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 interaction and K̄N Λ(1405)

18 P-%A VE BARYONS IN THE QUARK MODEL
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FIG. 1. Comparison of the predicted and observed spectrum of negative-parity baryons. The shaded regions corre-
spond to the likely mass values of resonances; the solid bars are the predictions of the text, corresponding to the para-
meters mo= 1610MeV, += 520 MeV, x =0.6, &m =280 MeV, and 15 = 300 MeV.
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FIG. 2. Comparison of the predicted and observed spectrum of negative-parity S = 0 baryons. The predicted composi-
ti.on of a given state is displayed directly above the bar indicating its position. The experimental composition is given in
the most convenient location with respect to the shaded region which indicates its experimental position.
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• Large discrepancy from qurak model 

• Predicted in the  scattering below πΣ K̄N
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FIG. 1. The location of pole P on the complex k-plane.

mation is reasonable.
In Fig. 2, cross sections for T =0 g -Z elastic

scattering are plotted for solution (b-) as func-
tion of o,. As expected from general theorems, "
these cross sections show prominent S-shaped
or pointed cusps at the K -p threshold. For
-90' & o, (mod 180') &0', quite a narrow resonance
(half-width &20 Mev) appears in these cross sec-
tions just below this threshold. We may make
the following remarks:
(j) The resonance will be still more pronounced

if the K-meson is scalar. In this case, the reso-
nant scattering takes place in a pi state, for
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FIG. 2. The total cross section predicted for T=0
7t —Z elastic s-wave scattering is plotted as function of
w —Z c.m. energy in the neighborhood of the K —P thres-
hold for various values of Oo, the x —Z scattering phase
shift at this threshold energy, assuming the E meson
to be pseudoscalar. Curve (a) depicts the energy de-
pendence of the T= 0 w- Z elastic scattering in the Pz&

state, for the case oo =0, assuming the K meson to be
scalar.

Z~+ w++w',K +
A +w +F

(Sa)
(Sb)

the pion-hyperon Q-values may be expected to
peak markedly at this resonance energy. A
peak in the w - A Q-values could occur only if
I=1 held for the resonant state. Other examples
are

Z++w++ Id',
Z +w'+K+,

w' +p- Z +w' +K+.

(Qa.)
(9b)

(10)

Only an I=1 (or I=2) w - Z resonance" can pro-
duce strong w -Z correlations in reactions (Qb)

which the cross section must vanish at the pion-
hyperon threshold, and so falls off more rapidly
than for an s j. state as 8 decreases below the
resonant energy. This is illustrated for the case
c, =0' by curve (a) of Fig. 2.
(ii) The T =1 resonances obtained for solution

(a-), which gives the more satisfactory K -P
elastic cross sections at low energies, 3 will be
sharper than those for solution (b-) and will
persist for a wider range of oo, since the ratio
5,/a, for the former solution is smaller than
5,/a for the latter.
That the K-baryon couplings contribute in an

important way to the features of pion-hyperon
elastic scattering must be emphasized here,
since a number of authors" have attempted to
discuss pion-hyperon scattering in terms of ele-
mentary pion-hyperon couplings alone. However,
it is clear from Fig. 2 that the K +p-Z+w re
actions, which are due to the K-baryon couplings,
have a strong effect on the g - Z scattering near
the K -P threshold. A perturbation treatment
of the effect of the K-baryon coupling on the
pion-hyperon scattering is a very poor approxi-
mation. Similarly, the g - Z resonance discussed
here arises primarily from the K-interactions,
being a consequence of the properties of low-
energy K -N scattering; it therefore appears
unrelated with the pion-hyperon resonances in-
vestigated recently by Landovitz and Margolis, "
and Nauenberg ' for particular pion-hyperon
coupling schemes.
The existence and isotopic-spin character of

this resonance will have to be established in-
directly, for example:
(a) By examining the correlations between out-

going pions and hyperons in strange particle re-
actions. For example, in the reactions
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 interaction data and  resonanceK̄N Λ(1405)

• Experimental data for -  system 

   •  total cross sections 
   • Branching rations 
   •  scattering length from Kaonic nuclei  
   •  mass spectra  
   •  femtoscopy

πΣ K̄N
K−p

K−p
πΣ
K−p

• Recent analysis with chiral SU(3) dynamics
• Two pole structure

 J. A. Oller and U. G. Meißner, PLB500, 263 (2001)
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Figure 6: Absolute value of the scattering amplitude |T | of the K̄N elastic channel in the
second Riemann sheet of the complex energy z plane.

There are two poles in the scattering amplitude with S = �1 and I = 0 around the ⇤(1405)
energies [9] and one pole around ⇤(1670) [137]. The positions of these poles are shown in Table 1. For
⇤(1405), one pole is located at higher energy around 1426 MeV with a narrower width 32 MeV, while
the other is sitting at lower energy around 1390 MeV with a larger width 132 MeV. Both poles are
found below the K̄N threshold, so the ⇡⌃ state with I = 0 is only the open channel for these poles. The
pole positions of ⇤(1405) and their e↵ect on the amplitude on the real axis are illustrated by plotting
the absolute value of the scattering amplitude in the complex energy plane in Fig. 6. The two poles are
located definitely at di↵erent positions around the ⇤(1405) energy in the complex energy plane, while
there is only one bump structure of the scattering amplitude on the real axis. Because the real parts
of the two poles are close to each other, the contributions of these poles interfere in the amplitude on
the real axis. As a consequence, what one can observe experimentally on the real axis is only a single
resonance peak. Since the pole of the scattering amplitude can be interpreted as one resonance state,
this finding indicates that the nominal ⇤(1405) is not a single resonance but a superposition of these
two independent states with the same quantum numbers [11].

The presence of the two poles around ⇤(1405) is more significant for experimental observations
due to the coupling nature of these resonance states. The coupling constants of the resonance to the
external channels can be extracted from the residues of the scattering matrix at the pole position as

Table 1: The pole positions zR and the absolute values of the coupling strengths |gi| in the
S = �1 and I = 0 amplitude taken from Ref. [11].

⇤(1405) ⇤(1670)
zR [MeV] 1390� 66i 1426� 16i 1680� 20i
|gi|(⇡⌃) 2.9 1.5 0.27
|gi|(K̄N) 2.1 2.7 0.77
|gi|(⌘⇤) 0.77 1.4 1.1
|gi|(K⌅) 0.61 0.35 3.5

29

T. Hyodo, D. Jido - PPNP 67 (2012) 55

Peak in mass spectra 
   two poles in complex -plane→ E

Λ(1380)
Λ(1405)

Detailed nature of two  resonancesΛ
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 correlation function in high-energy collisionsK−p
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 interaction and  correlationK̄N K−p

the transport code used in the simulation from GEANT3 [48]
to GEANT4 [49].
The effects related to momentum resolution effects are

accounted for by correcting the theoretical correlation
function, similarly to what shown in Refs. [33] and [41].
The theoretical correlation function Cðk"Þtheoretical depends
not only on the interaction between particles, but also on
the profile and the size of the particle emitting source.
Under the assumption that there is a common Gaussian
source for all particle pairs produced in pp collisions at a
fixed energy, the size of the source considered in the present
analysis is fixed from the baryon-baryon analyses described
in Refs. [33] and [41]. The impact of strongly decaying
resonances (mainly K" decaying into K and Δ decaying
into p) on the determination of the radius for Kp pairs was
studied using different Monte Carlo simulations [45,46]
and found to be 10%. This contribution was linearly added
to the systematic uncertainty associated with the radius.
The radii of the considered Gaussian sources are r0 ¼
1.13% 0.02þ0.17

−0.15 fm [33] for collisions at
ffiffiffi
s

p
¼ 5 and

7 TeV, and r0 ¼ 1.18% 0.01% 0.12 fm [41] for the
ffiffiffi
s

p
¼

13 TeV collisions.
The comparison of the measured Cðk"Þ for same-charge

Kp pairs with different models is shown in Fig. 1. Each
panel presents the results at different collision energy and
the comparison with two different scenarios. The blue band
represents the correlation function evaluated as described in
Eq. (1), assuming only the presence of the Coulomb
potential to evaluate the Cðk"Þtheoretical term. The red band
represents the correlation function assuming the strong
potential implemented in the Jülich model [50] in addition
to the Coulomb potential. The latter has been implemented

using the Gamow factor [51]. In the bottom panels, the
difference between data and model evaluated in the middle
of each k" interval, and divided by statistical error of data
for the three considered collision energies are shown. The
width of the bands represents the n-σ range associated to
the model variations. The reduced χ2 are also shown. This
comparison reveals that the Coulomb interaction is not able
to describe the data points, as expected, while the intro-
duction of a strong potential allows us to reproduce
consistently the data when the same source radius as for
baryon-baryon pairs is considered. Hence, the measured
correlation functions are sensitive to the strong interaction
and can be used to test different strong potentials for the
K−p system, assuming a common source for all the Kp
pairs produced in a collision.
Similar to Fig. 1 for like-sign pairs, Fig. 2 shows the

