ measurements $\Gamma_{f'_2(1525)} = 84 \pm 6^{+10}_{-5} \text{ MeV}.$

03/04/2023

Phys. Rev. D 87 (2013) 072004

Phys. Rev. D 87 (2013) 072004

- Workshop outlines 4 different areas
 - excited kaons
 - strangeonia
 - hyperon resonances
 - the nature of Lambda(1405)
 - In principle I think LHCb could contribute to all of them...
 - Hyperon states are produced in high numbers in b-hadron decays
 - Some more easily than others though (the Δ and Σ baryons are suppressed in b-decays)
 - Should have large samples of the Λ baryon family
 - Are they large enough?
 - If not, are they complimentary enough?

- 95% purity
- Clean laboratory to study Λ states if motivated
- Could measure masses, widths and spin-parity

03/04/2023

Phys. Rev. Lett. 115 (2015) 072001

03/04/2023

Phys. Rev. Lett. 115 (2015) 072001

- Workshop outlines 4 different areas
 - excited kaons
 - strangeonia
 - hyperon resonances

the nature of Lambda(1405)

- In principle I think LHCb could contribute to all of them...
 - Nature of the $\Lambda(1405)$ looks more challenging though
 - Too light* to decay to pK so requires reconstruction using neutrals
 - Not one of LHCb's strong points... though Upgrade 2 might help
 - New calorimeter and enormous data samples
 - *Broad enough to leak into some Dalitz plots... can we do anything there?

Summary

- LHCb has large data samples that contain plenty of strangeness
- To date, not often the intended target for an analysis
- LHCb Upgrade and LHCb Upgrade II promise huge data sets for the foreseeable future
- Interested to hear thoughts on places we could have maximum impact

000