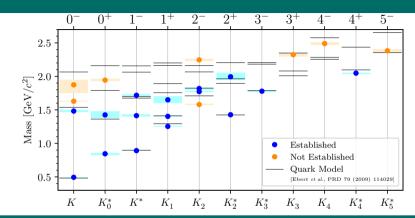
Strange-Meson Spectroscopy – from COMPASS to AMBER

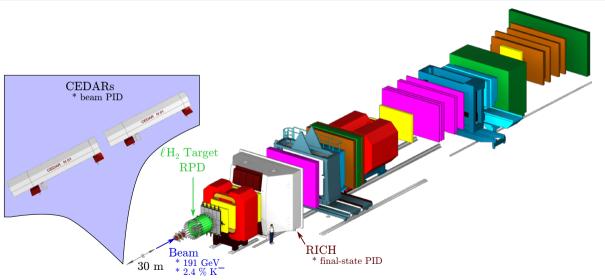
Stefan Wallner for the COMPASS and AMBER Collaborations (swallner@mpp.mpg.de)

Max Planck Institute for Physics

Hadron Spectroscopy with Strangeness Workshop April 3, 2024



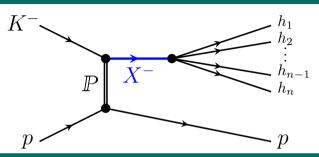
The Strange-Meson Spectrum



PDG lists 25 strange mesons

(2022

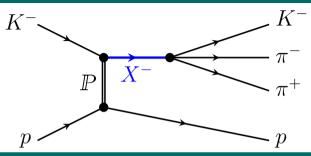
- ▶ 16 established states, 9 need further confirmation
- Missing states with respect to quark-model predictions
- Many measurements performed more than 30 years ago



Strange-Meson Spectroscopy with COMPASS

Ap Dy sit

Production of Strange Mesons

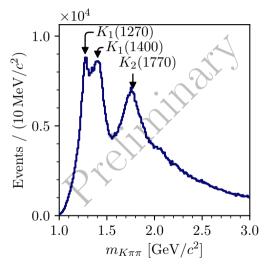


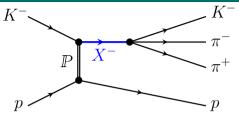
- ▶ Diffractive scattering of high-energy kaon beam
- ► Strange mesons appear as intermediate resonances X⁻
- Decay to multi-body hadronic final states
- $K^-\pi^-\pi^+$ final state
 - Study in principle all strange mesons
 Study a wide mass range
 - Study different decay mode

Strange-Meson Spectroscopy with COMPASS

Ap Dy sit

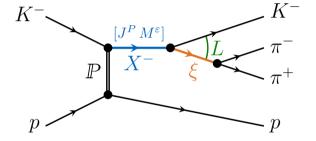
Production of Strange Mesons




- ▶ Diffractive scattering of high-energy kaon beam
- ► Strange mesons appear as intermediate resonances X⁻
- Decay to multi-body hadronic final states
- $ightharpoonup K^-\pi^-\pi^+$ final state
 - Study in principle all strange mesons
 - Study a wide mass range
 - Study different decay modes

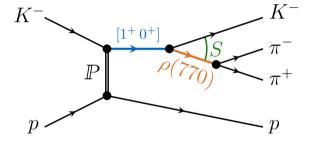
Strange-Meson Spectroscopy with COMPASS

The $K^-\pi^-\pi^+$ Data Sample



- World's largest data set of about 720 k events
- Rich spectrum of overlapping and interfering X⁻
 - Dominant well known states
 - States with lower intensity are "hidden"

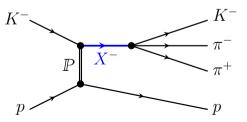
Partial wave: $J^P M^{\varepsilon} \xi b^- L$


- ► J^P spin and parity
- $ightharpoonup M^{\varepsilon}$ spin projection
- ▶ *ξ* isobar resonance
- ▶ b[−] bachelor particle
- L orbital angular momentum

Partial wave: $J^P M^{\varepsilon} \xi b^- L$

- ► J^P spin and parity
- $ightharpoonup M^{\varepsilon}$ spin projection
- ξ isobar resonance
- ▶ b[−] bachelor particle
- L orbital angular momentum

Data: 720 k diffractively produced $K^-\pi^-\pi^+$ candidates

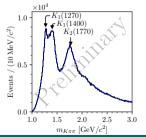

Data: 720 k diffractively produced $K^-\pi^-\pi^+$ candidates

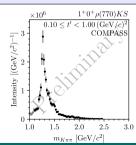
(I) Partial-Wave Decomposition

Performed independently in narrow $(m_{K\pi\pi}, t')$ cells

No assumption about $K\pi\pi$ resonances

Partial waves: Intensities and relative phases as a function of $(m_{K\pi\pi}, t')$


Data: 720 k diffractively produced $K^-\pi^-\pi^+$ candidates


(I) Partial-Wave Decomposition

Performed independently in narrow $(m_{K\pi\pi}, t')$ cells

No assumption about $K\pi\pi$ resonances

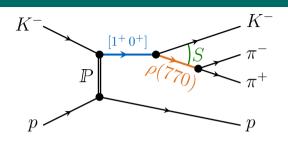
Partial waves: Intensities and relative phases as a function of $(m_{K\pi\pi}, t')$

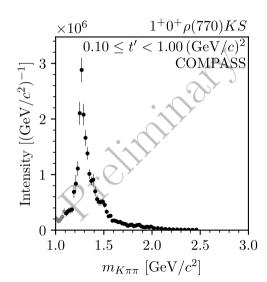
Data: 720 k diffractively produced $K^-\pi^-\pi^+$ candidates

(I) Partial-Wave Decomposition

Performed independently in narrow $(m_{K\pi\pi},t')$ cells

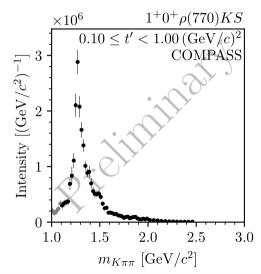
No assumption about $K\pi\pi$ resonances

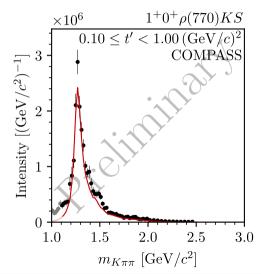

Partial waves: Intensities and relative phases as a function of $(m_{K\pi\pi}, t')$


(II) Resonance-Model Fit

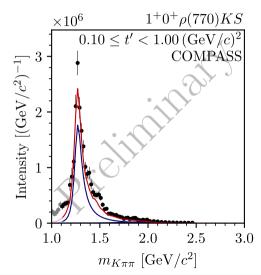
Model $m_{K\pi\pi}$ dependence of partial waves $K\pi\pi$ resonances and background

Resonance parameters: Masses and widths of the strange-meson resonances

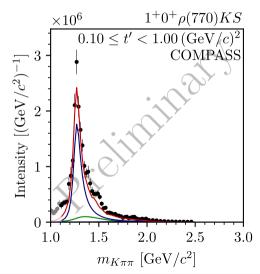




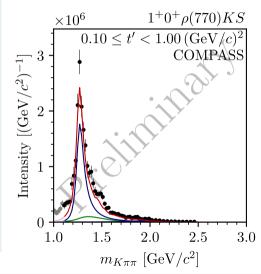
- ▶ Partial-wave amplitudes in $(m_{K\pi\pi}, t')$ bins
 - ► Inferred wave set from data using regularization-based model-selection techniques
 - ▶ Bootstrap resampling to improve uncertainty estimates
 - Detailed Monte Carlo input-output studies
- ightharpoonup Model $m_{K\pi\pi}$ dependence of partial-wave amplitude
- ▶ Breit-Wigner amplitudes for $K^-\pi^-\pi^+$ resonance components
- Coherent non-resonant component parameterizing othe $K^-\pi^-\pi^+$ production mechanisms
- Developed scheme to handle incoherent backgrounds



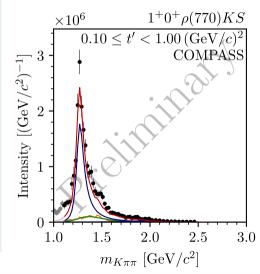
- ▶ Partial-wave amplitudes in $(m_{K\pi\pi}, t')$ bins
 - ► Inferred wave set from data using regularization-based model-selection techniques
 - ▶ Bootstrap resampling to improve uncertainty estimates
 - Detailed Monte Carlo input-output studies
- ▶ Model $m_{K\pi\pi}$ dependence of partial-wave amplitudes
- ▶ Breit-Wigner amplitudes for $K^-\pi^-\pi^+$ resonance components
- Coherent non-resonant component parameterizing othe $K^-\pi^-\pi^+$ production mechanisms
- Developed scheme to handle incoherent backgrounds



