Strangeness spectroscopy with Photoproduction Experiments

Annika Thiel

05.04.2024

Helmholtz-Institut für Strahlen- und Kernphysik, University of Bonn, Germany and School of Physics and Astronomy, University of Glasgow, Scotland

Motivation

Hyperon Spectroscopy at CBELSA/TAPS

Hyperon Spectroscopy at GlueX

Conclusion

Motivation

Total cross section: Sum of different partial waves $\sigma_{tot} \sim |A_{1/2}(S_{11})|^2 + |A_{1/2}(P_{13})|^2 + |A_{3/2}(P_{13})|^2 + \cdots$

Total cross section: Sum of different partial waves $\sigma_{tot} \sim |A_{1/2}(S_{11})|^2 + |A_{1/2}(P_{13})|^2 + |A_{3/2}(P_{13})|^2 + \cdots$

Polarization observables sensitive to interference terms:

$$\Sigma \sim A_{1/2}(S_{11}) \cdot A_{1/2}(P_{11}) + \cdots$$

Measurement of polarization observables necessary for a unique solution of the partial wave analysis and to identify small resonance contributions.

2500 3000 *E*_~ [MeV]

1500

2000

Polarization Observables

16 Polarization Observables in photoproduction of pseudoscalar mesons, e.g. a single π^0 :

		Target			Recoil			Target+Recoil			
		-	_	-	×'	y'	z'	×'	×'	z'	z'
Photon		×	У	z	-	_	_	×	z	х	z
unpolarized	σ	-	Т	-	-	Р	-	$T_{x'}$	$-L_{x'}$	$T_{z'}$	$L_{z'}$
linearly pol.	Σ	Н	(-P)	-G	$O_{x'}$	(-T)	$O_{z'}$	—	_	_	-
circularly pol.	-	F	-	-E	$-C_{x'}$	_	$-C_{z'}$	-	-	-	-

For other reactions see:

[A. Thiel et al., "Light Baryon Spectroscopy," Prog. Part. Nucl. Phys. 125, 103949 (2022)]

Comparison between PDG values

- Until 2010: almost only results from pion nucleon scattering used in the PDG, only few pion photoproduction data used
- PWA groups include photoproduction data with different final states from several experiments
- Now: new values from the fits are entering the PDG

Particle	J^P	overall	$N\gamma$	$N\pi$	$\Delta \pi$	$N\sigma$	$N\eta$	ΛK	ΣK	$N\rho$	$N\omega$	$N\eta'$	
N	$1/2^+$	****											-
N(1440)	$1/2^+$	****	****	****	***	***	-			-			
N(1520)	$3/2^{-}$	****	****	****	****	**	****						
N(1535)	$1/2^{-}$	****	****	****	***	*	****						
N(1650)	$1/2^{-}$	****	****	****	***	*	****	*					
N(1675)	$5/2^{-}$	****	****	****	****	***	*	*	*	-			2
N(1680)	$5/2^+$	****	****	****	****	***	*	*	*				Ő
N(1700)	$3/2^{-}$	***	**	***	***	*	*		-	-			9
N(1710)	$1/2^+$	***	****	***	*_		***	**	*	*	*		6
N(1720)	$3/2^+$	****	****	****	***	*	*	****	*	*_	*		4
N(1860)	$5/2^{+}$	**	*	**		*	*						33
N(1875)	$3/2^{-}$	***	**	**	*	**	*	*	*	*	*		0
N(1880)	$1/2^+$	***	**	*	**	*	*	**	**		**		-
N(1895)	$1/2^{-}$	****	****	*	*	*	****	**	**	*	*	****	ŝ
N(1900)	$3/2^{+}$	****	****	**	**	*	*	**	**	-	*	**	2
N(1990)	$7/2^+$	**	**	**			*	*	*				
N(2000)	$5/2^{+}$	**	**	*_	**	*	*	-	-		*		4
N(2040)	$3/2^{+}$	*		*									6
N(2060)	$5/2^{-}$	***	***	**	*	*	*	*	*	*	*		đ
N(2100)	$1/2^{+}$	***	**	***	**	**	*	*		*	*	**	_
N(2120)	$3/2^{-}$	***	***	**	**	**		**	*		*	*	<u> </u>
N(2190)	$7/2^{-}$	****	****	****	****	**	*	**	*	*	*		
N(2220)	$9/2^{+}$	****	**	****			*	*	*				et
N(2250)	$9/2^{-}$	****	**	****			*	*	*				0
N(2300)	$1/2^{+}$	**		**									.,≝
N(2570)	$5/2^{-}$	**		**									È
N(2600)	$11/2^{-}$	***		***									۰.
N(2700)	$13/2^{+}$	**		**									\triangleleft

Large improvement, but still a lot of work to be done!