data-model comparison for unlike-sign pairs. The measured
Cðk"Þ is reported for the three different collision energies
and the Cðk"Þ distributions were compared with different
interaction models. Since all the models considered in this
Letter do not take the presence of Λð1520Þ into account,
only the region below 170 MeV=c is considered in the
comparison. The blue bands show results obtained using
CATS with a Coulomb potential only.
The remaining curves include, on top of the Coulomb

attraction, different descriptions of the K̄N strong inter-
action. The width of each band accounts for the uncer-
tainties in the λ parameters, the source radius and the
baseline. The light blue bands corresponds to the Kyoto
model calculations with approximate boundary conditions
on the K−p wave function which neglect the contributions
from Σπ and Λπ coupled channels [26,52–55]. Moreover,
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FIG. 2. (K−p ⊕ Kþp̄) correlation functions obtained (from left to right) from pp collisions at
ffiffiffi
s

p
¼ 5, 7, 13 TeV. The fourth panel

shows the combined results at the three colliding energies; the number of pairs in each data sample has been used as weight. The inset
shows the correlation function evaluated for pp collisions at

ffiffiffi
s

p
¼ 5 TeV in a wider k" interval. The measurement is presented by the

black markers; the vertical lines and the boxes represent the statistical and systematic uncertainties, respectively. Bottom panels
represent comparison with models as described in the text.
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the transport code used in the simulation from GEANT3 [48]
to GEANT4 [49].
The effects related to momentum resolution effects are
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The theoretical correlation function Cðk"Þtheoretical depends
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comparison reveals that the Coulomb interaction is not able
to describe the data points, as expected, while the intro-
duction of a strong potential allows us to reproduce
consistently the data when the same source radius as for
baryon-baryon pairs is considered. Hence, the measured
correlation functions are sensitive to the strong interaction
and can be used to test different strong potentials for the
K−p system, assuming a common source for all the Kp
pairs produced in a collision.
Similar to Fig. 1 for like-sign pairs, Fig. 2 shows the

data-model comparison for unlike-sign pairs. The measured
Cðk"Þ is reported for the three different collision energies
and the Cðk"Þ distributions were compared with different
interaction models. Since all the models considered in this
Letter do not take the presence of Λð1520Þ into account,
only the region below 170 MeV=c is considered in the
comparison. The blue bands show results obtained using
CATS with a Coulomb potential only.
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attraction, different descriptions of the K̄N strong inter-
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FIG. 2. (K−p ⊕ Kþp̄) correlation functions obtained (from left to right) from pp collisions at
ffiffiffi
s

p
¼ 5, 7, 13 TeV. The fourth panel

shows the combined results at the three colliding energies; the number of pairs in each data sample has been used as weight. The inset
shows the correlation function evaluated for pp collisions at

ffiffiffi
s

p
¼ 5 TeV in a wider k" interval. The measurement is presented by the

black markers; the vertical lines and the boxes represent the statistical and systematic uncertainties, respectively. Bottom panels
represent comparison with models as described in the text.

PHYSICAL REVIEW LETTERS 124, 092301 (2020)

092301-4

ALICE  PRL 124, 092301 (2020) 

• Good resolution thanks to high statistics 


• Sensitive to  MeV/c


• Detailed coupled-channel effect                                 

k* ≲ 200

Complementary data for  interactionK̄N

CK−p
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Kaon–proton scattering in Pb–Pb collisions at the LHC ALICE Collaboration
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Figure 2: The K�p�K+p correlation functions in the six centrality classes, with the corresponding Lednický–
Lyuboshitz fits (denoted as “L–L”) and Kyoto model calculations shown as light cyan and orange bands, respec-
tively. The width of the bands corresponds to the 1-s uncertainties. The inserts show the K+p�K�p correlation
functions with Lednický–Lyuboshitz fits as light cyan bands. The bottom panels show the difference between data
and the fit (model) normalised by the statistical uncertainty of the data sstat. The average pair transverse mass
hmTi is 0.92± 0.03 GeV/c2 for all centrality intervals. The statistical and systematic uncertainties are added in
quadrature and shown as vertical bars.

The following effects can be observed: the K�p�K+p pairs show an attractive Coulomb interaction for
small k⇤. The effect is opposite for K+p�K�p pairs. The influence of the repulsive strong interaction
manifests as correlation functions reaching values below unity in the region of k⇤ ⇡ 20�50 MeV/c and
becomes more pronounced towards more peripheral events, i.e., smaller source sizes. As predicted in
Ref. [39], features of the correlation function related to the coupled channels, observed in the analysis of
pp collisions [37], are negligible here. Neither the cusp structure at 58 MeV/c due to the presence of the
isospin-breaking channel K0n ! K�p nor the enhancement due to the coupled channels below threshold
enhancing the correlation above unity in the intermediate k⇤ range are visible in the correlation function
in Pb–Pb.

The common femtoscopic radii RKp for same- and opposite-charge pairs obtained from the Lednický–
Lyuboshitz fit are provided in Fig. 2 as well. They increase from around 5 fm for peripheral events to
almost 9 fm for central events, and all are larger than 3 fm where the predicted effect of coupled channels
is reduced or negligible [39]. The radii scale linearly with the cube root of the mean charged-particle
multiplicity density hdNch/dhi1/3, as observed for pion–pion [67], kaon–kaon [49], and pion–kaon [57]
pairs. The scattering length parameters obtained from the fit are ¬ f0 =�0.91± 0.03(stat)+0.17

�0.03(syst) fm
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Figure 2: The K�p�K+p correlation functions in the six centrality classes, with the corresponding Lednický–
Lyuboshitz fits (denoted as “L–L”) and Kyoto model calculations shown as light cyan and orange bands, respec-
tively. The width of the bands corresponds to the 1-s uncertainties. The inserts show the K+p�K�p correlation
functions with Lednický–Lyuboshitz fits as light cyan bands. The bottom panels show the difference between data
and the fit (model) normalised by the statistical uncertainty of the data sstat. The average pair transverse mass
hmTi is 0.92± 0.03 GeV/c2 for all centrality intervals. The statistical and systematic uncertainties are added in
quadrature and shown as vertical bars.

The following effects can be observed: the K�p�K+p pairs show an attractive Coulomb interaction for
small k⇤. The effect is opposite for K+p�K�p pairs. The influence of the repulsive strong interaction
manifests as correlation functions reaching values below unity in the region of k⇤ ⇡ 20�50 MeV/c and
becomes more pronounced towards more peripheral events, i.e., smaller source sizes. As predicted in
Ref. [39], features of the correlation function related to the coupled channels, observed in the analysis of
pp collisions [37], are negligible here. Neither the cusp structure at 58 MeV/c due to the presence of the
isospin-breaking channel K0n ! K�p nor the enhancement due to the coupled channels below threshold
enhancing the correlation above unity in the intermediate k⇤ range are visible in the correlation function
in Pb–Pb.

The common femtoscopic radii RKp for same- and opposite-charge pairs obtained from the Lednický–
Lyuboshitz fit are provided in Fig. 2 as well. They increase from around 5 fm for peripheral events to
almost 9 fm for central events, and all are larger than 3 fm where the predicted effect of coupled channels
is reduced or negligible [39]. The radii scale linearly with the cube root of the mean charged-particle
multiplicity density hdNch/dhi1/3, as observed for pion–pion [67], kaon–kaon [49], and pion–kaon [57]
pairs. The scattering length parameters obtained from the fit are ¬ f0 =�0.91± 0.03(stat)+0.17
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 interaction  K̄N

Cieply and Mai, EPJ Web Conf. 130, 02001 (2016)

CHIRALLY MOTIVATED K̄N AMPLITUDES

A modern treatment of low-energy meson-baryon interactions is provided by approaches based on chiral perturbation
theory combined with coupled channel T-matrix re-summations techniques. The parameters of such models are fitted
to low energy K

�
p total cross sections, the threshold branching ratios (see e.g [? ] and to the strong-interaction

characteristics of the 1s level in kaonic hydrogen measured recently by the SIDDHARTA collaboration [4]. Several
theoretical groups presented models describing about equally well this set of experimental data. We refer to these
approaches as Kyoto-Munich (KM) [5], Prague (P) [6], Bonn (B2, B4) [7], Murcia (MI , MII) [8] and Barcelona
(BCN) [9], with some of them providing two solutions. The first four models are compared in [10].

In Fig. 1 we present the predictions of the models for K
�

p and K
�

n elastic amplitudes in the free space. Concerning
the K

�
p amplitude, all these state-of-the-art chiral models are in agreement in a region of energies at and above the

K
�

p threshold. The only exception is the Bonn approach due to different treatment of off-shell effects and partial
waves. The above models yield considerably different K

�
p amplitude below the threshold. On the other hand, for

the K
�

n amplitude the model variations are quite large over the whole energy region. The reason is that the I = 1
amplitudes, as well as the subthreshold K

�
p amplitudes, are not sufficiently restricted by the experimental data.