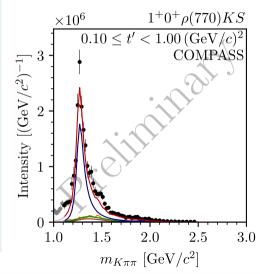
- ▶ Partial-wave amplitudes in $(m_{K\pi\pi}, t')$ bins
 - ► Inferred wave set from data using regularization-based model-selection techniques
 - ▶ Bootstrap resampling to improve uncertainty estimates
 - Detailed Monte Carlo input-output studies
- Model $m_{K\pi\pi}$ dependence of partial-wave amplitudes
- ► Breit-Wigner amplitudes for $K^-\pi^-\pi^+$ resonance components
- Coherent non-resonant component parameterizing othe $K^-\pi^-\pi^+$ production mechanisms
- Developed scheme to handle incoherent backgrounds



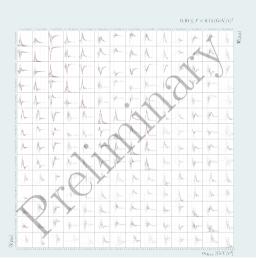
- ▶ Partial-wave amplitudes in $(m_{K\pi\pi}, t')$ bins
 - ► Inferred wave set from data using regularization-based model-selection techniques
 - ▶ Bootstrap resampling to improve uncertainty estimates
 - Detailed Monte Carlo input-output studies
- Model $m_{K\pi\pi}$ dependence of partial-wave amplitudes
- ▶ Breit-Wigner amplitudes for $K^-\pi^-\pi^+$ resonance components
- Coherent non-resonant component parameterizing other $K^-\pi^-\pi^+$ production mechanisms
- Developed scheme to handle incoherent backgrounds

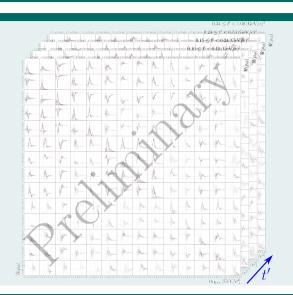


- ▶ Partial-wave amplitudes in $(m_{K\pi\pi}, t')$ bins
 - ► Inferred wave set from data using regularization-based model-selection techniques
 - ▶ Bootstrap resampling to improve uncertainty estimates
 - Detailed Monte Carlo input-output studies
- Model $m_{K\pi\pi}$ dependence of partial-wave amplitudes
- ▶ Breit-Wigner amplitudes for $K^-\pi^-\pi^+$ resonance components
- Coherent non-resonant component parameterizing other $K^-\pi^-\pi^+$ production mechanisms
- Developed scheme to handle incoherent backgrounds
 - Incoherent background from π^- diffraction to $\pi^-\pi^-\pi^-$ explicitly modeled by COMPASS $\pi^-\pi^-\pi^+$ analysis
 - ► Incoherent effective background component parameterizing other background processes

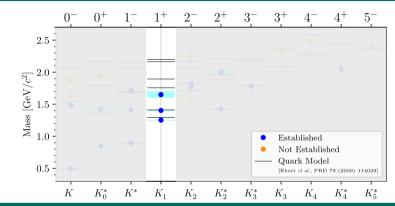


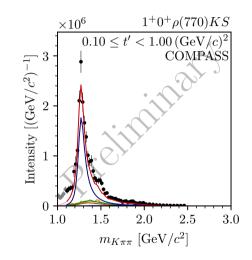
- ▶ Partial-wave amplitudes in $(m_{K\pi\pi}, t')$ bins
 - ► Inferred wave set from data using regularization-based model-selection techniques
 - ▶ Bootstrap resampling to improve uncertainty estimates
 - Detailed Monte Carlo input-output studies
- Model $m_{K\pi\pi}$ dependence of partial-wave amplitudes
- ▶ Breit-Wigner amplitudes for $K^-\pi^-\pi^+$ resonance components
- Coherent non-resonant component parameterizing other $K^-\pi^-\pi^+$ production mechanisms
- Developed scheme to handle incoherent backgrounds
 - ► Incoherent background from π^- diffraction to $\pi^-\pi^-\pi^+$ explicitly modeled by COMPASS $\pi^-\pi^-\pi^+$ analysis
 - Incoherent effective background component parameterizing other background processes


- ▶ Partial-wave amplitudes in $(m_{K\pi\pi}, t')$ bins
 - ► Inferred wave set from data using regularization-based model-selection techniques
 - ▶ Bootstrap resampling to improve uncertainty estimates
 - Detailed Monte Carlo input-output studies
- Model $m_{K\pi\pi}$ dependence of partial-wave amplitudes
- ▶ Breit-Wigner amplitudes for $K^-\pi^-\pi^+$ resonance components
- Coherent non-resonant component parameterizing other $K^-\pi^-\pi^+$ production mechanisms
- ▶ Developed scheme to handle incoherent backgrounds
 - ► Incoherent background from π^- diffraction to $\pi^-\pi^-\pi^+$ explicitly modeled by COMPASS $\pi^-\pi^-\pi^+$ analysis
 - Incoherent effective background component parameterizing other background processes



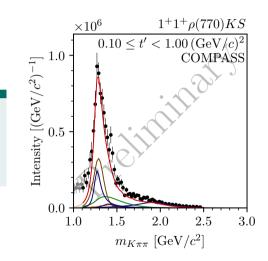
- ► Simultaneously included 14 partial waves in resonance-model fit
- ► Modeled by 13 strange-meson resonance components
- ► Using measured intensities and interference terms (relative phases)



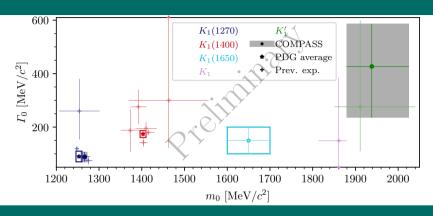


PDG (202

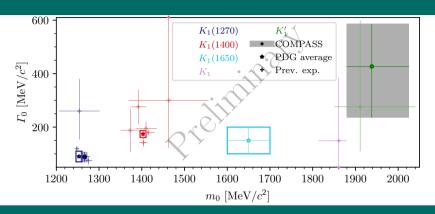
- ▶ Two near-by states $K_1(1270)$ and $K_1(1400)$
- ► Excited *K*₁(1650)



- Study K_1 states in $\rho(770)K$ decay with $M^{\varepsilon}=0^+$
- ▶ Dominated by $K_1(1270)$
- lacktriangle Similar spectrum also in $M^{\varepsilon}=1^+$ wave
- Indications for excited K'_1 mainly in $M^{\varepsilon} = 1^+$ wave

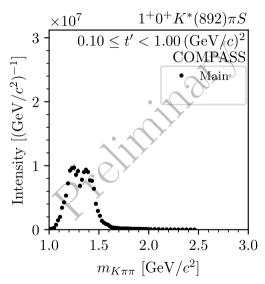


- ▶ Study K_1 states in $\rho(770)K$ decay with $M^{\varepsilon} = 0^+$
- ightharpoonup Dominated by $K_1(1270)$
- Similar spectrum also in $M^{\varepsilon} = 1^+$ wave
- ▶ Indications for excited K'_1 mainly in $M^{\varepsilon} = 1^+$ wave



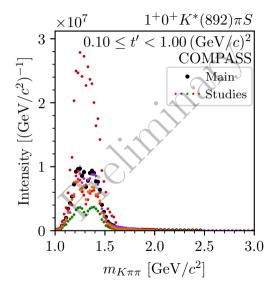
$K_1(1270)$

- ▶ Resonance parameters in agreement with previous measurements
- Our estimates from only $\rho(770)K$ waves yields slightly larger mass and smaller width compared to PDG average

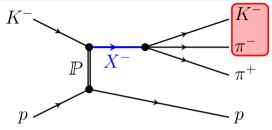


K'_1

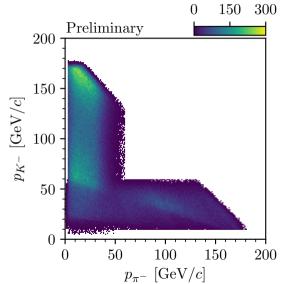
- ▶ Larger mass and width compared to PDG average of $K_1(1650)$
- ▶ PDG average from single measurement at CERN Omega spectrometer extracted from fit to only intensity spectrum [NPB 276 (1986) 667]
- ▶ Our estimates consistent with recent measurement in $B^+ \to J/\psi \phi K^+$ at LHCb



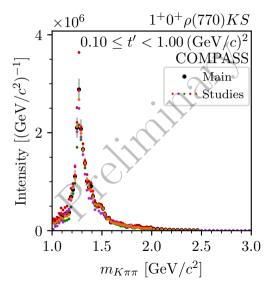
- ► Want to study K_1 states also in $K^*(892)\pi$ decays
- Very sensitive to systematic effects
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited
 - kinematic range of final-state PID
 - waves
- Causes analysis artifacts in affected wave
- Only a sub-set of partial waves affected



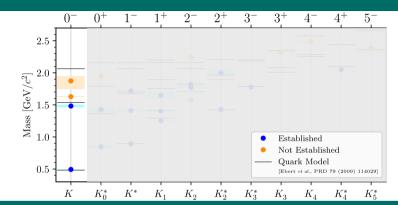
- ► Want to study K_1 states also in $K^*(892)\pi$ decays
- Very sensitive to systematic effects
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited
 - kinematic range of final-state PID
 - Reduced differentiability of certain partia
 - Causes analysis artifacts in affected was
- Only a sub-set of partial waves affected



