Yuki Kamiya

HISKP, Bonn Univ.

New insights into the nature of the $\Lambda(1380)$ and $\Lambda(1405)$ resonances away from the $\operatorname{SU}(3)$ limit

in collaboration with
FengKun Guo
Maxim Mai
Ulf-G Meißner

Hadron spectroscopy with strangeness @ Glasgow, UK, 4.4.2024,

Contents

- Introduction $\sim \Lambda$ resonances and $\bar{K} N$ interaction \sim
- Chiral SU(3) model with extrapolation to unphysical point
- Results: pole trajectories
- Summary

$\bar{K} N$ interaction and $\Lambda(1405)$

- $\Lambda(1405)$

- Large discrepancy from qurak model
N. Isgur, and G. Karl, PRD18, 4187 (1978)

- Predicted in the $\pi \Sigma$ scattering below $\bar{K} N$

R. H. Dalitz and S. F. Tuan, PRL2, 425 (1959)
R. H. Dalitz and S. F. Tuan, Annals Phys. 10, 307 (1960).
- Exotics candidate
- Quest for internal structure

$\bar{K} N$ interaction and $\Lambda(1405)$

- $\bar{K} N$ interaction data and $\Lambda(1405)$ resonance
- Experimental data for $\pi \Sigma-\bar{K} N$ system
- $K^{-} p$ total cross sections
- Branching rations
- $K^{-} p$ scattering length from Kaonic nuclei
- $\pi \Sigma$ mass spectra
- $\underline{K}^{-} p$ femtoscopy

Detailed nature of two Λ resonances
T. Hyodo, D. Jido - PPNP 67 (2012) 55

$\bar{K} N$ interaction and $K^{-} p$ correlation

${ }^{-} K^{-} p$ correlation function in high-energy collisions

- Good resolution thanks to high statistics
- Sensitive to $k^{*} \lesssim 200 \mathrm{MeV} / c$
- Detailed coupled-channel effect

$\bar{K} N$ interaction and $K^{-} p$ correlation

- ALICE $p p$ collision data

ALICE PRL 124, 092301 (2020)

YK et al , PRL 124 (2020) 13, 132501

- Small source
- Clear $\bar{K}^{0} n$ cusp structure
- Sizable contribution from coupled-channel source required to reproduce data

- ALICE PbPb collision data

ALICE PLB 822 (2021) 136708

- Large source
- Weaker cusp
- Scattering length fitting
\rightarrow Consistent with Kaonic hydrogen 1
- Chiral SU(3) model reproduces both source data
- Chiral $\mathrm{SU}(3)$ dynamics describes the low-energy $\bar{K} N$ scattering
$\bar{K} N-\pi \Sigma$ interaction and two pole structure
- $\bar{K} N$ interaction $\mathscr{F}_{\bar{K} N, I=0}$
$\mathscr{F}_{\bar{K} N, I=1}$

B2, B4: Mai, Meißner, EPJA 51 (2015)
M1, MiI: Guo, Oller, PRC 87 (2013)
Pnlo: Cieplý, Smejkal, NPA 881 (2012)
KMnlo: Ikeda, Hyodo Weise NPA 881 (2012)

Cieply and Mai, EPJ Web Conf. 130, 02001 (2016)

$\bar{K} N-\pi \Sigma$ interaction and two pole structure

- Pole structure with chiral NLO models

Ikeda, Hyodo Weise NPA 881 (2012)
, Mai, Meißner, EPJA 51 (2015)

- Guo, Oller, PRC 87 (2013)
- $\Lambda(1405)$: Good consensus on $\bar{K} N$ threshold pole

Strong constraint from SIDDHARTA data

- $\Lambda(1380)$: lying close to $\pi \Sigma$ but the poles are scattered
\rightarrow Further constraint needed...
- Are they stable with the higher-terms of chiral order?
-What are their origin?

and two pole structure

- New chiral NNLO analysis

- Two pole structure is found in the latest NNLO analysis
- $\Lambda(1405)$ pole is consistent in NLO and NNLO models
- $\Lambda(1380)$ is also in the range of errors