In nuclear matter the free-space K
�

N amplitudes are modified due to Pauli blocking and hadron self-energies,
the latter effectively modifying the in-medium hadron masses as well. It appears that for energies at least about
20 MeV below the K̄N threshold the main effect comes from the Pauli blocking and can be approximated by a simple
multiplication of the free-space K

�
N amplitudes by an energy and density dependent factor derived from considering
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FIGURE 1. The K
�

p (top panels) and K
�

n (bottom panels) elastic scattering amplitudes generated by recent chirally motivated
approaches. The various lines refer to the models: B2 (dotted, purple), B4 (dot-dashed, red), MI (dashed, blue), MII (long-dashed,
green), P (dot-long-dashed, violet), BCN (dot-dot-dashed, brown), and KM (continuous, black). The thin vertical lines in the
panels mark the pertinent K

�
N thresholds.
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ℱK̄N,I=1

B2, B4: Mai, Meißner, EPJA 51 (2015) 

M1, MII: Guo, Oller, PRC 87 (2013) 

PNLO: Cieplý, Smejkal, NPA 881 (2012)

KMNLO: Ikeda, Hyodo Weise NPA 881 (2012)

-  interaction  
and two pole structure

K̄N πΣ
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🔴          Ikeda, Hyodo Weise NPA 881 (2012)

🟣 , 🟢  Mai, Meißner, EPJA 51 (2015) 

🔵         Guo, Oller, PRC 87 (2013) 

-  interaction  
and two pole structure

K̄N πΣ

Y. Kamiya et al. / Nuclear Physics A 954 (2016) 41–57 47

Fig. 4. Pole positions in the !(1405) region from next-to-leading order chiral SU(3) dynamics including the SID-
DHARTA constraint, IHW [24,25], GO [42], and MM [43].

1420 MeV. There is consensus about this feature of the !(1405) in all chiral SU(3) dynamics 
analyses constrained by the K−p scattering and SIDDHARTA data.

As can be seen in Fig. 4 the position of pole 2 is subject to some ambiguities. In fact, the 
deviation among different models is larger than the uncertainty estimated in each model. This is 
because the main sources of the experimental data accumulated at and above the K̄N threshold. 
While the amplitude around the K̄N threshold is well determined, the constraint on the region far 
from the threshold is not very strong. The determination of the precise subthreshold amplitude is 
an important issue in the future. To sharpen the description of the subthreshold K̄N amplitude, 
one should include the π# invariant mass spectra in the fitting procedure. In fact, it turns out in 
Ref. [43] that the consistency check with the π# spectra is important to exclude some unphysical 
solutions. In the next section, we discuss the importance of precise empirical π# spectra for the 
study of the !(1405).

3. !(1405) and π# spectra

The !(1405) decays exclusively into the π# channel. Traditionally, the basic information 
about the !(1405) came from the π−#+ spectrum measured in the K−p → !(1405)π+π− →
π−#+π+π− reaction [51]. The charged π# state is, however, not the ideal channel to study 
the !(1405). As pointed out in Ref. [52], the isospin decomposition of the π# spectrum in the 
charge basis is given by

dσ (π+#−)

dMinv
∝ 1

3
|T (0)|2 + 1

2
|T (1)|2 + 2√

6
Re (T (0)T (1)∗), (9)

dσ (π−#+)

dMinv
∝ 1

3
|T (0)|2 + 1

2
|T (1)|2 − 2√

6
Re (T (0)T (1)∗), (10)

dσ (π0#0)

dMinv
∝ 1

3
|T (0)|2, (11)

Λ(1405)

Λ(1380)

• : Good consensus on  threshold poleΛ(1405) K̄N
 Strong constraint from SIDDHARTA data  

•  : lying close to  but the poles are scattered Λ(1380) πΣ
→ Further constraint needed…

• Are they stable with the higher-terms of chiral order?

• What are their origin? 

Pole structure with chiral NLO models
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Supplemental Material [63]. They show that BCHPTand its
unitarized version can provide a good description of the
meson-baryon scattering data for all the three strangeness
sectors simultaneously. For the K̄N channel, with all the
constraints from the KN and πN channels, we obtain a
χ2=d:o:f ¼ 1.56 weighting different observables by the
respective number of data points [41,43,44,100], which
should be compared with the equivalent value of about 2
from theNLO study [43]. The χ2=d:o:f: for theKN channels
decrease considerably [from 3.93(2.24) to 0.46(1.46) for
KNI¼0ðKNI¼1Þ] compared with those obtained in Ref. [35]
sincewe take into account the Oðp3Þ tree level contributions
which were omitted there.
In Fig. 1, we show the cross sections from the global

NLO (The NLO study is presented only for the sake of
comparison. The description of the K̄N channel is accept-
able but that of the πN channel is much worse. See the
Supplemental Material [63] for details.) and NNLO fits for
the K̄N coupled channels as well as πN and KN phase
shifts. The error bands are produced by the Bayesian model
for a degree of belief of 68% [101–103] (see the
Supplemental Material [63] for details). The comparison
with the best NLO fits of Guo [43] reveals that the K̄N
cross sections can be described rather well already at NLO,
but quantitatively better results are obtained at NNLO, in
particular, those of fπ−Σþ; π0Λ; ηΛg final states. It is
important to note that compared with the NLO fits, only
NNLO fits allow also for a simultaneous description of the
πN and KN phase shifts [35].
In Fig. 1(h), we also show the π−Σþ mass spectrum in

the vicinity of Λð1405Þ. As explained above, these data are
not fitted. They are calculated following the approach of
Refs. [39,43] but including the contributions from πΛ and
ηΛ. The ηΣ andKΞ channels are neglected because they are
too far away from the energy region of our interest. While
we are faced with the well-known problem that the left-
hand cuts overlap with the unitary cuts below the K̄N
threshold (see Supplemental Material [63] for details), the
data are indeed described well.
In Table II we compare the scattering length and three

ratios with the experimental data. Clearly the agreement is

very good. We show as well the results of Fit II of the
NLO study of Ref. [43], which agree with ours within
uncertainties.
The double pole structure of Λð1405Þ is the most

interesting nonperturbative phenomenon in this coupled-
channel problem. Studies on this special resonance date
back to the 1960s [108] where it was suggested as a K̄N
bound state (see also review in Ref. [48]). It was then found
that Λð1405Þ is actually a superposition of two poles
[39,109–111]. Recent discussions on this issue can be
found in Refs. [42,43,53,112–114]. Note that a recent
lattice QCD study also supports the K̄N bound state inter-
pretation of Λð1405Þ [115]; see also Refs. [116,117]. In
order to obtain the pole position, one needs to extend the
amplitudes to the second Riemann sheet. This can be
achieved by analytically extrapolating the loop function
GðsÞ to the second Riemann sheet following the standard
prescription, see, e.g., Refs. [27,43,56]. The poles

TABLE II. Threshold parameters, pole positions, and couplings of the two I ¼ 0 states obtained in the present work in comparison
with experimental data and the results of Ref. [43].

aK−p (fm) γ Rc Rn

NNLO ð−0.71% 0.07Þ þ ið0.84% 0.07Þ 2.35% 0.19 0.684% 0.033 0.198% 0.019
NLO [43] −0.61þ0.07

−0.08 þ ið0.89þ0.09
−0.08 Þ 2.36þ0.17

−0.22 0.661þ0.12
−0.11 0.188þ0.028

−0.029
EXP ð−0.64% 0.10Þ þ ið0.81% 0.15Þ 2.36% 0.12 0.664% 0.033 0.189% 0.015

Pole positions (MeV) jgπΣj (GeV) jgηΛj (GeV) jgK̄N j (GeV) jgKΞj (GeV)
Λð1380Þ 1392% 8 − ið102% 15Þ 6.40% 0.10 3.01% 0.15 2.31% 0.10 0.45% 0.01
Λð1405Þ 1425% 1 − ið13% 4Þ 2.15% 0.07 5.45% 0.24 4.99% 0.08 0.58% 0.02

FIG. 2. Positions of the two Λð1405Þ poles obtained in the
present study (“NNLO” and “NNLO&” corresponding to results
with or without baryon mass constraints) in comparison with
those of the NLO studies, i.e., Guo [43], Hyodo [42], Mai-I [53],
Mai-II [53], Sadasivan [113], Cieply [118], Shevchenko [119],
and Haidenbauer [120].

PHYSICAL REVIEW LETTERS 130, 071902 (2023)

071902-4

New chiral NNLO analysis 
J.-X. Lu, L.-S. Geng, M. Doering, M. Mai, PRL 130 (7) (2023) 071902.

