Overview of Hyperon Physics in Photoproduction at GlueX

Jesse A. Hernández, On behalf of the GlueX Collaboration

Hadron Spectroscopy with Strangeness Workshop University of Glasgow Apr 3-5, 2024

Outline

1 Introduction

- GlueX Overview
- **2** GlueX Analysis (S = 1)
 - Hyperon Publications
 - $\Lambda(1405)$ Analysis
- 3 GlueX Analysis (S = 2)
 - Motivation
 - $\bullet~\Xi^*$ Spectra
 - Ξ Cross Section Measurements
- 4 Conclusion

Beamline and GlueX Spectrometer

Nucl. Instrum. Meth. A 987, 164807 (2021)

- The GlueX spectrometer is almost fully hermetic detector.
- Houses a liquid hydrogen target.
- All final state particles are measured exclusively.

GlueX-I Data

- Total luminosity: 439.6 pb⁻¹ for $E_{\gamma} > 6.0$ GeV.
- Coherent Peak Luminosity: 125 pb⁻¹ for $E_{\gamma} = (8.2, 8.8)$ GeV.
- Linearly polarized photon beam.

Hyperon (S=1) Overview

Direct Hyperon Production Mechanism

• Naturality of exchange particles with parity, *P*, and spin, *J*, encode the *t*-channel production Regge trajectories:

$$\eta = P(-1)^J = \begin{cases} +1, \text{ natural} \\ -1, \text{ unnatural} \end{cases}$$

Publications

- $K^+\Sigma^0$ beam asymmetry at $E_{\gamma} = 8.5$ GeV.
- Λ(1520) spin density matrix elements (SDMEs).
 Ongoing Work
- $\Lambda(1520)$ Cross Sections
- $\Lambda(1405)$ Line Shape Measurements
- $\Lambda\overline{\Lambda}$ Production (Hao Li, Session 2)

A Strange Section

2 GlueX Analysis (S = 1)• Hyperon Publications • $\Lambda(1405)$ Analysis • Ξ^* Spectra

Beam Asymmetry for $\vec{\gamma}p \to K^+ \Sigma^0$

Phys. Rev. C. **101**, 065306 (2020) (GlueX Collaboration)

Event Selection

Formalism

- Produced via exchange of $K^*(892)$ (natural-parity) and K(494)(unnatural-parity) trajectories.
- Photon beam asymmetry, Σ , is:

$$\begin{split} \Sigma &= \left[\frac{d\sigma_{\perp}}{dt} - \frac{d\sigma_{\parallel}}{dt} \right] \Big/ \left[\frac{d\sigma_{\perp}}{dt} + \frac{d\sigma_{\parallel}}{dt} \right] \\ &= \frac{(|f_1^+|^2 + |f_2^+|^2) - (|f_1^-|^2 + |f_2^-|^2)}{f_1^+|^2 + |f_2^+|^2 + |f_1^+|^2 - |f_2^-|^2} \end{split}$$

• Direct measurement of natural- and unnatural-parity contributions.

Final state reaction:

$$\gamma p \to K^+ \Sigma^0, \ \Sigma^0 \to \Lambda^0 \gamma, \ \Lambda^0 \to p \pi^-$$

• ~ 20% of GlueX-I data for E_{γ} (GeV): (8.2,8.8).

$K^+\Sigma^0$ Beam Asymmetry Results

Yield Asymmetry

$$\frac{Y_{\perp} - F_R Y_{\parallel}}{Y_{\perp} + F_R Y_{\parallel}} = \frac{(P_{\perp} + P_{\parallel})\Sigma\cos 2(\phi - \phi_0)}{2 + (P_{\perp} - P_{\parallel})\Sigma\cos 2(\phi - \phi_0)},$$

 ϕ angle between a plane parallel to the laboratory floor and the K^+ production plane.

Results

- Mean value for t-range $(0.1 1.4)(\text{GeV})^2$: $\Sigma = 1.00 \pm 0.04(\text{stat}) \pm 0.03(\text{syst}) \pm 0.02(\text{pol})$
- Consistent with natural-parity exchange from theoretical predictions.
- Low *u*-region, $-u < 2.0 \text{ GeV}^2$ result: $\Sigma = 0.41 \pm 0.07 (\text{stat}) \pm 0.06 (\text{syst}) \pm 0.02 (\text{pol})$
- *u*-channel hyperon exchanges of Σ and Y^* contribute.

Phys. Rev. C. **101**, 065306 (2020) (GlueX Collaboration)

GlueX Analysis (S = 1) Hyperon Publications

vents / 1.2 MeV/c

residuals

400È

350 300

250

200

150

100

Spin Density Matrix Elements (SDMEs) in $\Lambda(1520)$

Event Selection

- Final state $\gamma p \to K^+ \Lambda^*, \ \Lambda^* \to K^- p$
- ~ 20% of GlueX-I data for $E_{\gamma} = (8.2 8.8)$ GeV.
- sPlot technique used for background subtraction.
- $\sim 32,200$ events after subtraction.

Formalism

• Spin Density Matrix:

$$\rho = \rho^0 - P_\gamma \cos 2\Phi \rho^1 - P_\gamma \sin \Phi \rho^2.$$

• 10 SDMEs for linearly polarized photon with unpolarized fixed target.