- ► Want to study K_1 states also in $K^*(892)\pi$ decays
- Very sensitive to systematic effects
- Event selection requires to identify one of the two negative particles
 - ➡ Limited acceptance due to limited kinematic range of final-state PID
 - Reduced differentiability of certain partial waves
 - **▶** Causes analysis artifacts in affected waves
- ► Only a sub-set of partial waves affected

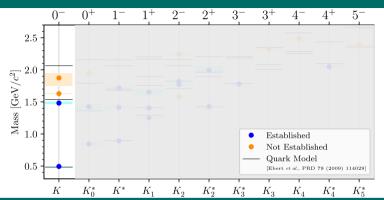


- Want to study K₁ states also in K*(892)π decays
- Very sensitive to systematic effects
- Event selection requires to identify one of the two negative particles
 - → Limited acceptance due to limited kinematic range of final-state PID
 - Reduced differentiability of certain partial waves
 - ➡ Causes analysis artifacts in affected waves
- Only a sub-set of partial waves affected



- ► Want to study K_1 states also in $K^*(892)\pi$ decays
- Very sensitive to systematic effects
- Event selection requires to identify one of the two negative particles
 - ➡ Limited acceptance due to limited kinematic range of final-state PID
 - Reduced differentiability of certain partial waves
 - Causes analysis artifacts in affected waves
- Only a sub-set of partial waves affected

Searching for Exotic Strange Mesons with $J^P = 0^-$

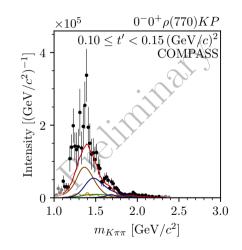


PDG (2

- ► K(1460) and K(1830)
- ► K(1630)
 - ▶ Unexpectedly small width of only $16 \,\mathrm{MeV}/c^2$
 - \triangleright J^P of K(1630) unclear

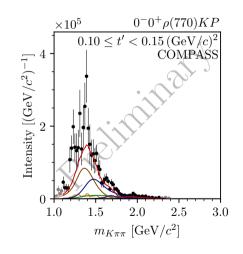
Searching for Exotic Strange Mesons with $J^P = 0^-$

PDG

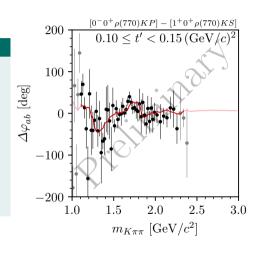

- ► K(1460) and K(1830)
- ► K(1630)
 - ▶ Unexpectedly small width of only $16 \,\mathrm{MeV}/c^2$
 - $ightharpoonup J^P$ of K(1630) unclear

Searching for Exotic Strange Mesons with $J^P=0^-$

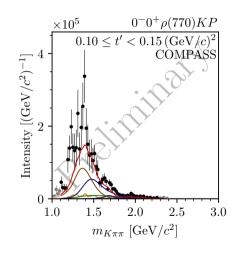
COMPASS $K^-\pi^-\pi^+$ data

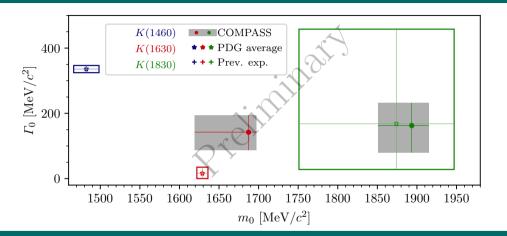

- Peak at about 1.4 GeV/ c^2
 - Established K(1460)
 - ▶ But, $m_{K\pi\pi} \lesssim 1.5 \, \text{GeV}/c^2$ region weakly affected by known analysis artifacts
- ► Second peak at about $1.7 \,\text{GeV}/c^2$
 - \triangleright K(1630) signal with $8.3\,\sigma$ statistical significance
- Neak signal at about 2.0 GeV/ c^2

COMPASS $K^-\pi^-\pi^+$ data


- Peak at about 1.4 GeV/ c^2
 - Established K(1460)
 - ▶ But, $m_{K\pi\pi} \lesssim 1.5 \, \text{GeV}/c^2$ region weakly affected by known analysis artifacts
- ► Second peak at about $1.7 \,\mathrm{GeV}/c^2$
 - \blacktriangleright K(1630) signal with 8.3 σ statistical significance
 - Accompanied by rising phase
- ► Weak signal at about 2.0 GeV/c²

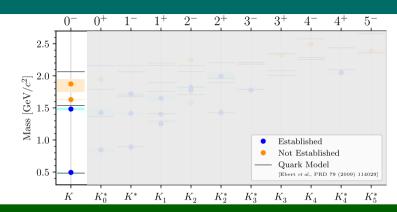
COMPASS $K^-\pi^-\pi^+$ data

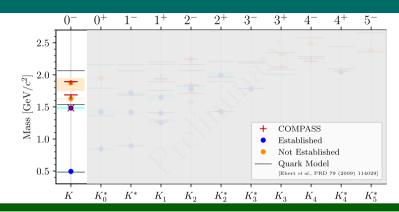

- Peak at about 1.4 GeV/ c^2
 - Established *K*(1460)
 - ▶ But, $m_{K\pi\pi} \lesssim 1.5 \, \text{GeV}/c^2$ region weakly affected by known analysis artifacts
- ► Second peak at about $1.7 \, \text{GeV}/c^2$
 - \blacktriangleright K(1630) signal with 8.3 σ statistical significance
 - Accompanied by rising phase
- Weak signal at about 2.0 GeV/c²

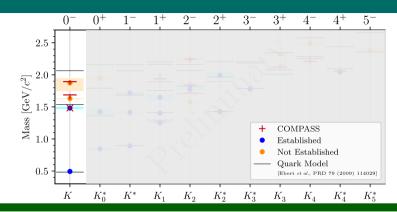


COMPASS $K^-\pi^-\pi^+$ data

- Peak at about 1.4 GeV/ c^2
 - Established *K*(1460)
 - ▶ But, $m_{K\pi\pi} \lesssim 1.5 \, \text{GeV}/c^2$ region weakly affected by known analysis artifacts
- ► Second peak at about $1.7 \,\text{GeV}/c^2$
 - \blacktriangleright K(1630) signal with 8.3 σ statistical significance
 - Accompanied by rising phase
- Weak signal at about 2.0 GeV/ c^2
 - K(1830) signal with 5.4 σ statistical significance




- ► K(1830) parameters in good agreement with LCHb measurement [PRL 118 (2017) 022003]
- Expected K(1630) width of about 140 MeV/ c^2


- Indications for 3 excited K from a single analysis
- ightharpoonup Quark-model predicts only two excited states: potentially K(1460) and K(1830)
 - \rightarrow K(1630) supernumerary signa
 - ightharpoonup Candidate for exotic non- $q\bar{q}$ state; other explanations possible ($K^*(892)$ ω threshold nearby)

- ► Indications for 3 excited *K* from a single analysis
- ▶ Quark-model predicts only two excited states: potentially K(1460) and K(1830)
 - \rightarrow K(1630) supernumerary signa
 - ightharpoonup Candidate for exotic non- $q\overline{q}$ state; other explanations possible ($K^*(892)$ ω threshold nearby)

- ► Indications for 3 excited *K* from a single analysis
- ▶ Quark-model predicts only two excited states: potentially K(1460) and K(1830)
 - ightharpoonup K(1630) supernumerary signal
 - ightharpoonup Candidate for exotic non- $q\bar{q}$ state; other explanations possible ($K^*(892)$ ω threshold nearby)

Limitations for Strange-Meson Spectroscopy at COMPASS

Main limiting factors

- ► Final-state particle identification
 - ➡ Analysis artifacts in some partial waves
 - ightharpoonup Background from reactions like $\pi^- + p \to \pi^- \pi^- \pi^+ + p$
- ► Size of the data sample
 - ▶ Low kaon fraction in the beam ($\approx 2\%$)
 - ► Sample for strange-mesons about 150-times smaller than sample for non-strange mesons
 - ► 720 k $K^- + p \to K^- \pi^- \pi^+ + p$ events
 - ▶ 115 M $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p$ events

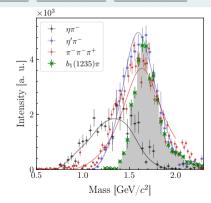
Excursion: Non-Strange Light-Meson Spectroscopy at COMPASS

- ► High-precision measurement of various final states: $\pi^-\pi^-\pi^+$, $\eta^{(\prime)}\pi^-$, $\omega\pi^0\pi^-$, $K_S^0K^-$, ...
- Most comprehensive analysis of $\pi^-\pi^-\pi^+$: 88 partial waves; fine t' binning; 11 isovector resonances; novel methods
- Large variety of results: [PLB 740 (2015) 303], [PRL 115 (2015) 82001], [PRD 95 (2017) 032004], [PRD 98 (2018) 092003], [PRD 105 (2022) 012005]