-  interaction  
and two pole structure

K̄N πΣ

• Two pole structure is found in the latest NNLO analysis 
•  pole is consistent in NLO and NNLO models  

•  is also in the range of errors 

Λ(1405)
Λ(1380)
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Origin of poles ~Compositeness~

Compositeness for bound state 

Extension to unstable states and application Λ(1405)

Observables
: Scattering length


B : Binding energy
a0

Indication of structure

 : CompositenessX

• Extended weak binding relation for unstable states • Interpretation of complex value of X

a0 = R

�
2X

1 + X
+ O

����Rtyp

R

���
�

+ O
��� l

R

��3
��

S. Weinberg, Phys. Rev. 137, B672 (1965)

10

• Applications to  with chiral modelsΛ(1405)
Models

IHW -10-i26 1.39-i0.85 1.3+i0.1 1.0 0.3
MM(2013) -4-i8  1.81-i0.92 0.6+i0.1 0.6 0.0

GO -13-i20 1.30-i0.85 0.9-i0.2 0.9 0.1
MM(2015)    2-i10 1.21-i1.47 0.6+i0.0 0.6 0.0
MM(2015)  - 3-i12 1.52-i1.85 1.0+i0.5 0.8 0.3

X X̃ U/2B [MeV] a0 [fm]

 is   
dominated state
Λ(1405) K̄N

K̄

N
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allowed to grow linearly with the quark mass (or pion mass
squared), m0 þ α0m2

π . The two parameters of the
Hamiltonian model, the bare mass, m0, and the rate of
growth, α0, are constrained [43] by the lattice QCD results.
The interaction entries describe the coupling of the

single-particle state to the two-particle meson-baryon states
[44–46]. The strength of the interaction is selected to
reproduce the physical decay width (to πΣ) of 50" 2 MeV
[47] for the Λð1405Þ in the infinite-volume limit. The
couplings for other channels are related by SUð3Þ-flavor
symmetry [12–14].
In solving the Hamiltonian model, one naturally obtains

important nonperturbative avoided level crossings in the
quark mass and volume dependence of the eigenstates, vital
to describing the lattice QCD results. The solid curves of
Fig. 1 illustrate the best fit of the Hamiltonian model to the
lattice QCD results.
The three heaviest quark masses considered on the lattice

correspond to a stable odd-parity Λð1405Þ, as the πΣ
threshold energy exceeds that of the Λð1405Þ. However,
as the physical pion mass is approached, the πΣ threshold
energy decreases and a nontrivial mixing of states asso-
ciated with an avoided level crossing of the transitioning πΣ
threshold occurs. At the lightest two quark masses con-
sidered, the Λð1405Þ corresponds to the second state of
the Hamiltonian model with a πΣ-dominated eigenstate
occupying the lowest energy position.
The eigenvectors of the Hamiltonian system provide the

overlap of the basis states with the eigenstates and thus
describe the underlying composition of the eigenstates. As
the first and second eigenstates are dominated by the
single-particle state and the two-particle channels πΣ and
K̄N, we illustrate these in Fig. 4 for each value of pion mass
considered in the lattice QCD simulations. A sum over all
two-particle momentum states is done in reporting the
probability of the two-particle channels.
At the lightest pion mass, mπ ¼ 156 MeV, the

Hamiltonian model eigenstate for the Λð1405Þ is domi-
nated by the K̄N channel in complete agreement with the
explanation of the observed, vanishing strange quark
contribution to the magnetic form factor. A small but
nontrivial role for the single-particle three-quark state
enables the excitation of this state in the lattice correlation
matrix analysis of three-quark operators. In contrast, the
lowest-lying eigenstate of the Hamiltonian model at
mπ ¼ 156 MeV is dominated by πΣ, with very small
single-particle content, which explains why it is missing
from the lattice QCD spectrum.
Having confirmed that the Λð1405Þ state observed on the

lattice is best described as a molecular K̄N bound state, it
remains to demonstrate the connection between the finite-
volume lattice eigenstates and the infinite-volume reso-
nance found in nature. The quark-mass behavior of the
Λð1405Þ energy in the infinite-volume limit can be recon-
structed from the finite-volume Hamiltonian model by

considering the principal-value continuum versions of
the loop integral contributions from all channels. A boot-
strap error analysis provides a resonance energy of
1.48þ0.17

−0.07 GeV. The distribution of the bootstrap analysis
is sharply peaked around the most probable value of
1.41 GeV in good agreement with experiment. Further
details may be found in Ref. [48].
In summary, the Λð1405Þ has been identified in first-

principles lattice QCD calculations through a study of its
quark mass dependence and its relation to avoided level
crossings in finite-volume effective field theory. The struc-
ture of the Λð1405Þ is dominated by a molecular bound state
of an antikaon and a nucleon. This structure is signified
both by the vanishing of the strange quark contribution to the
magnetic moment of the Λð1405Þ and by the dominance of
the K̄N component found in the finite-volume effective field
theory Hamiltonian treatment.
At the same time, the presence of a nontrivial single-

particle three-quark component explains why the state is
readily accessible in lattice correlation matrix analyses
constructed with three-quark operators. In the infinite-
volume limit, the Hamiltonian model describes a quark
mass dependence that is consistent with nature.
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FIG. 4 (color online). The overlap of the basis state, jstatei,
with the energy eigenstate jEi for the Λð1405Þ, illustrating the
composition of the Λð1405Þ as a function of pion mass. Basis
states include the single particle state, denoted by m0, and the
two-particle states πΣ and K̄N. A sum over all two-particle
momentum states is done in reporting the probability for the two-
particle channels. Pion masses are indicated on the x axis with the
vertical dashed line separating the first state for the heaviest three
masses from the second state for the lightest two masses.
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FIG. 3. Finite-volume spectrum in the center-of-mass frame
used as input data to constrain parametrizations of the
coupled-channel ⇡⌃ � K̄N scattering amplitude. Each col-
umn corresponds to a particular irrep ⇤(d2) of the little group
of total momentum P 2 = (2⇡/L)2d2. Only irreps where the
` = 0 partial wave contributes are included. Dashed lines in-
dicate various thresholds, as labeled. Model energies from the
resultant scattering-amplitude fit are given by blue squares.

tance to the ⇡⌃ threshold. The parameters, which are
the elements of the A and B matrices, are determined
from fits to the lattice QCD results using the spectrum
method [66]. Similar fits are performed with variations of
the above parametrization: an ERE for eK�1, removing
the factor of Ecm in Eq. (2), parametrizations inspired
by the Weinberg-Tomozawa potential [19], or using the
Blatt-Biedenharn [67] form. The e↵ect of fixing some (or
all) of the elements of B to zero is also explored.

The correlated-�2 of the above fits is defined by com-
paring the center-of-mass interaction shifts �Ecm ob-
tained from the model with those determined from the
ratio fits with a particular choice of the non-interacting
levels. The fit with the lowest Akaike Information Crite-
rion (AIC) value is a four-parameter fit to Eq. (2). The
result is

A00 = 4.1(1.8), A11 = �10.5(1.1),

A01 = 10.3(1.5), B01 = �29(18),
(3)

with fixed B00 = B11 = 0 and �2 = 10.52 for 11 degrees
of freedom. This fit is shown in Fig. 1. All statistical un-
certainties and correlations are taken into account using
the bootstrap method with 800 samples.

Analytic structure of the amplitude.—The various
parametrizations discussed above constrain the energy
dependence of the amplitudes near the finite-volume en-
ergies, even if they do not accommodate left-hand (cross-
channel) cuts. Knowledge over this limited range enables
the analytic continuation of the scattering amplitude (de-
noted T ) to complex Ecm and the identification of poles
close to the real axis on sheets adjacent to the physical
one.

The K-matrix, the JP = 1/2� scattering amplitude
T , and the normalized amplitude t shown in Fig. 1 are

related by

t�1 =
8⇡Ecm

m⇡
T �1 = eK�1 � ibk, (4)

where m⇡
bk = diag (k⇡⌃, kK̄N ),

k2⇡⌃ =
1

4E2
cm

�(E2
cm,m

2
⇡,m

2
⌃) .

Here, �(x, y, z) is the Källén function [68] and kK̄N is
defined similarly. Analytic continuation of the coupled
channel ⇡⌃ � K̄N amplitude involves four di↵erent Rie-
mann sheets, each labelled by the sign of the imaginary
parts of (k⇡⌃, kK̄N ), with (+,+) denoting the physical
sheet. Complex poles in the scattering amplitude corre-
spond to vanishing eigenvalues in the right-hand side of
Eq. (4), and are determined numerically. In the vicinity
of a pole, the divergent part of the amplitude is

t =
m⇡

Ecm � Epole

 
c2⇡⌃ c⇡⌃ cK̄N

c⇡⌃ cK̄N c2
K̄N

!
+ . . . , (5)

where the (complex) residues c⇡⌃ and cK̄N denote the
coupling of the resonance pole to each channel.
Two poles are found on the (�,+) sheet, which is the

one closest to physical scattering in the region between
the two thresholds. Their locations are

E1 =1392(9)(2)(16) MeV,

E2 =[1455(13)(2)(17) � i11.5(4.4)(4)(0.1)] MeV,
(6)

and their couplings
�����
c(1)⇡⌃

c(1)
K̄N

����� = 1.9(4)(6),

�����
c(2)⇡⌃

c(2)
K̄N

����� = 0.53(9)(10). (7)

The first uncertainty is statistical, the second accounts
for parametrization dependence, and for the pole posi-
tions, the third comes from the uncertainty in the lat-
tice spacing in Table I. Two poles are present for all
parametrizations of the K-matrix. The pole at E1 is
likely a virtual bound state, except in 0.5% of bootstrap
samples where it is located on the physical sheet and thus
a bound state, while the one at E2 is a resonance. The
first pole has a stronger coupling to the ⇡⌃ channel, while
for the second, the hierarchy is reversed, a pattern also
predicted by chiral unitary models. Further confirmation
of the existence of the lower pole as a virtual bound state
comes from a single-channel analysis of the energy levels
near the ⇡⌃ threshold, as shown in Fig. 4.
Conclusion.—This study of ⇡⌃�K̄N scattering in the

