Hadron spectroscopy from lattice QCD

Christopher Thomas, University of Cambridge

c.e.thomas@damtp.cam.ac.uk

Workshop on "Hadron Spectroscopy with Strangeness", Glasgow, 3 – 5 April 2024

Lattice QCD spectroscopy

Systematically-improvable first-principles calculations

- Discretise spacetime in a finite volume
- Compute correlation fns. numerically (Euclidean time, $t \rightarrow i t$)

Note:

- Finite *a* and *L*
- Possibly heavy u, d quarks

(\rightarrow unphysical m_{π})

Lattice QCD spectroscopy

Systematically-improvable first-principles calculations

- Discretise spacetime in a finite volume
- Compute correlation fns. numerically (Euclidean time, $t \rightarrow i t$)

Note:

- Finite *a* and *L*
- Possibly heavy u, d quarks

(\rightarrow unphysical m_{π})

Finite-volume energy eigenstates from:

$$C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$$
$$= \sum_n \frac{e^{-E_n t}}{2 E_n} \left\langle 0 \left| \mathcal{O}_i(0) \right| n \right\rangle \left\langle n \left| \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$$

Lattice QCD spectroscopy

Systematically-improvable first-principles calculations

- Discretise spacetime in a finite volume
- Compute correlation fns. numerically (Euclidean time, $t \rightarrow i t$)

Note:

- Finite *a* and *L*
- Possibly heavy u, d quarks

(\rightarrow unphysical m_{π})

Finite-volume energy eigenstates from:

$$C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$$
$$= \sum_n \frac{e^{-E_n t}}{2 E_n} \left\langle 0 \left| \mathcal{O}_i(0) \right| n \right\rangle \left\langle n \left| \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$$

Excited spectra: large bases of operators with appropriate structures

Excited kaons

[Dudek, Edwards, Peardon, Richards, CT (HadSpec), 1004.4930 (PRD)]

(also other m_{π})

Scattering and resonances

Most hadrons are resonances and decay strongly to lighter hadrons

Scattering and resonances

Most hadrons are resonances and decay strongly to lighter hadrons

Scattering and resonances

Most hadrons are resonances and decay strongly to lighter hadrons

Can't directly compute scattering amplitudes in lattice QCD

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of **finite-volume energy levels** $\{E_{cm}\}$ to **infinite-volume scattering t-matrix**.

Can't directly compute scattering amplitudes in lattice QCD

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of **finite-volume energy levels** $\{E_{cm}\}$ to **infinite-volume scattering t-matrix**.

Elastic scattering: one-to-one mapping $E_{cm} \leftrightarrow t(E_{cm})$

Can't directly compute scattering amplitudes in lattice QCD

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\{E_{cm}\}$ to infinite-volume scattering *t*-matrix.

Elastic scattering: one-to-one mapping $E_{cm} \leftrightarrow t(E_{cm})$

Coupled channels: under-constrained problem (each E_{cm} constrains *t*-matrix at that E_{cm}) Param. $t(E_{cm})$ using various forms, e.g. *K*-matrix (unitarity) [see e.g. review Briceño, Dudek, Young, Rev. Mod. Phys. 90, 025001 (2018)]

[Complication: reduced sym. of lattice vol. \rightarrow mixing of partial waves]

Can't directly compute scattering amplitudes in lattice QCD

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\{E_{cm}\}$ to infinite-volume scattering *t*-matrix.

Elastic scattering: one-to-one mapping $E_{cm} \leftrightarrow t(E_{cm})$

Coupled channels: under-constrained problem (each E_{cm} constrains *t*-matrix at that E_{cm}) Param. $t(E_{cm})$ using various forms, e.g. *K*-matrix (unitarity) [see e.g. review Briceño, Dudek, Young, Rev. Mod. Phys. 90, 025001 (2018)]

Analytically continue $t(E_{cm})$ in complex E_{cm} plane, look for poles.

[Complication: reduced sym. of lattice vol. \rightarrow mixing of partial waves]

Can't directly compute scattering amplitudes in lattice QCD

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\{E_{cm}\}$ to infinite-volume scattering *t*-matrix.

Elastic scattering: one-to-one mapping $E_{cm} \leftrightarrow t(E_{cm})$

Coupled channels: under-constrained problem (each E_{cm} constrains *t*-matrix at that E_{cm}) Param. $t(E_{cm})$ using various forms, e.g. *K*-matrix (unitarity) [see e.g. review Briceño, Dudek, Young, Rev. Mod. Phys. 90, 025001 (2018)]

Analytically continue $t(E_{cm})$ in complex E_{cm} plane, look for poles.