Origin of poles \sim Compositeness \sim

- Compositeness for bound state

$$
a_{0}=R\left\{\frac{2 X}{1+X}+\mathcal{O}\left(R_{\mathrm{typ}} / R\right)\right\} \quad R=\frac{1}{\sqrt{\text { S. Weinberg, Phys. Rev. 137, B672 (1965) }}}
$$

Observables

a_{0} : Scattering length

Indication of structure

\underline{X} : Compositeness

- Extension to unstable states and application $\Lambda(1405)$
- Extended weak binding relation for unstable states
- Interpretation of complex value of X
$a_{0}=R\left[\frac{2 X}{1+X}+\mathcal{O}\left(\left|\frac{R_{\mathrm{typ}}}{R}\right|\right)+\mathcal{O}\left(\left|\frac{l}{R}\right|^{3}\right)\right] \quad \tilde{X} \equiv \frac{1-|Z|+|X|}{2}$
- Applications to $\Lambda(1405)$ with chiral models

Mondels	$B[\mathrm{MeV}]$	$a_{0}[\mathrm{fm}]$	X	\tilde{X}	$U / 2$
IHW	$-10-\mathrm{i} 26$	$1.39-\mathrm{i} 0.85$	$1.3+\mathrm{i} 0.1$	1.0	0.3
MM(2013)	$-4-\mathrm{i} 8$	$1.81-\mathrm{i} 0.92$	$0.6+\mathrm{i} 0.1$	0.6	0.0
GO	$-13-\mathrm{i} 20$	$1.30-\mathrm{i} 0.85$	$0.9-\mathrm{i} 0.2$	0.9	0.1
MM(2015)	$2-\mathrm{i} 10$	$1.21-\mathrm{i} 1.47$	$0.6+\mathrm{i} 0.0$	0.6	0.0
MM(2015)	$-3-\mathrm{i} 12$	$1.52-\mathrm{i} 1.85$	$1.0+\mathrm{i} 0.5$	0.8	0.3

Origin of poles \sim lattice QCD analysis \sim

- Component of Λ (1405)
J.M.M.Hall, et al,, PRL 114 (13) (2015)

- Structure identification by strange magnetic form factor
- $\bar{K} N$ component dominant at the near physical point
- Two pole structure
J.Bulava PRL. 132 (2024) 5, 051901

- Two pole structure is found at $m_{\pi} \approx 200 \mathrm{MeV}$ $\operatorname{Re} E_{1}=1325-1380 \mathrm{MeV}$ $\operatorname{Re} E_{2}=1421-1434 \mathrm{MeV}$.

Origin of poles \sim Representations \sim

- Extrapolation of chiral model D. fido, J.A. oiler, E. Oses, A. Ramos, U. G. Meitner, NPA 725 (2003)
- Weinberg-Tomozawa term and extrapolation

$$
\begin{gathered}
V_{i j}^{W T}=-\frac{C_{i j}^{\mathrm{WT}}}{8 F^{2}} \mathcal{N}_{i} \mathcal{N}_{j}\left(2 \sqrt{s}-m_{i}-m_{j}\right) \\
M_{i}(x)=M_{0}+x\left(M_{i}-M_{0}\right), \ldots \\
x=0: \text { physical point } \\
x=1: \mathrm{SU}(3) \text { limit }
\end{gathered}
$$

- Projection to multiplets decomposition of multiplets $\left(1,8,8^{\prime}, 27\right)$ in $\mathrm{SU}(3)$ limit

Origin of Int.	SU(3) limit	Physical point
Singlet (1)	Deep bound state	$\Lambda(1380)$
Octet $\left(8,8^{\prime}\right)$	Weekly bound states	$\Lambda(1405), \Lambda(1680)$

- Resonant poles are related to the interaction multiplets
- Trajectories depend on extrapolation detail $->$ More detaield extrapolation towards lattice?
- How trajectories change with NLO terms ?