Spin-exotic $\pi_1(1600)$

- Certain J^{PC} quantum numbers not possible for pure quark-model state, e.g. 1^{-+} (π_1)
- ightharpoonup COMPASS studied partial waves with $J^{PC}=1^{-+}$
 - Consistent picture of spin-exotic $\pi_1(1600)$ emerging
- Fitting unitary and analytic models to COMPASS data on $\eta^{(\prime)}\pi^-$ final states yields no evidence for $\pi_1(1400)$
 - [PRL 112 (2019) 042002],[EPJ C 81 (2021) 1056]

Excursion: Non-Strange Light-Meson Spectroscopy at COMPASS



- High-precision measurement of various final states: $\pi^-\pi^-\pi^+$, $\eta^{(\prime)}\pi^-$, $\omega\pi^0\pi^-$, $K_S^0K^-$, ...
- Most comprehensive analysis of $\pi^-\pi^-\pi^+$: 88 partial waves; fine t' binning; 11 isovector resonances; novel methods
- Large variety of results: [PLB 740 (2015) 303], [PRL 115 (2015) 82001], [PRD 95 (2017) 032004], [PRD 98 (2018) 092003], [PRD 105 (2022) 012005]

Spin-exotic $\pi_1(1600)$

- Certain J^{PC} quantum numbers not possible for pure quark-model state, e.g. 1^{-+} (π_1)
- ► COMPASS studied partial waves with $J^{PC} = 1^{-+}$
 - ▶ Consistent picture of spin-exotic $\pi_1(1600)$ emerging
- Fitting unitary and analytic models to COMPASS data on $\eta^{(\prime)}\pi^-$ final states yields no evidence for $\pi_1(1400)$

[PRL 112 (2019) 042002], [EPJ C 81 (2021) 1056]

High-Precision Strange-Meson Spectroscopy at AMBER

Apparatus for Meson and Baryon Experimental Research

Phase I: After long shutdown 2 of LHC [CERN-SPSC-2019-022]

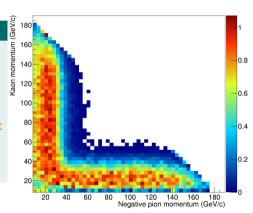
- Proton charge-radius measurement
- Drell-Yan and charmonium production
- ightharpoonup p-induced \bar{p} production cross section

Phase II: After long shutdown 3 of LHC [arXiv:1808.00848]

- Physics with kaon beams
 - ► Strange-meson spectroscopy goal: 10× larger data sample
 - Kaon-induced charmonium production
 - **•** ...

High-Precision Strange-Meson Spectroscopy at AMBER Key Requirements for the Experimental Setup

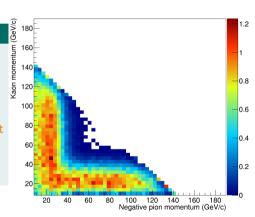
- Upgrade of final-state particle identification
 - Cover wide momentum range
 - ► Large and uniform acceptance
- ► Dedicated trigger for kaon-induced events
- ► Efficient beam-particle identification for high-purity sample
- High-resolution track reconstruction
- ▶ Efficient photon detection for access to final states with neutral particles


- ► Eliminate artifacts caused by limited final-state particle identification
- ▶ Increase size of the data sample by increasing acceptance

High-Precision Strange-Meson Spectroscopy at AMBER Improve Final-State PID

 $p_{
m beam} = 190\,{
m GeV}/c$

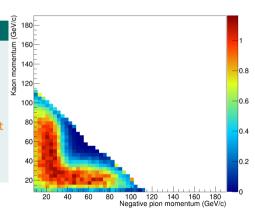
- New detector for high-momentum particle identification
- Adjust the momentum range of the existing COMPASS RICH
- ► Reduce the beam momentum to better fit the current momentum coverage
 - However, lower fraction of kaons in the beam at lower momenta



High-Precision Strange-Meson Spectroscopy at AMBER Improve Final-State PID

 $p_{
m beam}=150\,{
m GeV}/c$

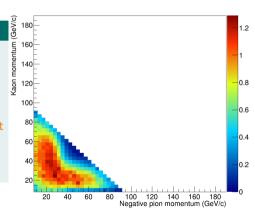
- ► New detector for high-momentum particle identification
- Adjust the momentum range of the existing COMPASS RICH
- ► Reduce the beam momentum to better fit the current momentum coverage
 - ► However, lower fraction of kaons in the beam at lower momenta



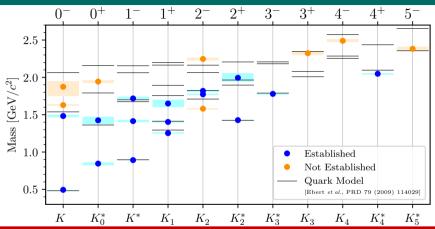
High-Precision Strange-Meson Spectroscopy at AMBER

 $p_{
m beam} = 120\,{
m GeV}/c$

- ► New detector for high-momentum particle identification
- Adjust the momentum range of the existing COMPASS RICH
- ► Reduce the beam momentum to better fit the current momentum coverage
 - However, lower fraction of kaons in the beam at lower momenta

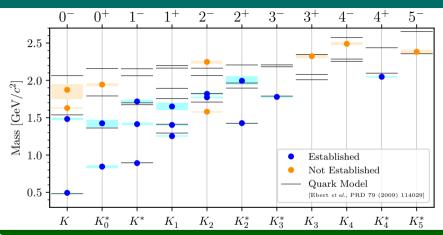


High-Precision Strange-Meson Spectroscopy at AMBER Improve Final-State PID



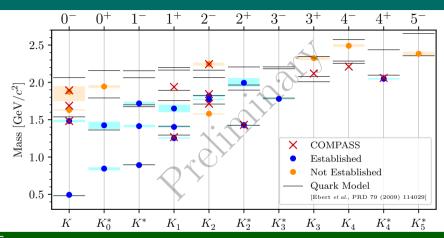
 $p_{
m beam}=100\,{
m GeV}/c$

- New detector for high-momentum particle identification
- Adjust the momentum range of the existing COMPASS RICH
- ► Reduce the beam momentum to better fit the current momentum coverage
 - ► However, lower fraction of kaons in the beam at lower momenta



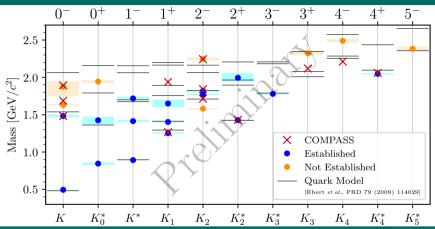
The Strange-Meson Spectrum

- ► Many strange mesons require further confirmation
- Search for strange partners of exotic non-strange light mesons



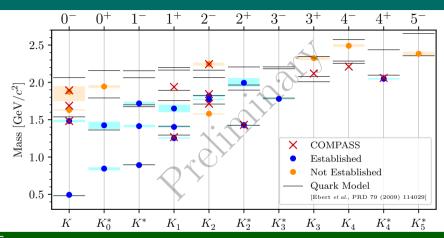
COMPASS

- $lackbox{World's largest data sample on } K^-\pi^-\pi^+ \Rightarrow {\sf Most detailed and comprehensive analysis}$
- \triangleright Candidate for exotic strange-meson signal with $J^P = 0^-$



COMPASS

- lacktriangle World's largest data sample on $K^-\pi^-\pi^+ \Rightarrow$ Most detailed and comprehensive analysis
- ► Candidate for exotic strange-meson signal with $J^P = 0^-$



AMBER: Proposal for High-Precision Strange-Meson Spectroscopy

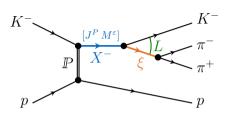
- ▶ Goal: Collect $10-20\times10^6~K^-\pi^-\pi^+$ events using high-energy kaon beam
 - AMBER is open for interested collaborators to join

COMPASS

- lacktriangle World's largest data sample on $K^-\pi^-\pi^+ \Rightarrow$ Most detailed and comprehensive analysis
- ► Candidate for exotic strange-meson signal with $J^P = 0^-$

Backup

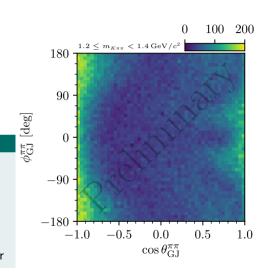
Outline



- 10 Partial-Wave Decomposition
 - Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds
- 11 Resonance-Model Fit
 - Modeling the $K^-\pi^-\pi^+$ Signal
 - Modeling the $\pi^-\pi^-\pi^+$ Background
 - Modeling the Effective Background
 - χ^2 Fit Procedure
- 12 Wave-Set Selection
 - Regularization: LASSO
 - Regularization: Generalized Pareto
 - Regularization: Cauchy
 - For the $K^-\pi^-\pi^+$ Final State
- 13 14-Wave Resonance-Model Fit