⇤(1405) region is the first coupled-channel meson-baryon
scattering amplitude determined from lattice QCD. Her-
mitian correlation matrices using both single-baryon and
meson-baryon interpolating operators for a variety of
di↵erent total momenta and irreducible representations
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FIG. 4. The elastic ⇡⌃ amplitude near threshold. The points
are obtained from Eq. (1) using a single channel and `max = 0.
The shaded band denotes a fit of the four levels shown to
a two-parameter e↵ective range expansion. A pole on the
real axis in the second Riemann sheet (a virtual bound state)
occurs when k⇡⌃ cot �⇡⌃ � ik⇡⌃ = 0 below threshold. This is
where the black dashed line intersects the fit.

were used. The analytic continuation of the amplitudes
into the complex center-of-mass energy plane is stabi-
lized by finite-volume energies just below the ⇡⌃ and K̄N
thresholds and clearly exhibits two poles. At a slightly
heavier-than-physical pion mass of m⇡ ⇡ 200MeV, the
lower pole is a virtual bound state below the ⇡⌃ threshold
and the higher a resonance just below the K̄N thresh-
old. Due to our use of m⇡ > mphys

⇡ , the real parts of
the pole positions in Eq. (6) are somewhat larger than
those determined at the physical point from experiment
using chiral approaches [5], which lie within the ranges
ReE1 = 1325�1380MeV and ReE2 = 1421�1434MeV.
Importantly, this qualitative consistency supports the
two-pole picture predicted by chiral symmetry and uni-
tarity.

Future work with this system includes moving to phys-
ical quark masses which requires the consideration of
three particle e↵ects, but this should not present a major
problem in the region relevant for the ⇤(1405). Estimat-
ing residual finite-volume and lattice spacing e↵ects are
also planned. Studying this system along the quark-mass
trajectory toward the SU(3)-symmetric point will also
test the motion of the pole positions predicted by chi-
ral e↵ective theories. Finally, this work opens the door
to investigations of other baryon resonances, such as the
N(1535), ⇤(1670), ⌃(1620), and ⌅(1620).
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• Weinberg-Tomozawa term and extrapolation
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lowest order SU(3) breaking corrections occur when V is evaluated at next-to-leading order
from the O(p2) meson–baryon Lagrangian, with some of these terms already included in
Ref. [19]. Other SU(3) breaking effects as, e.g., those arising from the difference between
the weak decay constants of the pseudoscalars appear at O(p3) in V . The systematic
inclusion of such higher order corrections is beyond the present study but should be
considered in the future.
By following the approach of Ref. [10] and using the physical masses of the baryons

and the mesons, the position of the poles change and the two octets split apart in four
branches, two for I = 0 and two for I = 1, as one can see in Fig. 1. In the figure we show
the trajectories of the poles as a function of a parameter x that breaks gradually the SU(3)
symmetry up to the physical values. The dependence of masses and subtraction constants
on the parameter x is given by

Mi(x) = M0 + x(Mi − M0),

m2
i (x) = m2

0 + x
(
m2

i − m2
0
)
,

ai(x) = a0 + x(ai − a0), (16)

where 0 ! x ! 1. For the baryon masses, Mi(x), the breaking of the SU(3) symmetry
follows linearly, while for the meson masses, mi(x), the law is quadratic in the masses,
since in the QCD Lagrangian the flavor SU(3) breaking appears in the quark mass terms
and the squares of the mesonmasses depend on the quark masses linearly. In the calculation
of Fig. 1, the valuesM0 = 1151 MeV, m0 = 368 MeV and a0 = −2.148 are used.

Fig. 1. Trajectories of the poles in the scattering amplitudes obtained by changing the SU(3) breaking parameter
x gradually. At the SU(3) symmetric limit (x = 0), only two poles appear, one is for the singlet and the other for
the octets. The symbols correspond to the step size δx = 0.1.

⋯
 : physical point  
 : SU(3) limit 

x = 0
x = 1
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• Projection to multiplets

depending on the model details. Thus, to obtain a concrete picture for a given resonance, a detailed scheme for the
extrapolation where reasonable parameters are chosen at any hadron mass point in the extrapolation is required.

In this work, we revisit the origin of the ⇤(1405) and ⇤(1380) states within chiral dynamics by considering
the detailed extrapolation to the SU(3) limit, employing the results from chiral perturbation theory that give the the
quark-mass dependence of the GB and baryon masses of relevance here. We further consider the ⇤(1680) that is also
generated from the octet. See also Refs. [15, 16] for earlier work along these lines, and Refs. [17, 18] for recent ones.
In our work, we go beyond the Weinberg-Tomozawa (WT) term approximation for the meson-baryon interaction
potential, and, in particular, we include the next–to-leading order (NLO) operators.

This article is organized as follows. In Sect. 2, we summarize our approach and the scheme for the extrapolation. In
Sect. 3, we explain how our model parameters are determined. In Sect. 3 we collect all ingredients of our extrapolation
formulas and discuss the movement of the two poles from the SU(3) limit as the quark masses are tuned to their
physical values. Finally, we summarize our study in Sect. 4.

2. Formalism

2.1. Chiral unitary amplitude

In the K̄N system, the WT term, which appears at leading order (LO) in the chiral expansion, gives the dominant
contribution to the S -wave interaction. At the same order two one-baryon exchange diagrams contribute, the so-called
s- and u-channel Born terms. As common in many studies, we do not consider such LO Born terms here which are
negligible in the S -wave projected amplitudes at low energies. The WT interaction term projected to the S -wave and
I = 0 is given by

V
WT
i j

(
p

s) = �
C

WT
i j

8F2 NiN j(2
p

s � mi � mj) for i, j 2 {⇡⌃, K̄N, ⌘⇤,K⌅} (1)

with the meson decay constant F, the normalization factor Ni =
p

mi + Ei, baryon mass mi, the baryon energy

Ei =
q

m
2
i
+ q

2
i
, and qi =

p
(s � (Mi + mi)2)(s � (Mi � mi)2)/(2

p
s). The coe�cients C

WT
i j

are calculated from the LO
chiral Lagrangian and are provided explicitly in, e.g., Refs. [19, 20].

In the SU(3) limit, this interaction term can further be decomposed into irreps. For the meson-baryon system
from the octet of the Nambu-Goldstone (NG) bosons and the octet of ground state baryons, the corresponding de-
composition of multiplets reads {1, 8s, 8a, 10, 10, 27} with the subscripts “s” and “a” referring to the symmetric and
antisymmetric representations, respectively, see for more details Refs. [21, 17]. Projecting the above two-particle
isoscalar states to the relevant multiplets is accomplished by

0
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1
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, (2)

taken from Ref. [22] but adjusting for the correct phase [FK: additional explanation on the “correct phase”? maybe a
footnote] and neglecting the vanishing contributions. With this transformation, the WT term diagonalizes as

C↵� =

0
BBBBBBBBBBBB@

6 0 0 0
0 3 0 0
0 0 3 0
0 0 0 �2

1
CCCCCCCCCCCCA

for ↵, � 2 {1, 8a, 8s, 27}. (3)

The crucial observation at this point is that the singlet (1) representation gives the strongest attractive interaction
(positive coe�cient) while the octet (8) representations also give attraction, noting that the degeneracy of the octets is
an accidental symmetry of the WT term, as already discussed in [17]. Noteworthy, the symmetry is broken already by
the Born terms, but also by the NLO contact terms discussed below. The other representation (27) shows a repulsive
(negative coe�cient) interaction.

2

1 8′￼8

CWT
ij ⟶U

Origin of Int. SU(3) limit Physical point

Singlet (1) Deep bound state Λ(1380)
Octet (8, 8’) Weekly bound states 

(degenerated ) 
Λ(1405), Λ(1680)

• Resonant poles are related to the interaction multiplets
• Trajectories depend on extrapolation detail—> More detaield extrapolation towards lattice? 
• How trajectories change with NLO terms ?  