Model extrapolation to unphysical point

- Chiral unitary dynamics \sim Weinberg-Tomozawa term model \sim
- Bethe-Salpeter equation

$$
T_{i j}=V_{i j}+V_{i k} G_{k} T_{k j} \quad i, j, k \in\{\pi \Sigma, \bar{K} N, \eta \Lambda, K \Xi\}
$$

- Interaction kernel: Weinberg-Tomozawa term

$$
V_{i j}^{W T}=-\frac{C_{i j}}{8 \underline{F^{2}}} \mathcal{N}_{i} \mathcal{N}_{j}\left(2 \sqrt{s}-\underline{m_{i}}-m_{j}\right) \quad \mathcal{N}_{i}=\mathscr{N}_{i}\left(m_{i}, M_{i}\right)
$$

- m_{i}, M_{i}, F; Depends on the bare pion/Kaon masses $\left(M_{0 \pi}, M_{0 K}\right)$
\longrightarrow Relations $\left(m_{i}, M_{i}, F\right) \longleftrightarrow\left(M_{0 \pi}, M_{0, K}\right)$ required \square (next page)
- Loop function

$$
G_{i}(\sqrt{s})=\frac{2 m_{i}}{16 \pi^{2}}\left\{a_{i}(\mu)+\ln \frac{m_{i}^{2}}{\mu^{2}} \frac{M_{i}^{2}-m_{i}^{2}+s}{2 s} \ln \frac{M_{i}^{2}}{m_{i}^{2}}+(\log \text { terms })\right\}
$$

- Natural normalization scheme M.F.. Luz, E.E. Kolomeitsev, Null. Phys. A 700 (2002) 193-308, T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C 78 (2008) 025203

$$
G\left(\sqrt{s}=m_{B} ; a(\mu)\right)=0 \Longleftrightarrow T(\mu)=V(\mu) \quad \text { with } \mu=m_{B}
$$

Given the hadron masses $m_{B}, a(\mu)$ can be determined.

Model extrapolation to unphysical point

- Quark mass dependence of NG bosons and octet baryons

Hadron masses are needed for calculations at unphysical point with $m_{0, \pi, K}$
\longleftarrow Relations from chiral perturbation models

- NG bosons J. Gasser, H. Leutwyler, NPB 250 (1985) 465-516
$M_{\pi}^{2}=M_{0 \pi}\left[1+\mu_{\pi}-\frac{\mu_{\eta}}{3}+\frac{16 M_{0 K}^{2}}{F_{0}^{2}}\left(2 L_{6}^{r}-L_{4}^{r}\right)+\frac{8 M_{0 \pi}^{2}}{\frac{F_{0}^{2}}{}}\left(2 L_{6}^{r}+2 L_{8}^{r}-L_{4}^{r}-L_{5}^{r}\right)\right]$
$\bullet M_{\pi} \leftrightarrow M_{0, \pi, K}, F_{0} \quad$ Decay const. in chiral limit
- LECs $\left(L_{i}^{r}\right)$: determined with the lattice meson-meson scattering data
- Octet baryons M. Frink, U.-G. MeiBner, JHEP 07 (2004) 028.

$$
m_{B}=\frac{m_{0}+m^{(2)}\left(b_{0}, b_{D}, b_{F}\right)}{\text { chiral limit mass }} \text { LECs }
$$

- Determination of LECs and bare parameters
$F_{0}, b_{0}, b_{D}, b_{F} \rightarrow$ fitted to the hadron masses at the physical point
$m_{0} \rightarrow$ hadron mass at the unphysical point (lattice) [$\left.M_{\phi}=659.4 \mathrm{MeV}, m_{B}=1444.2 \mathrm{MeV}\right]$
J.M.M.Hall, et al, PRL114 (13) (2015) 132002.