- Searching for Exotic Strange Mesons with $J^P = 0^-$
- Partial Waves with $J^P = 2^+$ Partial Waves with $J^P = 2^-$ Partial Waves with $J^P = 4^+$

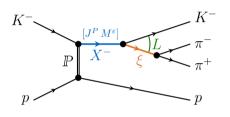
- 14 Kinematic Distribution of $K^-\pi^-\pi^+$ Events
 - Subsystem $m_{K^-\pi^-}$
 - t' Spectrum
 - Exclusivity
- Systematic Studies of the Partial-Wave Decomposition
 - 14 Waves
 - Leakage Waves
- 16 Leakage Effect
- Incoherent $\pi^-\pi^-\pi^+$ Background



Partial wave

$J^P M^{\varepsilon} \xi b L$

- ▶ $J^P M^{\varepsilon}$: Spin, parity, and spin projection of X^-
- ► ξ: Isobar
- ▶ b: Bachelor particle. Here: Spectator K⁻
- L: Angular momentum between bachelor and isobar

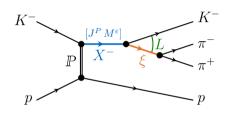


Model intensity

$$\mathcal{I}(\tau, m_{K\pi\pi}, t') = \sum_{z} \left| \sum_{a \in \mathbb{W}_{z}(m_{K\pi\pi}, t')} \mathcal{T}_{a}^{z}(\tau, m_{K\pi\pi}) \right|^{z}$$

- Model intensity distribution
 - ightharpoonup in 5D $K^-\pi^-\pi^+$ phase-space
 - ▶ for a given $(m_{K\pi\pi}, t')$ cell
 - ► as incoherent sum over coherent sectors z
 - "Rank" of the partial-wave model = number of coherent sectors
- Ψ_a^z known, assuming the isobar model
- ► Wave set $W_z(m_{K\pi\pi}, t')$ inferred from data using regularization-based model-selection techniques
- ▶ T_a^z extracted in maximum-likelihood fit, independently for each (m_{V-z}, t') cell

Spin-Density Matrix

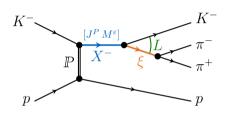

$$\rho_{ab} = \sum_{\mathbf{z}} \mathcal{T}_{a}^{\mathbf{z}} \left[\mathcal{T}_{b}^{\mathbf{z}} \right]^{*}$$

Model intensity

$$\mathcal{I}(\tau, m_{K\pi\pi}, t') = \sum_{z} \left| \sum_{a \in \mathbb{W}_{z}(m_{K\pi\pi}, t')} \mathcal{I}_{a}^{z}(\tau, m_{K\pi\pi}) \right|^{2}$$

- Model intensity distribution
 - ightharpoonup in 5D $K^-\pi^-\pi^+$ phase-space
 - ▶ for a given $(m_{K\pi\pi}, t')$ cell
 - ► as incoherent sum over coherent sectors z
 - "Rank" of the partial-wave model = number of coherent sectors
- $\blacktriangleright \Psi_{\!\!\! a}^z$ known, assuming the isobar model
- ► Wave set $W_z(m_{K\pi\pi}, t')$ inferred from data using regularization-based model-selection techniques
- \triangleright \mathcal{T}_a^z extracted in maximum-likelihood fit, independently for each $(m_{K\pi\pi}, t')$ cell

Spin-Density Matrix


$$\rho_{ab} = \sum_{z} \mathcal{T}_{a}^{z} \left[\mathcal{T}_{b}^{z} \right]^{*}$$

Model intensity

$$\mathcal{I}(\tau, m_{K\pi\pi}, t') = \sum_{z} \left| \sum_{a \in \mathbb{W}_{z}(m_{K\pi\pi}, t')} \mathcal{T}_{a}^{z}(\tau, m_{K\pi\pi}) \right|^{2}$$

- Model intensity distribution
 - ightharpoonup in 5D $K^-\pi^-\pi^+$ phase-space
 - for a given $(m_{K\pi\pi}, t')$ cell
 - ► as incoherent sum over coherent sectors z
 - "Rank" of the partial-wave model = number of coherent sectors
- $\blacktriangleright \Psi_{\!a}^z$ known, assuming the isobar model
- ▶ Wave set $W_z(m_{K\pi\pi}, t')$ inferred from data using regularization-based model-selection techniques
- T_a^z extracted in maximum-likelihood fit, independently for each $(m_{K\pi\pi}, t')$ cell

Spin-Density Matrix

$$\rho_{ab} = \sum_{z} \mathcal{T}_{a}^{z} \left[\mathcal{T}_{b}^{z} \right]^{*}$$

Ap Ag sit

Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds

Approach

- ► Effectively take into account in partial-wave decomposition by incoherently adding additional coherent sectors *z*
 - (Model background by $K^-\pi^-\pi^+$ partial waves)
 - ightharpoonup Increasing the rank of the spin-density matrix ρ_{ab}
 - ⇒ Signal not separated from background in partial-wave decomposition
 - ➤ Partial-wave amplitudes include background
- Model signal and background contributions in resonance-model fit using more constrained signal model
 - ➡ Separate signal from background

$$\mathcal{I}(\tau, m_{K\pi\pi}, t') = \sum_{z} \left| \sum_{a \in \mathbb{W}_{z}(m_{K\pi\pi}, t')} \mathcal{I}_{a}^{z}(\tau, m_{K\pi\pi}) \right|^{2} \qquad \qquad \rho_{ab} = \sum_{z} \mathcal{T}_{a}^{z} \left[\mathcal{T}_{b}^{z} \right]^{*}$$

True physics intensity distribution

$$\mathcal{I}\left(au
ight.\left(au
ight.
ight) = \left|\sum_{a}^{\mathsf{waves}} \mathcal{T}_{a} \; \varPsi_{a}(au)
ight|^{2}$$

$$\mathcal{I}_{\mathrm{measured}}(au) = \frac{\eta}{\eta} (au) \mathcal{I} (au)$$

- ► Take into account different processes p
 - ightharpoonup Different model intensities $\mathcal{I}^{\mathfrak{p}}$
 - \triangleright Different experimental acceptance $\eta^{\mathfrak{p}}$
 - Formulated in terms of different phase-space variables τ^{μ}
 - lacktriangle Jacobian terms $J(au^{K\pi\pi} o au^{\mathfrak p})$ from variable transformation

Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds

True physics intensity distribution for process \mathfrak{p}

$$\mathcal{I}^{\mathbf{p}}(au^{}) = \left|\sum_{a}^{\mathsf{waves}} \mathcal{T}^{\mathbf{p}}_{a} \Psi^{\mathbf{p}}_{a}(au^{})\right|^{2}$$

$$\mathcal{I}_{ ext{measured}}(au \quad) = \sum_{\mathfrak{p}} \eta^{\mathfrak{p}}(au \) \, \mathcal{I}^{\mathfrak{p}}(au \)$$

- Take into account different processes p
 - Different model intensities \(\mathcal{I}^p \)
 - ightharpoonup Different experimental acceptance $\eta^{\mathfrak{p}}$
 - Formulated in terms of different phase-space variables τ^{p}
 - ▶ Jacobian terms $J(\tau^{K\pi\pi} \to \tau^{\mathfrak{p}})$ from variable transformation

Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds

True physics intensity distribution for process p

$$\mathcal{I}^{\mathfrak{p}}(au^{\mathfrak{p}}) = \left|\sum_{a}^{\mathsf{waves}} \mathcal{T}^{\mathfrak{p}}_{a} \varPsi^{\mathfrak{p}}_{a}(au^{\mathfrak{p}})\right|^{2}$$

$$\mathcal{I}_{\text{measured}}(\tau^{K\pi\pi}) = \sum_{\mathfrak{p}} \eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \mathcal{I}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) J(\tau^{K\pi\pi} \to \tau^{\mathfrak{p}})$$

- Take into account different processes p
 - ▶ Different model intensities $\mathcal{I}^{\mathfrak{p}}(\tau^{\mathfrak{p}})$
 - \triangleright Different experimental acceptance $\eta^{\mathfrak{p}}(\tau^{\mathfrak{p}})$
 - Formulated in terms of different phase-space variables $\tau^{\mathfrak{p}}$
 - ▶ Jacobian terms $J(\tau^{K\pi\pi} \to \tau^{\mathfrak{p}})$ from variable transformation

True physics intensity distribution for process $\operatorname{\mathfrak{p}}$

$$\mathcal{I}^{\mathbf{p}}(au^{\mathbf{p}}) = \left|\sum_{a}^{\mathsf{waves}} \mathcal{T}^{\mathbf{p}}_{a} \, \varPsi^{\mathbf{p}}_{a}(au^{\mathbf{p}})\right|^{2}$$

- $ightharpoonup \mathcal{I}^{\pi\pi\pi}$ known by COMPASS analysis
- $\blacktriangleright \eta^{\pi\pi\pi}$ from detector simulation

$$\mathcal{I}_{\mathrm{measured}}(\tau^{K\pi\pi}) = \sum_{\mathfrak{p}} \eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \mathcal{I}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) J(\tau^{K\pi\pi} \to \tau^{\mathfrak{p}})$$