		Overall		Status	as seen in —
Particle	J^P	status	$N\overline{K}$	$\Sigma \pi$	Other channels
A(1116)	$1/2^+$	****			$N\pi$ (weak decay)
A(1380)	$1/2^{-}$	**	**	**	· · · · · ·
A(1405)	$1/2^{-}$	****	****	****	
A(1520)	$3/2^{-}$	****	****	****	$\Lambda\pi\pi, \Lambda\gamma, \Sigma\pi\pi$
A(1600)	$1/2^{+}$	****	***	****	$A\pi\pi, \Sigma(1385)\pi$
A(1670)	$1/2^{-}$	****	****	****	$A\eta$
A(1690)	$3/2^{-}$	****	****	***	$\Lambda\pi\pi, \Sigma(1385)\pi$
$\Lambda(1710)$	$1/2^{+}$	*	*	*	
$\Lambda(1800)$	$1/2^{-}$	***	***	**	$\Lambda\pi\pi, N\overline{K}^*$
$\Lambda(1810)$	$1/2^{+}$	***	**	**	$N\overline{K}^*$
A(1820)	$5/2^{+}$	****	****	****	$\Sigma(1385)\pi$
A(1830)	$5/2^{-}$	****	****	****	$\Sigma(1385)\pi$
A(1890)	$3/2^{+}$	****	****	**	$\Sigma(1385)\pi, N\overline{K}^*$
A(2000)	$1/2^{-}$	*	*	*	
A(2050)	$3/2^{-}$	*	*	*	
A(2070)	$3/2^{+}$	*	*	*	
A(2080)	$5/2^{-}$	*	*	*	
A(2085)	$7/2^{+}$	**	**	*	
A(2100)	$7/2^{-}$	****	****	**	$N\overline{K}^*$
A(2110)	$5/2^+$	***	**	**	$N\overline{K}^*$
A(2325)	$3/2^{-}$	*	*		*
A(2350)	$9/2^+$	***	***	*	
A(2585)	-,-	*	*		

Mostly unknown states for masses M > 2000 MeV

Data on pentaquarks by LHCb:

Source: R. Aaij et al. [LHCb], Phys. Rev. Lett. 122, no.22, 222001 (2019)

Hyperons of Interest for High-Energy Physics

Source: R. Aaij et al. [LHCb], Phys. Rev. Lett. 122, no.22, 222001 (2019)

Source: R. Aaij et al. [LHCb], PRL 122, no.22, 222001 (2019)

Horizontal lines: Pentaquarks Vertical lines: Strange Baryon Resonances Reactions

Photoproduction of Hyperons via t-channel exchange

Possible final states

Final State	Sensitive to	Important because
K^+ pK^-	Λ^* , Σ^*	high statistics
${\cal K}^+ \Sigma^0 \pi^0$	Λ^*	isospin filter
${\cal K}^+$ $\Lambda\eta$	Λ^*	$\Lambda(1670)rac{1}{2}^{-}$, $\Lambda(1670)rac{3}{2}^{+}$?
${\cal K}^+$ $\Lambda\pi$	Σ^*	isospin filter
${\cal K}^+ \; {f \Sigma} \eta$	Σ^*	$\Sigma(1750)\frac{1}{2}^{-}$
$(K^+ \ \Sigma(1385)\pi)$	Λ*, Σ*	high mass resonances
$(K^+ \ pK^{*-})$	Λ^* , Σ^*	

Polarization Observables of Interest

Photoproduction of two pseudo-scalars: Roberts, Oed (2005)

- Considering spins of initial and final state particles, $N = 2 \times 2 \times 2 = 8$ Amplitudes needed
- N² = 8² = 64 observables can be defined using polarization of beam, target and recoil baryon
- Minimal complete set consists of 2N = 16 (1 unpol. cross section + 15 polarization observables) \rightarrow P. Kroenert, Y. Wunderlich, F. Afzal, A. Thiel, Phys.Rev.C 103 (2021) 1, 014607

$$I(\Phi, \Omega_{Y^*}) = \frac{d\sigma}{dt} [1 - p_T I^s \sin 2\Phi - p_T I^c (\widehat{=} \Sigma) \cos 2\Phi + p_\odot I^\odot \qquad \text{lin. \& circ. pol. beam}$$