Motivation of this study 

decomposition of multiplets  
(1,8,8’,27) in SU(3) limit

Origin of poles ~Representations~



13

Model extrapolation to unphysical point 

Chiral unitary dynamics ~Weinberg-Tomozawa term model ~ 

Tij = Vij + VikGkTkj i, j, k ∈ {πΣ, K̄N, ηΛ, KΞ}

• Interaction kernel: Weinberg-Tomozawa term 

• Loop function 

= +
T V V

G
T

Gi( s) =
2mi

16π2 {ai(μ) + ln
m2

i

μ2

M2
i − m2

i + s
2s

ln
M2

i

m2
i

+ (log terms)}
• Natural normalization scheme M.F.M. Lutz, E.E. Kolomeitsev, Nucl. Phys. A 700 (2002) 193–308, 

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C 78 (2008) 025203

Given the hadron masses ,  can be determined. mB a(μ)

G( s = mB; a(μ)) = 0 ⟺ T(μ) = V(μ) with μ = mB

VWT
ij = −

Cij

8F2
𝒩i𝒩j(2 s − mi − mj) 𝒩i = 𝒩i(mi, Mj)

• Bethe-Salpeter equation

•   ; Depends on the bare pion/Kaon masses ( )mi, Mi, F M0π, M0K

Relations ( ) ( )  required mi, Mi, F ⟷ M0π, M0,K (next page)
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Model extrapolation to unphysical point 

Quark mass dependence of NG bosons and octet baryons
Hadron masses are needed for calculations at unphysical point with m0,π,K

M2
π = M0π[1 + μπ −

μη

3
+

16M2
0K

F2
0

(2Lr
6 − Lr

4) +
8M2

0π

F2
0

(2Lr
6 + 2Lr

8 − Lr
4 − Lr

5)]
J. Gasser, H. Leutwyler, NPB 250 (1985) 465–516 

• LECs ( ): determined with the lattice meson-meson scattering data Lr
i

• Octet baryons 
mB = m0 + m(2)(b0, bD, bF)

• NG bosons
 Relations from chiral perturbation models⟵

, , ,   fitted to the hadron masses at the physical point F0 b0 bD bF →
  hadron mass at the unphysical point (lattice) [  MeV, 1444.2 MeV]m0 → Mϕ = 659.4 mB =

M. Frink, U.-G. Meißner, JHEP 07 (2004) 028.

• Determination of LECs and bare parameters
LECschiral limit mass

• Mπ ↔ M0,π,K, F0 Decay const. in chiral limit

J.M.M.Hall, et al, PRL114 (13) (2015) 132002. 

Chiral SU(3) amplitude and poles can be calculated  
at any unphysical point ( ) with systematic model Mπ, MK

  ( )      Mπ, MK → M0,π, M0,K → mN, mΛ, mΣ, F → ℱchiral → EΛ*
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Extrapolation from physical point to SU(3) limit

1405

1380

1680

1.3 1.4 1.5 1.6 1.7 1.8

-0.15

-0.10

-0.05

0.00
1 8

1405

1380

1680

1.3 1.4 1.5 1.6 1.7 1.8

-0.15

-0.10

-0.05

0.00
1 8

Λ(1405)

Λ(1380)

• Poles at physical point 

Consistent with the latest chiral models  
 Model describes the *s well → Λ

• Extrapolation to unphysical point
(mphys

0,π , mphys
0,K ) → (mphys

0,K , mphys
0,K )

SU(3) limitPhysi. point

• Pole trajectories

Physics Letters B 846 (2023) 138264

5

F.-K. Guo, Y. Kamiya, M. Mai et al.

Fig. 1. Fit to the experimental data for !−" scattering. For the source of the data, see the review [4]. Solid (dashed) lines: NLO (WT) fit.

averaged baryon mass is 1444.2 MeV and the isospin averaged octet meson mass is 659.4 MeV. In this case, the pion mass dependence is such that 
the LECs #0 and $0 can easily be separated. The resulting parameters are also listed in Table 1. The obtained value for #0 is consistent with the one 
obtained in the two-flavor expansion in chiral perturbation theory supplemented with the pion-nucleon sigma term from Roy-Steiner equations [32]. 
The difference to that value can be attributed to the strangeness sigma term. More precisely, in [32] a two-flavor expansion was performed, thus 
the contribution ∼#%⟨&|%̄%|&⟩ ≃ 30 MeV is subsumed in #0, which is not the case here; this explains the difference of the two values. The Ξ baryon 
mass, which is not fitted in this procedure, is obtained as #Ξ = 1322.2 MeV and is close to the experimental value of 1318.3 MeV.

We fix the subtraction constant in each channel with the scale of dimensional regularization equal to the physical baryon mass in that channel 
from the condition in Eq. (10),

()Σ = −0.70 , (!̄& = −1.15 , (*Λ = −1.21 , (!Ξ = −1.13 . (18)
At the SU(3) symmetric point these parameters approach a common value of

(SU(3) = −0.92 , (19)
through the condition in Eq. (10). Including the NLO part (4) requires additionally the knowledge of further (dynamical and symmetry-breaking) 
LECs. For the symmetry breakers, we take the values determined through the running of the baryon masses, quoted in Table 1. The dynamical LECs 
are determined through a fit to experimental data at the physical point, including the usual total cross sections (restricting laboratory momentum of 
the kaon to +LAB = 300 MeV, see Fig. 1) and the usual threshold values, including kaonic hydrogen data from Ref. [33]. Provided the fact that Born 
terms are excluded from the potential kernel and the number of free parameters (,1, ,2, ,3, ,4) is small, we obtained a reasonable fit for

,1 = −0.36 , ,2 = 0.09 , ,3 = 0.10 , ,4 = −0.59, (20)
in units of GeV−1. We note that the obtained values are of natural size and that the minimum of the fit -2 value is well pronounced. For the 
kaonic hydrogen and the threshold ratios we get Δ. − /Γ∕2 = 356 − / 464 eV, 0 = 2.38, 12 = 0.19, 13 = 0.65 compared to the experimental values 
Δ. − /Γ∕2 = 283 ± 42 − / 542 ± 110 eV, 0 = 2.38 ± 0.04, 12 = 0.19 ± 0.02, 13 = 0.66 ± 0.01. While this fit is not perfect, we do not expect any qualitative 
changes of the results to be discussed.

3.2. Pole positions

For the physical hadron masses listed in Table 2, the pole positions of the Λ(1380), Λ(1405) and Λ(1680) resonances at LO and NLO are found as

.LO
Λ(1380) = 1403.3− /80.3 MeV, .NLO

Λ(1380) = 1415.4− /165.7 MeV,

.LO
Λ(1405) = 1422.7− /16.2 MeV, .NLO

Λ(1405) = 1417.9− /15.7 MeV, (21)
.LO
Λ(1680) = 1717.4− /22.9 MeV, .NLO

Λ(1680) = 1725.9− /13.7 MeV.

The first two resonance poles are located between the )Σ and !̄& thresholds. We note that the heavier pole agrees better with the values quoted by 
the PDG [3]. The width of the broad Λ(1380) changes rapidly between the LO and NLO estimations, which is also quite uncertain in the literature 
values [3], see also the discussion in Ref. [4]. The situation is similar to the lower pole of the scalar charmed meson 4∗

0(2300): the width increases sizably from the LO calculation [34] to the NLO one [35]. For the purpose of the present paper, a discussion of the SU(3) trajectories, we consider 
the determined pole positions as a fair representation of the realistic values. Additionally, using the decay constants and hadron masses from 
Refs. [11,12] we have also extracted the poles using our coupled-channel chiral unitary approach, see Appendix A, noting a number of systematic 
effects that can affect the positions and the nature of the these poles.

•  connected to singlet pole 

• /  connected to degenerated octet pole

Λ(1380)
Λ(1405) Λ(1680) Consistent with simple extrapolation 

D. Jido, et al,  NPA 725 (2003)

• Pole origins are well related to representations of interactions  
  with detailed extrapolation

Pole trajectory with WT model

Thresholds

Λ(1405)
Λ(1380)

Λ(1680)

F-K, Guo, YK, M Mai, U-G Meißner, PL B 846 (2023) 138264 
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Model parameters

Trajectory of SU(3) limit (  vs. pion mass)Re E

(m0,π, m0,K = m0,π) Vary → m0,π

In SU(3) limit, 
Two (physical, unphysical) Riemann sheets exit ⇒
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Figure 1.2: The trajectories of the poles in the s-wave amplitude in the complex k-plane
(left panel) and E-plane (right panel). The red cross denotes the physical pole which
represents the physical eigenstate while the blue close denote the unphysical pole.

1.2.1 Pole of amplitude

To discuss the property of hadrons, one of the most important quantities is the pole en-
ergy of the scattering amplitude. While its position is in the complex energy plane, this
is a model-independent quantity because the analytic continuation to the complex energy
plane is in general unique.2 The pole energy is nothing but the eigenenergy of the eigen-
state [46].

Let us review the relation between the pole position in the near-threshold region and
the threshold parameters in the nonrelativistic treatment. In the case of the single channel
problem, the physical eigenstate is simply classified as a bound state or a resonance state.
The bound state has the negative eigenenergy EB < 0, where we take the origin of energy
at the threshold energy, and pure imaginary eigen-momentum Re kB = 0. The imaginary
part of the eigen-momentum must be positive Im kB > 0 because the radial wave function
of the eigenstate, that behaves as rψ(r) ∼ exp(ikBr) at the large distance, must be nor-
malizable. On the other hand, the resonance state has the complex eigenenergy ER which
satisfies Re ER > 0 and Im ER < 0. Correspondingly, its eigen-momentum kR satisfies
Re kR > −Im kR and Im kR < 0. Note that the expectation value of any operator can be

2In practice, due to the uncertainty of the experimental data, the scattering amplitude determined by
analyzing the data also has uncertainty.
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Addition of NLO terms 

NLO interaction

Physics Letters B 846 (2023) 138264
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on the model details. Thus, to obtain a concrete picture for a given resonance, a detailed scheme for the extrapolation where reasonable parameters 
are chosen at any hadron mass point in the extrapolation is required.