- $\triangleright \eta^{\pi\pi\pi}$ computationally expensive
- ▶ Different $m_{3\pi}$ bins enter one $m_{K\pi\pi}$ bin
- Other background channels: $K^-K^-K^+$, ...
 - Unknown background channels

True physics intensity distribution for process $\mathfrak p$

$$\mathcal{I}^{\mathbf{p}}(au^{\mathbf{p}}) = \left|\sum_{a}^{\mathsf{waves}} \mathcal{T}^{\mathbf{p}}_{a} \Psi^{\mathbf{p}}_{a}(au^{\mathbf{p}})\right|^{2}$$

- $ightharpoonup \mathcal{I}^{\pi\pi\pi}$ known by COMPASS analysis
- $\blacktriangleright \eta^{\pi\pi\pi}$ from detector simulation

$$\mathcal{I}_{\mathrm{measured}}(\tau^{K\pi\pi}) = \sum_{\mathfrak{p}} \eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \, \mathcal{I}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \, J(\tau^{K\pi\pi} \to \tau^{\mathfrak{p}})$$

- $ightharpoonup \eta^{\pi\pi\pi}$ computationally expensive
- ▶ Different $m_{3\pi}$ bins enter one $m_{K\pi\pi}$ bin
- \triangleright Other background channels: $K^-K^-K^+$, ...
 - ► *I*^p unknown
 - Unknown background channels

True physics intensity distribution for process $\mathfrak p$

$$\mathcal{I}^{\mathfrak{p}}(au^{\mathfrak{p}}) = \left|\sum_{a}^{\mathsf{waves}} \mathcal{T}^{\mathfrak{p}}_{a} \varPsi^{\mathfrak{p}}_{a}(au^{\mathfrak{p}})\right|^{2}$$

- $ightharpoonup \mathcal{I}^{\pi\pi\pi}$ known by COMPASS analysis
- $\blacktriangleright \eta^{\pi\pi\pi}$ from detector simulation

$$\mathcal{I}_{\mathrm{measured}}(\tau^{K\pi\pi}) = \sum_{\mathfrak{p}} \eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \, \mathcal{I}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \, J(\tau^{K\pi\pi} \to \tau^{\mathfrak{p}})$$

- $ightharpoonup \eta^{\pi\pi\pi}$ computationally expensive
- ▶ Different $m_{3\pi}$ bins enter one $m_{K\pi\pi}$ bin
- ▶ Other background channels: $K^-K^-K^+$, ...
 - ► *I*^p unknown
 - Unknown background channels

Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds

Approximate model for process $\mathfrak p$ by $K^-\pi^-\pi^+$ partial waves

$$\eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \left| \sum_{a}^{\mathsf{waves}} \mathcal{T}_{a}^{\mathfrak{p}} \Psi_{a}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \right|^{2} \approx \eta^{K\pi\pi} (\tau^{K\pi\pi}) \left| \sum_{a}^{\mathsf{waves}} \tilde{\mathcal{T}}_{a}^{\mathfrak{p}} \Psi_{a}^{K\pi\pi} (\tau^{K\pi\pi}) \right|^{2}$$

Total true physics intensity distribution

$$\mathcal{I}(\tau^{K\pi\pi}) = \sum_{\mathbf{p}} \left| \sum_{a}^{\text{waves}} \mathcal{T}_{a}^{\mathbf{p}} \, \varPsi_{a}^{K\pi\pi}(\tau^{K\pi\pi}) \right|^{2}$$

$$\mathcal{I}_{\text{measured}}(\tau^{K\pi\pi}) = \eta^{K\pi\pi}(\tau^{K\pi\pi})\mathcal{I}(\tau^{K\pi\pi})$$

- \blacktriangleright How well can $K^-\pi^-\pi^+$ partial waves approximate the distribution of process $\mathfrak p$
 - ls the set of $K^-\pi^-\pi^+$ partial waves sufficient?
 - ➡ Automatic wave-set selection using model-selection techniques

Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds

Approximate model for process $\mathfrak p$ by $K^-\pi^-\pi^+$ partial waves

$$\left. \eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \left| \sum_{a}^{\mathsf{waves}} \mathcal{T}_{a}^{\mathfrak{p}} \, \varPsi_{a}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \right|^{2} \approx \eta^{K\pi\pi}(\tau^{K\pi\pi}) \left| \sum_{a}^{\mathsf{waves}} \tilde{\mathcal{T}}_{a}^{\mathfrak{p}} \, \varPsi_{a}^{K\pi\pi}(\tau^{K\pi\pi}) \right|^{2}$$

Total true physics intensity distribution

$$\mathcal{I}(\tau^{K\pi\pi}) = \sum_{\mathbf{p}} \left| \sum_{a}^{\text{waves}} \mathcal{T}_{a}^{\mathbf{p}} \, \Psi_{a}^{K\pi\pi} (\tau^{K\pi\pi}) \right|^{2}$$

$$\mathcal{I}_{\text{measured}}(\tau^{K\pi\pi}) = \eta^{K\pi\pi}(\tau^{K\pi\pi}) \mathcal{I}(\tau^{K\pi\pi})$$

- \blacktriangleright How well can $K^-\pi^-\pi^+$ partial waves approximate the distribution of process $\mathfrak p$
 - ls the set of $K^-\pi^-\pi^+$ partial waves sufficient?
 - ➡ Automatic wave-set selection using model-selection techniques

Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds

Approximate model for process $\mathfrak p$ by $K^-\pi^-\pi^+$ partial waves

$$\eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \left| \sum_{a}^{\mathsf{waves}} \mathcal{T}_{a}^{\mathfrak{p}} \varPsi_{a}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \right|^{2} \approx \eta^{K\pi\pi} (\tau^{K\pi\pi}) \left| \sum_{a}^{\mathsf{waves}} \tilde{\mathcal{T}}_{a}^{\mathfrak{p}} \varPsi_{a}^{K\pi\pi} (\tau^{K\pi\pi}) \right|^{2}$$

Total true physics intensity distribution

$$\mathcal{I}(\tau^{K\pi\pi}) = \sum_{a,b}^{\text{waves}} \Psi_{a}^{K\pi\pi}(\tau^{K\pi\pi}) \, \rho_{a,b} \, [\Psi_{b}^{K\pi\pi}(\tau^{K\pi\pi})]^*$$

Spin-density matrix with rank $N_{
m r}>1$

$$ho_{\mathsf{a},b} = \sum_{\mathsf{p}}^{\mathcal{N}_{\mathrm{r}}} \mathcal{T}^{\mathsf{p}}_{\mathsf{a}} [\mathcal{T}^{\mathsf{p}}_{b}]^*$$

- \blacktriangleright How well can $K^-\pi^-\pi^+$ partial waves approximate the distribution of process $\mathfrak p$
 - ls the set of $K^-\pi^-\pi^+$ partial waves sufficient?
 - ➡ Automatic wave-set selection using model-selection techniques

Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds

Approximate model for process $\mathfrak p$ by $K^-\pi^-\pi^+$ partial waves

$$\eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \left| \sum_{a}^{\mathsf{waves}} \mathcal{T}_{a}^{\mathfrak{p}} \, \varPsi_{a}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \right|^{2} \approx \eta^{K\pi\pi} (\tau^{K\pi\pi}) \left| \sum_{a}^{\mathsf{waves}} \tilde{\mathcal{T}}_{a}^{\mathfrak{p}} \, \varPsi_{a}^{K\pi\pi} (\tau^{K\pi\pi}) \right|^{2}$$

Total true physics intensity distribution

$$\mathcal{I}(\tau^{K\pi\pi}) = \sum_{a,b}^{\text{waves}} \Psi_a^{K\pi\pi}(\tau^{K\pi\pi}) \, \rho_{a,b} \, [\Psi_b^{K\pi\pi}(\tau^{K\pi\pi})]^*$$

Spin-density matrix with rank $N_{\rm r}>1$

$$ho_{\mathsf{a},b} = \sum_{\mathsf{p}}^{N_{\mathrm{r}}} \mathcal{T}^{\mathsf{p}}_{\mathsf{a}} [\mathcal{T}^{\mathsf{p}}_{b}]^*$$

- ▶ How well can $K^-\pi^-\pi^+$ partial waves approximate the distribution of process \mathfrak{p}
 - ls the set of $K^-\pi^-\pi^+$ partial waves sufficient?
 - → Automatic wave-set selection using model-selection techniques

Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds

Approximate model for process $\mathfrak p$ by $K^-\pi^-\pi^+$ partial waves

$$\left. \eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \left| \sum_{a}^{\mathsf{waves}} \mathcal{T}_{a}^{\mathfrak{p}} \, \varPsi_{a}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \right|^{2} \approx \eta^{K\pi\pi}(\tau^{K\pi\pi}) \left| \sum_{a}^{\mathsf{waves}} \tilde{\mathcal{T}}_{a}^{\mathfrak{p}} \, \varPsi_{a}^{K\pi\pi}(\tau^{K\pi\pi}) \right|^{2}$$