Polarization Observables of Interest

Photoproduction of two pseudo-scalars: Roberts, Oed (2005)

- Considering spins of initial and final state particles, $N = 2 \times 2 \times 2 = 8$ Amplitudes needed
- N² = 8² = 64 observables can be defined using polarization of beam, target and recoil baryon
- Minimal complete set consists of 2N = 16 (1 unpol. cross section + 15 polarization observables) → P. Kroenert, Y. Wunderlich, F. Afzal, A. Thiel, Phys.Rev.C 103 (2021) 1, 014607

$$I(\Phi, \Omega_{Y^*}) = \frac{d\sigma}{dt} [1 - p_T I^s \sin 2\Phi - p_T I^c (\widehat{=} \Sigma) \cos 2\Phi + p_\odot I^\odot \qquad \text{lin. \& circ. pol. beam}$$
$$- p_T p_z P_z^s (\widehat{=} G) \sin 2\Phi - p_T p_z P_z^c \cos 2\Phi + p_\odot p_z P_z^\odot (\widehat{=} E) + p_z P_z]$$
$$\& \text{ long. pol. target}$$

Polarization Observables of Interest

For a linearly and circularly polarized beam, on a longitudinally polarized target and measurement of the recoil polarization (self-analyzing decay):

$$\begin{split} I(\Phi, \Omega_{Y^*}) &= \frac{d\sigma}{dt} [1 - p_T I^s \sin 2\Phi - p_T I^c (\widehat{=} \Sigma) \cos 2\Phi + p_\odot I^\odot \\ &- p_T p_z P_z^s (\widehat{=} G) \sin 2\Phi - p_T p_z P_z^c \cos 2\Phi + p_\odot p_z P_z^\odot (\widehat{=} E) + p_z P_z] \\ &+ p_{X'} P_{X'} + p_{Y'} P_{Y'} + p_{z'} P_{z'} + p_\odot (p_{X'} P_{X'}^\odot + p_{Y'} P_{Y'}^\odot + p_{z'} P_{z'}^\odot) \\ &+ p_T (p_{X'} P_{X'}^s + p_{Y'} P_{Y'}^s + p_{z'} P_{z'}^s) \sin 2\Phi + p_T (p_{X'} P_{X'}^c + p_{Y'} P_{Y'}^c + p_{z'} P_{z'}^c) \cos 2\Phi \\ &+ p_z (p_{X'} O_{zx'} + p_{Y'} O_{zy'} + p_{z'} O_{zz'}) + p_\odot p_z (p_{X'} O_{zx'}^\odot + p_{Y'} O_{zy'}^\odot + p_{z'} O_{zz'}^\odot) \\ &+ p_T p_z (p_{X'} O_{zx'}^s + p_{Y'} O_{zy'}^s + p_{z'} O_{zz'}^s) \sin 2\Phi \\ &+ p_T p_z (p_{X'} O_{zx'}^c + p_{Y'} O_{zy'}^s + p_{z'} O_{zz'}^s) \cos 2\Phi \end{split}$$

Additional observables accessible with a transversely polarized target.

Extraction of the Amplitudes

Complete Experiment: Model-independent extraction of all amplitudes without discrete ambiguities

- \rightarrow 16 Observables needed for two meson photoproduction!
 - P. Kroenert, et al. Phys. Rev. C 103, no.1, 014607 (2021)

Two possibilities to extract amplitudes from the observables:

• Extract observables and provide them as input to different partial wave analysis groups

Contact with different groups initiated

• Direct extraction of the amplitudes from the fit Framework currently being developed in Bonn Hyperon Spectroscopy at CBELSA/TAPS

The CBELSA/TAPS Experiment

Future Perspectives: Strangeness Measurements at Bonn

Up to now mostly measurements of non-strange baryons (N^* , Δ^*)

 \rightarrow Extension to the strange sector (A*, $\Sigma^*)$ planned

• Strangeness measurements with a polarized beam and a polarized target possible!

- Precise mapping of Hyperons with masses up to $\sim 2~\text{GeV}$ and extraction of quantum numbers

• Investigation of two-pole structure of $\Lambda(1405)$ possible

Planned Setup for CBELSA++

Major Experimental Upgrade!