In this work, we revisit the origin of the Λ(1405) and Λ(1380) states within chiral dynamics by considering the detailed extrapolation to the SU(3) 
limit, employing the results from chiral perturbation theory that give the quark-mass dependence of the GB and baryon masses of relevance here. 
We further consider the Λ(1680) that is also generated from the octet. See also Refs. [15,16] for earlier work along these lines, and Refs. [17,18]
for recent ones. In our work, we go beyond the Weinberg-Tomozawa (WT) term approximation for the meson-baryon interaction potential, and, in 
particular, we include the next-to-leading order (NLO) operators.

This article is organized as follows. In Sect. 2, we summarize our approach and the scheme for the extrapolation. In Sect. 3, we explain how our 
model parameters are determined. In Sect. 3 we collect all ingredients of our extrapolation formulas and discuss the evolution of the two poles from 
the SU(3) limit as the quark masses are tuned to their physical values. Finally, we summarize our study in Sect. 4. In Appendix A, we investigate the 
poles with quark masses used in the recent lattice calculation [11,12].

2. Formalism

2.1. Chiral unitary amplitude

In the "̄# system, the WT term, which appears at leading order (LO) in the chiral expansion, gives the dominant contribution to the $-wave 
interaction. At the same order two one-baryon exchange diagrams contribute, the so-called %- and &-channel Born terms. As common in many 
studies, we do not consider such LO Born terms here which are negligible in the $-wave projected amplitudes at low energies. The WT interaction 
term projected to the $-wave and isospin ' = 0 is given by

( WT
)* (

√
%) = −

+WT
)*

8, 2 )* (2
√
%−-) −-* ) for ), * ∈ {.Σ, "̄# , /Λ,"Ξ}, (1)

with the meson decay constant , , the normalization factor ) =
√
-) +0), the baryon mass -), the baryon energy 0) =

√
-2
) + 12) , and 

1) =
√
(%− (2) +-))2)(%− (2) −-))2)∕(2

√
%). The coefficients +WT

)* are calculated from the LO chiral Lagrangian and are provided explicitly in, 
e.g., Refs. [19,20].

In the SU(3) limit, this interaction term can further be decomposed into irreps. For the meson-baryon system from the octet of the Nambu-
Goldstone (NG) bosons and the octet of ground state baryons, the corresponding decomposition of multiplets reads {1, 8s , 8a, 10, 10, 27} with the 
subscripts “s” and “a” referring to the symmetric and antisymmetric representations, respectively, see for more details Refs. [17,21]. Projecting the 
above two-particle isoscalar states to the relevant multiplets is accomplished by

⎛
⎜
⎜
⎜
⎜⎝

|.Σ⟩
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|/Λ⟩
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⎟
⎟
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⎜
⎜
⎜⎝

|1⟩
|8⟩
|8′⟩
|27⟩

⎞
⎟
⎟
⎟
⎟⎠

, (2)

taken from Ref. [22] but correcting for the ) = * = 4 entry, where |8⟩ and |8′⟩ are mixtures of the symmetric and antisymmetric octets. With this 
transformation, the WT term diagonalizes as

+34 =

⎛
⎜
⎜
⎜
⎜⎝

6 0 0 0
0 3 0 0
0 0 3 0
0 0 0 −2

⎞
⎟
⎟
⎟
⎟⎠

for 3,4 ∈ {1,8,8′,27}. (3)

The crucial observation at this point is that the singlet (1) representation gives the strongest attractive interaction (positive coefficient) while 
the octet (8) representations also give attraction, noting that the degeneracy of the octets is an accidental symmetry of the WT term, as already 
discussed in [17]. Noteworthy, the symmetry is broken already by the LO Born terms, but also by the NLO contact terms discussed below. The (27) 
representation shows a repulsive (negative coefficient) interaction. The (10, 10) irreps have zero interaction at LO and are not further considered.

We also include the NLO terms, which split into the so-called symmetry breakers (+NLO1(50, 56 , 5, )) and dynamical terms (+NLO2(61, 62,63, 64)). 
We note that the former amplitude vanishes in the chiral limit, but the latter does not. Overall, the NLO potential projected to the $-wave and ' = 0
is given by

( NLO
)* (

√
%) =

)*

, 2

(
+NLO1
)* − 2+NLO2

)*

(
0)0* +

12) 1
2
*

3)*

))
for ), * ∈ {.Σ, "̄# , /Λ,"Ξ}. (4)

The coefficients +NLO1 and +NLO2 are read off from the NLO chiral Lagrangian, and can also be found explicitly in e.g. Ref. [20]. Projected to the 
relevant multiplets these coefficients read

+NLO1
34 =

⎛
⎜
⎜
⎜
⎜⎝

4
3 (350 + 757)-1 0 0 0

0 2
3 (650 + 57)-1 −

√
205,-1 0

0 −
√
205,-1 2(250 + 357)-1 0

0 0 0 4(50 + 57)-1

⎞
⎟
⎟
⎟
⎟⎠

, (5)

+NLO2
34 =

⎛
⎜
⎜
⎜
⎜
⎜⎝

−362 +
9
263 + 64 0 0 0

0 1
2 (−362 + 63 + 264) −

√
5
2 61 0

0 −
√
5
2 61

1
2 (962 − 63 + 264) 0

0 0 0 1
2 (262 + 63 + 264)

⎞
⎟
⎟
⎟
⎟
⎟⎠

. (6)

• Born terms are neglected. 
    small contribution for -waves

CNLO1
ij

CNLO2
ij

U

Projection to representations 

We also include the NLO terms, which split into the so-called symmetry breakers (CNLO1(b0, bd, bF)) and dynam-
ical terms (CNLO2(d1, d2, d3, d4)). We note that the former amplitude vanishes in the chiral limit, but the latter does
not. Overall, the NLO potential projected to S -wave and I = 0 is given by

V
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CCCCCA for i, j 2 {⇡⌃, K̄N, ⌘⇤,K⌅}. (4)

The coe�cients C
NLO1 and C

NLO2 are read o↵ of the NLO chiral Lagrangian, but can also be found explicitly in e.g.
Ref. [20]. Projected to the relevant multiplets these coe�cients read

C
NLO1
↵� =

0
BBBBBBBBBBBBB@

4
3 (3b0 + 7bD)mq 0 0 0

0 2
3 (6b0 + bD)mq �

p
20bFmq 0

0 �
p

20bFmq 2(2b0 + 3bD)mq 0
0 0 0 4(b0 + bD)mq

1
CCCCCCCCCCCCCA
, (5)
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These NLO terms lift the accidental symmetry of the two octets in the SU(3) limit. Note that the Born term, which
we neglect due to its small contribution to the S -wave, also breaks this symmetry. The low-energy constants (LECs)
of the symmetry breakers (b0, bD, and bF) will be determined from the baryon masses as discussed below and the
dynamical LECs (d1, d2, d3, and d4) from a fit to the cross sections K

�
p ! K

�
p, K̄0

n, ⇡0⇤, ⇡0⌃0, ⇡⌥⌃⌥ and usual
threshold ratios. For details of these data including data repositories, see the recent review [4].

The attractive interaction between the meson-baryon pair leads to a dynamical generation of the ⇤(1405) and
⇤(1380) states. For this a Bethe-Salpeter equation is realized using either WT or WT plus NLO potential in a matrix
equation for the unitary scattering amplitude T ,

Ti j = Vi j +
X

k

VikGkTk j for i, j, k 2 {⇡⌃, K̄N, ⌘⇤,K⌅}. (7)

For the inclusion of o↵-shell terms and higher partial waves in this type of dynamical equations, see Refs. [23, 24, 25].
Here, the loop function is defined as
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where Mi (qi) is the meson mass (momentum) of channel i, and the total momentum P is given by P
µ = (

p
s, 0).

Using dimensional regularization, this loop function is given as [1]
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where q̄i is the magnitude of three-momentum in the center-of-mass (c.m.) frame, µ is the scale of dimensional
regularization, and ai(µ) is the channel-dependent subtraction constant. The values of the subtraction constants in
Eq. (9) control the short-distance contributions that are not explicitly considered in the model. It is known that, if
the dynamical nature of the system under consideration is well controlled by the chiral interaction, the natural value
of ai(µ = 1 GeV) should be around �2 at the physical point, see Ref. [1]. In phenomenological studies, their values
are usually fixed according to a given procedure (see below) or tuned so that the experimental data or lattice results
are well reproduced. However, the subtraction constant depends on details of the system, e.g., hadron masses. Thus,

3

• Two octet representations (8, 8’) are mixed. 