Total true physics intensity distribution

$$\mathcal{I}(\tau^{K\pi\pi}) = \sum_{a,b}^{\text{waves}} \Psi_a^{K\pi\pi}(\tau^{K\pi\pi}) \, \rho_{a,b} \, [\Psi_b^{K\pi\pi}(\tau^{K\pi\pi})]^*$$

Spin-density matrix with rank $N_{ m r}>1$

$$\rho_{\mathsf{a},b} = \sum_{\mathsf{r}}^{N_{\mathsf{r}}} \mathcal{T}_{\mathsf{a}}^{\mathsf{r}} [\mathcal{T}_{b}^{\mathsf{r}}]^*$$

- ► Experimentally measurable quantities are spin-density matrix elements
 - \rightarrow Transition amplitudes \mathcal{T}_{p}^{p} are only effective parameters
 - → Cannot determine T^p of individual processes
 - **→** Cannot separate different processes

Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds

Approximate model for process $\mathfrak p$ by $K^-\pi^-\pi^+$ partial waves

$$\left. \eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \left| \sum_{a}^{\mathsf{waves}} \mathcal{T}_{a}^{\mathfrak{p}} \, \varPsi_{a}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \right|^{2} \approx \eta^{K\pi\pi}(\tau^{K\pi\pi}) \left| \sum_{a}^{\mathsf{waves}} \tilde{\mathcal{T}}_{a}^{\mathfrak{p}} \, \varPsi_{a}^{K\pi\pi}(\tau^{K\pi\pi}) \right|^{2}$$

Total true physics intensity distribution

$$\mathcal{I}(\tau^{K\pi\pi}) = \sum_{a,b}^{\text{waves}} \Psi_a^{K\pi\pi}(\tau^{K\pi\pi}) \, \rho_{a,b} \, [\Psi_b^{K\pi\pi}(\tau^{K\pi\pi})]^*$$

Spin-density matrix with rank $N_{ m r}>1$

$$\rho_{\mathsf{a},\mathsf{b}} = \sum_{\mathsf{r}}^{\mathsf{N}_{\mathsf{r}}} \mathcal{T}_{\mathsf{a}}^{\mathsf{r}} [\mathcal{T}_{\mathsf{b}}^{\mathsf{r}}]^*$$

- ▶ Large number of fit parameters: $N_{\text{para}} = N_{\text{r}}(2N_{\text{waves}} N_{\text{r}})$
- ► Sufficient rank of spin-density matrix must be determined
 - ► Rank two needed to describe pure $\pi^-\pi^-\pi^+$ Monte Carlo sample using $K^-\pi^-\pi^+$ partial waves
 - ▶ Used rank three to model $K^-\pi^-\pi^+$ sample

Resonance-Model Fit

Data

 $720\,\mathrm{k}$ diffractively produced $K^-\pi^-\pi^+$ candidates

(I) Partial-Wave Decomposition

Partial Waves

Intensities and relative phases of the partial waves

(II) Resonance-Model Fit

Resonance Parameters

Masses and widths of the meson resonances

Resonance-Model Fit

- ▶ Spin-density matrix $\rho_{ab}(m_{K\pi\pi}, t')$ measured in partial-wave decomposition
- ▶ Model spin-density matrix in resonance-model fit

$$\hat{\rho}_{ab}(m_{K\pi\pi},t') = \hat{\rho}_{ab}^{K\pi\pi}(m_{K\pi\pi},t') + \hat{\rho}_{ab}^{3\pi}(m_{K\pi\pi},t') + \hat{\rho}_{ab}^{\mathrm{Bkg}}(m_{K\pi\pi},t')$$

$$\hat{\mathcal{T}}^z_a(m_{K\pi\pi},t') = \sum_{k \in \mathbb{S}_a} K(m_{K\pi\pi},t')^k \mathcal{C}^{K\pi\pi}_a(t') \, \mathcal{D}_k(m_{K\pi\pi};\zeta_k)$$

- ▶ Dynamic functions $\mathcal{D}_k(m_{K\pi\pi}; \zeta_k)$
 - ► For resonances: rel. Breit-Wigner
 - For non-resonant terms: $\mathcal{D}_k^{\mathrm{NR}}(m_{K\pi\pi}; a_k, c_k) = (m_{K\pi\pi} m_{\mathrm{thr}})^{a_k} e^{-b(c_k)} \tilde{q}_k^2(m_{K\pi\pi})$
- "Coupling amplitudes": ${}^kC_a^z(t')$
 - ightharpoonup Independent coupling amplitude for each t' bin
- ► Kinematic factor $K(m_{K\pi\pi}, t')$
- ► Coherently summed over all assumed model components

$$\hat{\mathcal{T}}_{a}^{z}(m_{K\pi\pi},t') = \sum_{k \in \mathbb{S}_{a}} K(m_{K\pi\pi},t')^{k} \mathcal{C}_{a}^{K\pi\pi}(t') \mathcal{D}_{k}(m_{K\pi\pi};\zeta_{k})$$

- ▶ Dynamic functions $\mathcal{D}_k(m_{K\pi\pi}; \zeta_k)$
 - For resonances: rel. Breit-Wigner
 - For non-resonant terms: $\mathcal{D}_k^{\mathrm{NR}}(m_{K\pi\pi}; a_k, c_k) = (m_{K\pi\pi} m_{\mathrm{thr}})^{a_k} e^{-b(c_k)} \tilde{q}_k^2(m_{K\pi\pi})$
- "Coupling amplitudes": ${}^kC_a^z(t')$
 - ightharpoonup Independent coupling amplitude for each t' bin
- ► Kinematic factor $K(m_{K\pi\pi}, t')$
- ► Coherently summed over all assumed model components

$$\hat{\mathcal{T}}_{a}^{z}(m_{K\pi\pi},t') = \sum_{k \in \mathbb{S}_{a}} K(m_{K\pi\pi},t')^{k} \mathcal{C}_{a}^{K\pi\pi}(t') \mathcal{D}_{k}(m_{K\pi\pi};\zeta_{k})$$

- ▶ Dynamic functions $\mathcal{D}_k(m_{K\pi\pi}; \zeta_k)$
 - For resonances: rel. Breit-Wigner
 - For non-resonant terms: $\mathcal{D}_k^{\mathrm{NR}}(m_{K\pi\pi}; a_k, c_k) = (m_{K\pi\pi} m_{\mathrm{thr}})^{a_k} e^{-b(c_k)} \tilde{q}_k^2(m_{K\pi\pi})$
- "Coupling amplitudes": ${}^kC_a^z(t')$
 - ightharpoonup Independent coupling amplitude for each t' bin
- ▶ Kinematic factor $K(m_{K\pi\pi}, t')$
- ► Coherently summed over all assumed model components

$$\hat{\mathcal{T}}_{a}^{z}(m_{K\pi\pi},t') = \sum_{k \in \mathbb{S}_{a}} K(m_{K\pi\pi},t')^{k} \mathcal{C}_{a}^{K\pi\pi}(t') \mathcal{D}_{k}(m_{K\pi\pi};\zeta_{k})$$

- ▶ Dynamic functions $\mathcal{D}_k(m_{K\pi\pi}; \zeta_k)$
 - ► For resonances: rel. Breit-Wigner
 - For non-resonant terms: $\mathcal{D}_k^{\mathrm{NR}}(m_{K\pi\pi}; a_k, c_k) = (m_{K\pi\pi} m_{\mathrm{thr}})^{a_k} e^{-b(c_k)} \tilde{q}_k^2(m_{K\pi\pi})$
- "Coupling amplitudes": ${}^kC_a^z(t')$
 - ightharpoonup Independent coupling amplitude for each t' bin
- ▶ Kinematic factor $K(m_{K\pi\pi}, t')$
- ► Coherently summed over all assumed model components

3π spin-density matrix

$$\hat{
ho}_{ab}^{\pi\pi\pi}(m_{K\pi\pi},t') = \left|\mathcal{C}^{\pi\pi\pi}\right|^2
ho_{ab}^{\pi\pi\pi}(m_{K\pi\pi},t')$$

- $ightharpoonup
 ho_{ab}^{\pi\pi\pi}(m_{K\pi\pi},t')$ obtained from PWD of $\pi^-\pi^-\pi^+$ pseudodata sample
 - $ightharpoonup m_{K\pi\pi}$ dependence fixed
 - ▶ t' dependence fixed
 - ► Rel. strength between partial waves fixed (freed in a study)
- lacktriangle One global real-valued yield parameter $\left|\mathcal{C}^{\pi\pi\pi}\right|^2$

Background spin-density matrix

- ▶ Additional incoherent contribution form other processes: $K^-K^-K^+$, ...
- Transition amplitudes modeled by non-resonant parameterizations for each partial wave

$$\hat{\mathcal{T}}_a^{\mathrm{eBKG}}(m_{K\pi\pi},t') = \mathcal{K}(m_{K\pi\pi},t') \; \mathcal{C}_a^{\mathrm{eBKG}}(t') \, \mathcal{D}_{k_a}^{\mathrm{eBKG}}(m_{K\pi\pi};a_{k_a},c_{k_a})$$