Additional forward spectrometer including large-scale forward calorimeter

Anticipated Impact

Simulation of reaction $\gamma p \to K^+ \Sigma^0 \pi^0$ with $\Sigma^0 \to \gamma \Lambda$

Selection of Σ^0 via decay photon energy 14000 12000 γ -energy 10000 in Σ^0 -CMS 8000 (after cut on E,p-6000 conservation in fit) 4000 2000 20 60 80 100 120 140 160 180 200 220 240 decavgamma energy [MeV]

Included BG channels: *K*Σ(1385) $K^0 \Sigma^+$ $K^+\Sigma^0$ $p\pi^0\eta$ $p\pi^+\pi^-\pi^0$ $K^{+}\Sigma(1385)\pi^{0}$ $K^+\Sigma^+\pi^ K^+ \Lambda \pi^0$ Sum

Anticipated Impact

Simulation of reaction $\gamma p \to K^+ \Sigma^0 \pi^0$ with $\Sigma^0 \to \gamma \Lambda$

Hyperon Spectroscopy at GlueX

The GlueX experiment at JLab

[S. Adhikari, et al. Nucl.Instrum.Meth.A 987 (2021) 164807]

GlueX Phase I: Data taking finished

GlueX Phase II: Ring-imaging Cherenkov (DIRC) detector added

Recent update: Upgrade of FCAL *PbWO*₄ insert

Beam Polarization

- Linearly polarized photons to shed light onto the exchange mechanism
- Coherent bremsstrahlung off a diamond crystal
- Polarization degree determined by a triplet polarimeter

Measurements of the Beam Asymmetry $\boldsymbol{\Sigma}$

Beam asymmetry Σ sensitive to the exchange mechanism:

- $\Sigma > 0$: natural exchange favored
- $\Sigma < 0 \text{:}$ unnatural exchange favored

Results for strangeness production show dominance of natural exchange \rightarrow Kaons

[S. Adhikari et al. Phys. Rev. C 101, 6, 065206 (2020)]

Measurements of the Beam Asymmetry $\boldsymbol{\Sigma}$

Beam asymmetry Σ sensitive to the exchange mechanism:

- $\Sigma > 0$: natural exchange favored
- $\Sigma < 0$: unnatural exchange favored

[S. Adhikari, et al. Phys.Rev.C 103 (2021) 2, L022201]

Analysis of $\boldsymbol{\Sigma}$ hints at different particles in the t-channel

Interesting for hyperon production?

Possible Polarization Measurements

• Elliptically polarized beam: linearly and circularly at the same time!

For information about this method see

[F. Afzal et al. Phys. Rev. Lett. 132, no.12, 121902 (2024)]

Possible Polarization Measurements

• Elliptically polarized beam: linearly and circularly at the same time!

For information about this method see

[F. Afzal et al. Phys. Rev. Lett. 132, no.12, 121902 (2024)]

- Polarized target (Proposed for GDH measurement) currently being developed
 - Butanol target
 - Longitudinally polarized

Dalitz Plot for Hyperons

Source: Hao Li, this workshop

Multiple Hyperons directly visible in the data

Various final states accessible e.g. pK^+K^- , $K^+\Sigma\pi$, $K^+\Lambda\pi$, $K^+\Sigma\eta$, $K^+\Lambda\eta$,...

20

Conclusion

Complementary Measurement between GlueX and CBELSA++

- Large amount of data on hyperons with a polarized photon beam available at GlueX!
- Various different exchange particles possible (*K*, *K*^{*} ...)
- Polarized target may be available in the future

- GlueX can probe the high-mass states
- CBELSA++ can focus on precision spectroscopy of the low-mass states
- $\rightarrow\,$ Only the combination of both experiments can cover the whole mass range!

- New era of experiments allows precise measurements of (polarization) observables for Meson and Baryon Spectroscopy
- New polarization data will help to understand the resonance spectra and will provide an experimental basis for comparison with constituent quark models, lattice QCD or other methods
- New experiment at ELSA currently being developed, which will shed light onto the strange sector.
- Lol for polarization measurements at GlueX currently being written

Conclusion and Outlook

- New era of experiments allows precise measurements of (polarization) observables for Meson and Baryon Spectroscopy
- New polarization data will help to understand the resonance spectra and will provide an experimental basis for comparison with constituent quark models, lattice QCD or other methods
- New experiment at ELSA currently being developed, which will shed light onto the strange sector.
- Lol for polarization measurements at GlueX currently being written

Thank you for your attention.