(GlueX Collaboration), Phys. Rev. C. 105, 035201

CM frame

1.48

 $-(t - t_0) = (0.3 - 0.5)(\text{GeV})^2$

1 52

YMNN

1 54

 $\Lambda(1520)$ rest frame

х

1 56

inv. mass pK (GeV/c2)

1.58

ĸ

$\Lambda(1520)$ SDME Interpretation

Phys. Rev. C. **105**, 035201 (2022) (GlueX Collaboration)

- SDMEs can be rewritten in terms of purely natural and unnatural exchange.
- Measured SMDEs are dominated by natural exchange amplitudes.
- Results agree quantitatively with predictions using K^* , K_2^* exchanges.

Unnatural exchange $(\eta = -1)$

GlueX Analysis (S = 1) $\Lambda(1405)$ Analysis

Decay of $\Lambda(1405)$

N. Wickramaarachchi DNP 23' (GlueX Collaboration)

Event Selection

- All GlueX-I data for E_{γ} (GeV): (6.5,11.6).
- t-channel production for $0 < -(t t_{min}) < 1.5 \text{ GeV}^2$.
- ~ 25,000 counts for $M_{\Sigma^0 \pi^0} < 1.46$ GeV.
- Statistical uncertainties only.
 - $\Lambda(1405) \rightarrow \Sigma^0 \pi^0$ is pure I = 0.
 - GlueX can reconstruct neutral showers and charged particles for simultaneous fits to $\Sigma^0 \pi^0$ and pK^- decay modes.

The Very Strange Section

Introduction GlueX Overview GlueX Analysis (S = 1) Hyperon Publications Λ(1405) Analysis GlueX Analysis (S = 2)

- Motivation
- $\bullet~\Xi^*$ Spectra
- Ξ Cross Section Measurements
- (4) Conclusion

Revealing the Ξ Spectrum

Phys. Rev. D 87, no. 5, 054506 (2013)

Ξ Excitation Spectrum

$\Xi(1320)^{-}$ Production

Event Selection

- Kinematic fit to final state particles and vertices, Ξ⁻ mass unconstrained.
- GlueX-I data for E_{γ} (GeV): (6.4,11.4).

Differential Cross Section

- Can see an exponential decay, evidence of *t*-channel exchange.
- Model needed to further interpret results.

Integrated Cross Section

• CLAS Collaboration data up to $E_{\gamma} = 5.4$ GeV:

Phys. Rev. C 98, 062201(R)

- Differential Cross section integrated up to $-t = 2.0 \text{ (GeV)}^2.$
- GlueX-I shows good agreement with CLAS in the energy dependent behavior.

$\Xi(1530)^{-}$ Production

- Final state reaction: $\gamma p \to K^+ (K^+ \Xi (1530)^-)_{Y^*}, \ \Xi (1530)^- \to \Xi^- \pi^0.$
- $\bullet~\sim 50\%$ of GlueX-I data.
- Cross section shows no significant energy dependence: $< \sigma >= 0.16$ nb and standard deviation = 0.06 nb.

Conclusion

Concluding Remarks

Future Prospects

- GlueX-II with Cherenkov (DIRC) detector for π/K separation up to ~ 4 GeV.
- GlueX-II to quadruple GlueX statistics.
- GlueX with polarized traget (Annika Thiel, Session 8)
- KLong Facility (Stuart Fegan, Session 10)

Summary

- Shown the wide ranging efforts of the publications and ongoing analysis with hyperons at GlueX.
- Projects studying the S = 1 and S = 2 hyperon sector have broad impacts for understanding hadrons in photoproduction.
- GlueX acknowledges the support of several funding agencies and computing facilities:

Conclusion

Backup Slides

Conclusion

$\Lambda(1520)$ SDME Results

Phys. Rev. C. **105**, 035201 (2022) (GlueX Collaboration)

- The nine independent SDMEs are measured and shown on left.
- First measurement of polarized SDMEs and unpolarized SDMEs at these energies for Λ(1520).
- Models in red and blue from Phys. Rev. C. **96**, 025208 (2017) using a reggeized framework.
- Measurements SDMEs will provide strong constraints on Λ(1520) production mechanism in models.

Cross Section Review

Differential Cross Section

$$\frac{d\sigma(E_{\gamma},t)}{dt} = \frac{N_{\Xi}(E_{\gamma},t)}{\rho_t \ N_{\gamma}(E_{\gamma}) \ BR(\Lambda \to \Lambda \pi^-)\epsilon(\Lambda \to \Lambda \pi^-) \ \Delta t}$$
$$\epsilon = \frac{N_{recon}(E_{\gamma,t})}{N_{thrown}(E_{\gamma,t})}, \qquad t = \left(\mathbf{P}_{\gamma} - \mathbf{P}_{K_{high}^+}\right)^2$$

Total Cross Section

$$\begin{split} \sigma(E_{\gamma}) &= \int_{t_{min}}^{t_{max}} \frac{\partial \sigma(E_{\gamma}, t)}{\partial t} \ dt, \\ &= \frac{N_{\Xi}(E_{\gamma})}{\rho_t \ N_{\gamma}(E_{\gamma}) \ BR(\Lambda \to \Lambda \pi^-) \epsilon(\Lambda \to \Lambda \pi^-)} \end{split}$$

- Use full signal Monte Carlo to calculate detector efficiency.
- Need to divide mass distributions into energy and t bins for yield and efficiency extractions.