Chiral $\operatorname{SU}(3)$ amplitude and poles can be calculated at any unphysical point (M_{π}, M_{K}) with systematic model

$$
M_{\pi}, M_{K} \rightarrow\left(M_{0, \pi}, M_{0, K}\right) \rightarrow m_{N}, m_{\Lambda}, m_{\Sigma}, F \rightarrow \mathscr{F}^{\text {chiral }} \rightarrow E_{\Lambda^{*}}
$$

Pole trajectory with WT model

- Extrapolation from physical point to $\mathrm{SU}(3)$ limit

- Poles at physical point

$$
\begin{aligned}
& E_{\Lambda(1380)}^{\mathrm{LO}}=1403.3-i 80.3 \mathrm{MeV}, \\
& E_{\Lambda(1405)}^{\mathrm{LO}}=1422.7-i 16.2 \mathrm{MeV}, \\
& E_{\Lambda(1680)}^{\mathrm{LO}}=1717.4-i 22.9 \mathrm{MeV},
\end{aligned}
$$

Consistent with the latest chiral models
\rightarrow Model describes the Λ^{*} s well

- Extrapolation to unphysical point

$$
\underbrace{\left(m_{0, \pi}^{\text {phys }}, m_{0, K}^{\text {phys }}\right)}_{\text {Physi. point }} \rightarrow \frac{\left(m_{0, K}^{\text {phys }}, m_{0, K}^{\text {phys }}\right)}{\underbrace{}_{\mathrm{SU}(3) \text { limit }}}
$$

- Pole trajectories

F-K, Guo, YK, M Mai, U-G Meißner, PL B 846 (2023) 138264

- $\Lambda(1380)$ connected to singlet pole
- $\Lambda(1405) / \Lambda(1680)$ connected to degenerated octet pole
- Pole origins are well related to representations of interactions with detailed extrapolation

Model parameters

- Trajectory of $\operatorname{SU}(3)$ limit (Re E vs. pion mass)

With WT model

$$
\left(m_{0, \pi}, m_{0, K}=m_{0, \pi}\right) \quad \rightarrow \text { Vary } m_{0, \pi}
$$

\Rightarrow Two (physical, unphysical) Riemann sheets exit

Addition of NLO terms

- NLO interaction
$V_{i j}^{\mathrm{NLO}}(\sqrt{s})=\frac{\mathcal{N}_{i} \mathcal{N}_{j}}{F^{2}}\left(C_{i j}^{\mathrm{NLOL}}-2 C_{i j}^{\mathrm{NLO}}\left(E_{i} E_{j}+\frac{q_{i}^{2} q_{j}^{2}}{3 \mathcal{N}_{i} \mathcal{N}_{j}}\right)\right)$
- Born terms are neglected. small contribution for s-wave
- Additional LECs $\left(d_{1}, d_{2}, d_{3}, d_{4}\right)$
\rightarrow fitted to the experimental data $\chi^{2 / \text { d.o.f }} \approx 2.1$

W / GeV

W / GeV
- LECs and subt. const. are consistent with WT model

F-K, Guo, YK, M Mai, U-G Meißner, PL B 846 (2023) 138264

- Projection to representations

- Two octet representations $\left(8,8^{\prime}\right)$ are mixed.
\rightarrow Degeneration of 8,8 ' poles?

Addition of NLO terms

- Pole trajectories with NLO model

- Trajectories with NLO terms
- Two octet poles are not degenerated and remained as two separated poles - $\Lambda(1405)$ is now connected to singlet and $\Lambda(1380)$ is connected to octet

F-K, Guo, YK, M Mai, U-G Meißner, PL B 846 (2023) 138264

Model	E1	E8	E8
WT	1704	1788	1788
NLO	1716	1772	1787

- Connection to $\mathrm{SU}(3)$ limit poles may be exchanged by the detailed interaction
- Mixing effect of 8 and 8 ' interaction is moderate

Summary

- For understanding of nature of $\Lambda(1380) / \Lambda(1405)$, detailed analysis of $\pi \Sigma-\bar{K} N$ interaction is required.
- Extrapolation to the unphysical point was performed with the quark mass dependence relation and the natural renormalization scheme.
- With WT model, $\Lambda(1380) / \Lambda(1405)$ are connected to singlet/octet.
- With NLO model, $\Lambda(1380) / \Lambda(1405)$ are connected to octet/singlet and two octets state in $\mathrm{SU}(3)$ are separated due to breaking term in V_{NLO}

> Thank you for your attention!

Thank you!

Addition of NLO terms

- Pole trajectory change by NLO terms