Demonstrated in calcs. of ρ , light scalars, b_1 , charm mesons, ...

[Complication: reduced sym. of lattice vol. \rightarrow mixing of partial waves]

The ρ resonance: elastic P-wave $\pi\pi$ scattering

(HadSpec) [PR D87, 034505 (2013); PR D92, 094502 (2015)]

The ρ resonance: elastic P-wave $\pi\pi$ scattering

(HadSpec) [PR D87, 034505 (2013); PR D92, 094502 (2015)]

m_π ≈ 239, 284, 327, 391 MeV (28, 21, 18, 36 energies)


```
m<sub>π</sub>≈ 239, 284,
327, 391 MeV
(28, 21, 18, 36 energies)
```


[Wilson, Briceño, Dudek, Edwards, CT (HadSpec), 1904.03188 (PRL)]

m_π≈ 239, 284, 327, 391 MeV (28, 21, 18, 36 energies)

[Wilson, Briceño, Dudek, Edwards, CT (HadSpec), 1904.03188 (PRL)]

[Wilson, Briceño, Dudek, Edwards, CT (HadSpec), 1904.03188 (PRL)]

$f_0(500)/\sigma$ in $\pi\pi$ – poles

[Briceño, Dudek, Edwards, Wilson (HadSpec), 1607.05900 (PRL); Rodas, Dudek, Edwards (HadSpec), 2303.10701 (PRD)]

$f_0(500)/\sigma$ in $\pi\pi$ – poles

[Briceño, Dudek, Edwards, Wilson (HadSpec), 1607.05900 (PRL); Rodas, Dudek, Edwards (HadSpec), 2303.10701 (PRD)]

[Wilson, Dudek, Edwards, CT (HadSpec), 1406.4158 (PRL); 1411.2004 (PRD)]

[PL B 740, 303 (2015)]

Rodas *et al* (JPAC) [PRL 122, 042002 (2019)]: single resonance, *m* = 1564(24)(86) MeV, Γ = 492(54)(102) MeV

Kopf *et al* [EPJ C81, 12 (2021)] CB & COMPASS data: single resonance, $m = (1561.6 \pm 3.0^{+6.6}_{-2.6}) \text{ MeV}$, $\Gamma = (388.1 \pm 5.4^{+0.2}_{-14.1}) \text{ MeV}$

1^{-+} channel with SU(3)_F flavour sym

[**Woss**, Dudek, Edwards, Thomas, Wilson, 2009.10034 (PRD)]

SU(3)_F symmetry ($m_u = m_d = m_s$), 6 lattice volumes $m_\pi \approx 700 \text{ MeV}, m_\rho \approx 1000 \text{ MeV}, m_{n'} \approx 940 \text{ MeV}$

[**Woss**, Dudek, Edwards, Thomas, Wilson, 2009.10034 (PRD)]

SU(3)_F symmetry ($m_u = m_d = m_s$), 6 lattice volumes $m_\pi \approx 700 \text{ MeV}, m_\rho \approx 1000 \text{ MeV}, m_{\eta'} \approx 940 \text{ MeV}$

Constrain eight 1^{-+} SU(3)_F octet coupled partial waves with 53 energy levels

$$\eta^{1} \eta^{8} \{ {}^{1}P_{1} \} \\ \omega^{8} \eta^{8} \{ {}^{3}P_{1} \} \\ \omega^{8} \omega^{8} \{ {}^{3}P_{1} \}, \ \omega^{1} \omega^{8} \{ {}^{1}P_{1}, {}^{3}P_{1}, {}^{5}P_{1} \} \\ f_{1}^{8} \eta^{8} \{ {}^{3}S_{1} \}, \ h_{1}^{8} \eta^{8} \{ {}^{3}S_{1} \}$$

(Another 8 energy levels constrain three 3^{-+} partial waves.)

Pole and couplings

Strongly coupled to $h_1^8\eta^8$

Pole and couplings

Extrapolation of couplings

Attempt crude extrapolation to physical masses (break SU(3)_F symmetry).

Assume couplings scale with appropriate barrier factor k^e.

Use PDG masses and m_R = 1564 MeV.