• Additional LECs ( ) 
   fitted to the experimental data

d1, d2, d3, d4
→
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Fig. 1. Fit to the experimental data for !−" scattering. For the source of the data, see the review [4]. Solid (dashed) lines: NLO (WT) fit.

averaged baryon mass is 1444.2 MeV and the isospin averaged octet meson mass is 659.4 MeV. In this case, the pion mass dependence is such that 
the LECs #0 and $0 can easily be separated. The resulting parameters are also listed in Table 1. The obtained value for #0 is consistent with the one 
obtained in the two-flavor expansion in chiral perturbation theory supplemented with the pion-nucleon sigma term from Roy-Steiner equations [32]. 
The difference to that value can be attributed to the strangeness sigma term. More precisely, in [32] a two-flavor expansion was performed, thus 
the contribution ∼#%⟨&|%̄%|&⟩ ≃ 30 MeV is subsumed in #0, which is not the case here; this explains the difference of the two values. The Ξ baryon 
mass, which is not fitted in this procedure, is obtained as #Ξ = 1322.2 MeV and is close to the experimental value of 1318.3 MeV.

We fix the subtraction constant in each channel with the scale of dimensional regularization equal to the physical baryon mass in that channel 
from the condition in Eq. (10),

()Σ = −0.70 , (!̄& = −1.15 , (*Λ = −1.21 , (!Ξ = −1.13 . (18)
At the SU(3) symmetric point these parameters approach a common value of

(SU(3) = −0.92 , (19)
through the condition in Eq. (10). Including the NLO part (4) requires additionally the knowledge of further (dynamical and symmetry-breaking) 
LECs. For the symmetry breakers, we take the values determined through the running of the baryon masses, quoted in Table 1. The dynamical LECs 
are determined through a fit to experimental data at the physical point, including the usual total cross sections (restricting laboratory momentum of 
the kaon to +LAB = 300 MeV, see Fig. 1) and the usual threshold values, including kaonic hydrogen data from Ref. [33]. Provided the fact that Born 
terms are excluded from the potential kernel and the number of free parameters (,1, ,2, ,3, ,4) is small, we obtained a reasonable fit for

,1 = −0.36 , ,2 = 0.09 , ,3 = 0.10 , ,4 = −0.59, (20)
in units of GeV−1. We note that the obtained values are of natural size and that the minimum of the fit -2 value is well pronounced. For the 
kaonic hydrogen and the threshold ratios we get Δ. − /Γ∕2 = 356 − / 464 eV, 0 = 2.38, 12 = 0.19, 13 = 0.65 compared to the experimental values 
Δ. − /Γ∕2 = 283 ± 42 − / 542 ± 110 eV, 0 = 2.38 ± 0.04, 12 = 0.19 ± 0.02, 13 = 0.66 ± 0.01. While this fit is not perfect, we do not expect any qualitative 
changes of the results to be discussed.

3.2. Pole positions

For the physical hadron masses listed in Table 2, the pole positions of the Λ(1380), Λ(1405) and Λ(1680) resonances at LO and NLO are found as

.LO
Λ(1380) = 1403.3− /80.3 MeV, .NLO

Λ(1380) = 1415.4− /165.7 MeV,

.LO
Λ(1405) = 1422.7− /16.2 MeV, .NLO

Λ(1405) = 1417.9− /15.7 MeV, (21)
.LO
Λ(1680) = 1717.4− /22.9 MeV, .NLO

Λ(1680) = 1725.9− /13.7 MeV.

The first two resonance poles are located between the )Σ and !̄& thresholds. We note that the heavier pole agrees better with the values quoted by 
the PDG [3]. The width of the broad Λ(1380) changes rapidly between the LO and NLO estimations, which is also quite uncertain in the literature 
values [3], see also the discussion in Ref. [4]. The situation is similar to the lower pole of the scalar charmed meson 4∗

0(2300): the width increases sizably from the LO calculation [34] to the NLO one [35]. For the purpose of the present paper, a discussion of the SU(3) trajectories, we consider 
the determined pole positions as a fair representation of the realistic values. Additionally, using the decay constants and hadron masses from 
Refs. [11,12] we have also extracted the poles using our coupled-channel chiral unitary approach, see Appendix A, noting a number of systematic 
effects that can affect the positions and the nature of the these poles.

χ2/d.o.f ≈ 2.1 

Degeneration of 8, 8’ poles? →

• LECs and subt. const. are consistent with WT model F-K, Guo, YK, M Mai, U-G Meißner, PL B 846 (2023) 138264 
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Pole trajectories with NLO model
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Fig. 2. Motion of the poles from the SU(3) limit to the physical values of the particle masses ((0.0, 0.2, ..., 1.0) steps are shown by the empty dots). The blue, red, 
green lines denote the Λ(1380), Λ(1405) and Λ(1680) in order. Left panel: WT-interaction. Right panel: including the NLO terms. Upper/Lower half-plane correspond 
to physical/unphysical sheets (small displacement along the real energy axis is added/subtracted for clarity). In both figures, numbers in black boxes denote the 
multiplet to which the poles belong to in the SU(3) limit. The various meson-baryon thresholds are also shown as the black solid lines.

Fig. 3. Trajectories of the Λ(1380) pole from the SU(3) limit for smoothly varied NLO terms. The numbers in front of “NLO” in the legend denote the prefactor 
multiplied to the NLO potential.

Next, we consider the SU(3) limit, noting first that there is only one two-body threshold at ! ≈ 1799 MeV. This implies that while there are 
originally 24 Riemann sheets, they collapse in the SU(3) limit to only two. Looking for the physically relevant pole content we find in both (LO 
and NLO) approaches three poles on the real axis. Notably, for the former scenario the previously discussed accidental symmetry of the WT terms 
prohibits the 8∕8′ mixing and leads to two degenerate octet poles. Specifically, we record three poles on the physical Riemann sheet for the LO 
WT-interaction: {!1 = 1704 MeV, !8 = 1788 MeV, !8′ = 1788 MeV}. Including the NLO terms breaks this accidental symmetry, and we record three 
separated poles {!1 = 1716 MeV, !8 = 1772 MeV, !8 = 1787 MeV} where both the former poles are located on the physical Riemann sheet and the 
latter one is located on the unphysical sheet. We note that overall the shifts due to the NLO terms are rather small in this limit.

An interesting observation can be made when trying to connect the three poles in the SU(3) limit to those at the physical point. This is depicted 
in Fig. 2. We observe there that the trajectory of the Λ(1680) stays essentially the same in the LO and NLO formalisms up to the fact that the latter 
does not seem to reach into the physical sheet and the state remains a virtual state. Since the remaining path of the pole is quite small, we argue 
that this may be due to the details of the model (goodness of the NLO fit, inclusion of Born terms etc.). However, dramatic changes due to the 
inclusion of the NLO terms occur for the trajectories of the Λ(1380) and Λ(1405). There, we see that the SU(3) limit results are not that different, 
but the poles in that limit extend to different poles at the physical point. In other words, the Λ(1380) originates in LO/NLO from the singlet/octet 
state in the SU(3) limit, while Λ(1405) originates in LO/NLO from the octet/singlet state in the SU(3) limit. This interchange of trajectories is a 
surprising new feature not expected from the pioneering study of Ref. [2]. Obviously, one can argue that the fit is not perfect and more details or 
possibly next-to-next-to-leading order terms need to be included. Additionally, close to the SU(3) limit thresholds are very close to each other, such 
that identification of individual poles is complicated. Still, indubitably the pole trajectories can change their behavior, which is also demonstrated 
in Fig. 3. There, as an example we begin with the NLO trajectory of the Λ(1380) but scale then the NLO terms with a prefactor " ∈ [0, 1], i.e., for 
" = 0∕1 one obtains back the LO/NLO trajectory. We observe that between " = 0.33 and " = 0.66 the trajectory indeed changes from that connected 
to the more bound state to the less bound one in the SU(3) limit. In fact, this interconnection between these trajectories of the Λ(1380) and the 
Λ(1405) is quite reasonable from the recent detailed study of the correlations between Λ(1380) and Λ(1405) in Ref. [8].

4. Summary

It has been suggested since long that the Λ(1405) has a two-pole structure, thus corresponding to two states Λ(1380) and Λ(1405), and the lowest 
negative-parity baryons are dynamically generated from unitarizing the chiral amplitude. In quark model, baryons composed of three quarks can 
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Addition of  
NLO terms

Thresholds

• Trajectories with NLO terms 

•   is now connected to singlet  
    and  is connected to octet 

Λ(1405)
Λ(1380)

• Two octet poles are not degenerated 
  and remained as two separated poles

Model E1 E8 E8’

WT 1704 1788 1788
NLO 1716 1772 1787

WT model NLO model

Addition of NLO terms 

• Connection to SU(3) limit poles may be exchanged by the detailed interaction
• Mixing effect of 8 and 8’ interaction is moderate

F-K, Guo, YK, M Mai, U-G Meißner, PL B 846 (2023) 138264 
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Summary

Thank you for your attention!

For understanding of nature of , detailed analysis of -  
interaction is required. 


Extrapolation to the unphysical point was performed with the quark mass 
dependence relation and the natural renormalization scheme. 


With WT model, /  are connected to singlet/octet.


With NLO model, /  are connected to octet/singlet and 

      two octets state in SU(3) are separated due to breaking term in 

Λ(1380)/Λ(1405) πΣ K̄N

Λ(1380) Λ(1405)

Λ(1380) Λ(1405)
VNLO



Thank you!
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Pole trajectory change by NLO terms

Addition of NLO terms 
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