 $\Gamma = \Sigma_i \Gamma_i = 139 - 590 \text{ MeV}$

c.f. JPAC: Γ = 492(54)(102) MeV Kopf *et al*: Γ = (388.1 ± 5.4 $^{+0.2}_{-14.1}$) MeV

	$\Gamma_i/{ m MeV}$
$\eta\pi$	$0 \rightarrow 1$
$\rho\pi$	$0 \rightarrow 20$
$\eta'\pi$	$0 \rightarrow 12$
$b_1\pi$	$139 \rightarrow 529$
$K^*\overline{K}$	$0 \rightarrow 2$
$f_1(1285)\pi$	$0 \rightarrow 24$
$\rho\omega\{{}^1\!P_1\}$	$\lesssim 0.03$
$\rho\omega\{^{3}P_{1}\}$	$\lesssim 0.09$
$\rho\omega\{{}^5\!P_1\}$	$\lesssim 0.03$
$f_1(1420)\pi$	$0 \rightarrow 2$

[2009.10034 (PRD)]

Extrapolation of couplings

Attempt crude extrapolation to physical masses (break SU(3)_F symmetry).

Assume couplings scale with appropriate barrier factor k^e.

Use PDG masses and m_R = 1564 MeV.

 $\Gamma = \Sigma_i \Gamma_i = 139 - 590 \text{ MeV}$

c.f. JPAC: Γ = 492(54)(102) MeV Kopf *et al*: Γ = (388.1 ± 5.4 $^{+0.2}_{-14.1}$) MeV [2009.10034 (PRD)]

	$\Gamma_i/{\rm MeV}$
$\eta\pi$	$0 \rightarrow 1$
$\rho\pi$	$0 \rightarrow 20$
$\eta'\pi$	$0 \rightarrow 12$
$b_1\pi$	$139 \rightarrow 529$
$\overline{K^*\overline{K}}$	$0 \rightarrow 2$
$f_1(1285)\pi$	$0 \rightarrow 24$
$\rho\omega\{{}^1\!P_1\}$	$\lesssim 0.03$
$\rho\omega\{^{3}P_{1}\}$	$\lesssim 0.09$
$\rho\omega\{{}^5\!P_1\}$	$\lesssim 0.03$
$f_1(1420)\pi$	$0 \rightarrow 2$

LQCD calc. in McNeile & Michael [PR D73, 074506 (2006)]: consider setup with $m_{\pi} \approx 500$ MeV, $m_{\pi_1} = m_{b_1} + m_{\pi}$

Isospin-3 πππ

[Hansen et al (HadSpec), 2009.04931 (PRL)]

Isospin-3 πππ

Resonant $K^+ \gamma \rightarrow K^{*+} \rightarrow K^+ \pi^0$ amplitude

[Radhakrishnan, Dudek, Edwards (HadSpec), 2208.13755 (PRD)]

Resonant $K^+ \gamma \rightarrow K^{*+} \rightarrow K^+ \pi^0$ amplitude

[Radhakrishnan, Dudek, Edwards (HadSpec), 2208.13755 (PRD)]

Need:
$$\langle 0 | \mathcal{O}_i(t_f) | \bar{\psi}(t) \gamma^{\mu} \psi(t) | \mathcal{O}_j(t_i) | 0 \rangle$$

Summary

- Significant progress in using lattice QCD to map out scattering amplitudes and study resonances etc. in recent years
- Presented some examples (there are lots more)
- Study evolution of phenomena as vary light-quark masses
- More sophisticated analysis techniques (c.f. analysis of experimental data)
- Three (or more!?) hadron scattering
- Probe structure, e.g. transitions and form factors

Science and Technology Facilities Council

Acknowledgements

DiRAC

Hadron Spectrum Collaboration

[www.hadspec.org]

Jefferson Lab and surroundings, USA:

JLab: Robert Edwards, Jie Chen, Frank Winter
W&M: Jozef Dudek¹, Andrew Jackura, Mischa Batelaan, *Felipe Ortega;*ODU: Arkaitz Rodas¹; ORNL: Bálint Joó (¹ and Jefferson Lab)

University of California Berkeley / LBNL: Raúl Briceño

Trinity College Dublin, Ireland: Michael Peardon, Sinéad Ryan, Travis Whyte

UK: University of Cambridge: CT, David Wilson, Nelson Lachini, *Daniel Yeo* Edinburgh: Max Hansen

Tata Institute, India: Nilmani Mathur; Ljubljana, Slovenia: Luka Leskovec