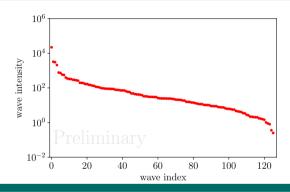
Resonance-Model Fit

- \triangleright χ^2 fit of the real and imaginary parts of the spin-density matrix
 - ► Taking into account correlations between spin-density matrix elements
 - ▶ Shape parameters $(m_0, \Gamma_0, ...)$ and coupling amplitudes are free parameters
- For the main fit, we performed 2000 fit attempts with random start-parameter values for the shape parameters, e.g. mass and width parameters, and the coupling and branching amplitudes.
- ► Start-parameter ranges for the shape parameters are chosen according to previous measurements (see note)
- ▶ The best result is the one which yielded the smallest χ^2 value

- \triangleright χ^2 fit of the real and imaginary parts of the spin-density matrix
 - ► Taking into account correlations between spin-density matrix elements
 - ▶ Shape parameters $(m_0, \Gamma_0, ...)$ and coupling amplitudes are free parameters
- For the main fit, we performed 2000 fit attempts with random start-parameter values for the shape parameters, e.g. mass and width parameters, and the coupling and branching amplitudes.
- ► Start-parameter ranges for the shape parameters are chosen according to previous measurements (see note)
- ▶ The best result is the one which yielded the smallest χ^2 value

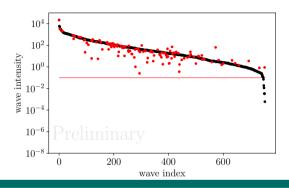
$$\mathcal{I}(au, m_{K\pi\pi}, t') = \left| \sum_{a \in \mathbb{W}(m_{K\pi\pi}, t')} \mathcal{T}_a(m_{K\pi\pi}, t') \mathcal{Y}_a(au, m_{K\pi\pi}) \right|^2$$

Challenge: Find the "best" set of waves that describes the data


- ▶ If the wave set is too large
 - Starting to describe statistical fluctuations
- If waves that contribute to the data are missing
 - ➡ Intensity can be wrongly attributed to other waves
 - → Model leakage

Infer wave set from data

- ► Systematically construct large set of allowed partial waves
 - → "Wave pool"
- ► Fit wave pool to data
 - ▶ Impose penalty on $|\mathcal{T}_a|^2 \Rightarrow \text{regularization}$
 - Suppress insignificant waves
- Select waves that significantly contribute to data
 - ⇒ "Best" subset of waves that describe the data



- \blacktriangleright $\pi^-\pi^-\pi^+$ Monte Carlo mock data set with 126 partial waves
- Fitting wave pool of 753 waves
 - Massive overfitting
 - Almost all waves pick up intensity

Courtesy F. Kaspar, TUM

- $ightharpoonup \pi^-\pi^-\pi^+$ Monte Carlo mock data set with 126 partial waves
- ► Fitting wave pool of 753 waves
 - Massive overfitting
 - ➡ Almost all waves pick up intensity

Regularization: LASSO

$$\ln \mathcal{L}_{ ext{fit}} = \ln \mathcal{L}_{ ext{extended}} + \sum_{a}^{ ext{waves}} \ln \mathcal{L}_{ ext{reg}}(|\mathcal{T}_a|; \{c_{ ext{para}}\})$$

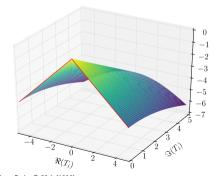
LASSO/L1 regularization²

$$\ln \mathcal{L}_{\text{reg}}(|\mathcal{T}_a|;\lambda) = -\lambda |\mathcal{T}_a|$$

- Maximum at $|\mathcal{T}_a| = 0$
- Well established²
- ightharpoonup "Smoothing" at $|\mathcal{T}_a|=0$

$$|\mathcal{T}_a|
ightarrow \sqrt{|\mathcal{T}_a|^2 + arepsilon}$$

¹ Robert Tibshirani. "Regression Shrinkage and Selection via the Lasso". In: Journal of the Royal Statistical Society. Series B 58.1 (1996) Baptiste Guegan et al. "Model selection for amplitude analysis". In: JINST 10.09 (2015), P09002



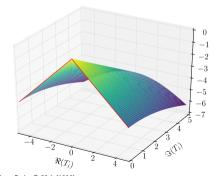
$$\ln \mathcal{L}_{ ext{fit}} = \ln \mathcal{L}_{ ext{extended}} + \sum_{a}^{ ext{waves}} \ln \mathcal{L}_{ ext{reg}}(|\mathcal{T}_a|;\{c_{ ext{para}}\})$$

LASSO/L1 regularization¹

$$\ln \mathcal{L}_{\mathrm{reg}}(|\mathcal{T}_{\mathsf{a}}|;\lambda) = -\lambda |\mathcal{T}_{\mathsf{a}}|$$

- Maximum at $|\mathcal{T}_a| = 0$
- ► Well established²
- "Smoothing" at $|\mathcal{T}_a| = 0$ $|\mathcal{T}_a| \to \sqrt{|\mathcal{T}_a|^2 + \epsilon}$

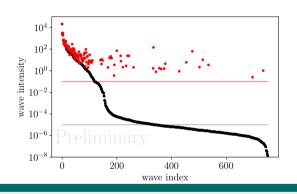
¹ Robert Tibshirani. "Regression Shrinkage and Selection via the Lasso". In: Journal of the Royal Statistical Society. Series B 58.1 (1996) Baptiste Guegan et al. "Model selection for amplitude analysis". In: JINST 10.09 (2015), P09002


$$\ln \mathcal{L}_{ ext{fit}} = \ln \mathcal{L}_{ ext{extended}} + \sum_{a}^{ ext{waves}} \ln \mathcal{L}_{ ext{reg}}(|\mathcal{T}_{a}|;\{c_{ ext{para}}\})$$

LASSO/L1 regularization¹

$$\ln \mathcal{L}_{\text{reg}}(|\mathcal{T}_{a}|;\lambda) = -\lambda |\mathcal{T}_{a}|$$

- ▶ Maximum at $|\mathcal{T}_a| = 0$
- ► Well established²
- "Smoothing" at $|\mathcal{T}_a| = 0$


$$|\mathcal{T}_{a}| o \sqrt{|\mathcal{T}_{a}|^{2} + \varepsilon}$$

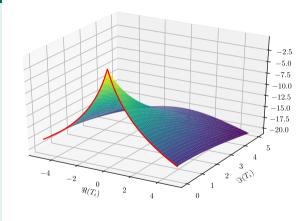
¹ Robert Tibshirani. "Regression Shrinkage and Selection via the Lasso". In: Journal of the Royal Statistical Society. Series B 58.1 (1996) Baptiste Guegan et al. "Model selection for amplitude analysis". In: JINST 10.09 (2015), P09002

Regularization: LASSO

 $\lambda = 0.3$ $\varepsilon = 10^{-5}$

- ► Bias also on large transition amplitudes
- Some additional waves
- ► Some waves missing

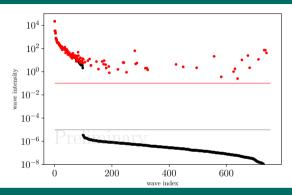
Regularization: Generalized Pareto



Generalized Pareto¹

$$\ln \mathcal{L}_{ ext{reg}}(|\mathcal{T}_{ extsf{a}}|; arGamma, \zeta) = -rac{1}{\zeta} \ln \left[1 + \zeta rac{|\mathcal{T}_{ extsf{a}}|}{arGamma}
ight]$$

- Wave intensities spread over orders of magnitudes
- ► Use logarithmic prior
 - → Heavy-tailed
- ▶ LASSO-like for $|\mathcal{T}_a| \to 0$
- "Smoothing" at $|\mathcal{T}_a| = 0$

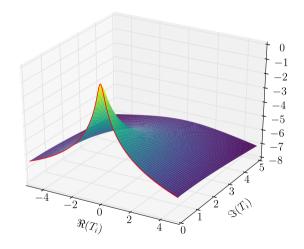

$$|\mathcal{T}_a| \to \sqrt{|\mathcal{T}_a|^2 + \varepsilon}$$

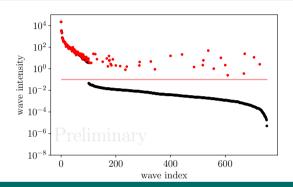
Artin Armagan, David B. Dunson, and Jaeyong Lee. "Generalized double Pareto shrinkage". In: Statistica Sinica (2013). doi: 10.5705/ss.2011.048.

Regularization: Generalized Pareto

 $\zeta = 0.5$ $\Gamma = 0.1$ $\varepsilon = 10^{-5}$

- ► Less bias on large transition amplitudes
- ► Clear kink in intensity distribution to smoothing scale ⇒ Selection
- Less additional waves
- ► Some small waves missing


Regularization: Cauchy


"Cauchy"

$$\ln \mathcal{L}_{ ext{reg}}(|\mathcal{T}_{\!a}|; arGamma) = - \ln \left[1 + rac{|\mathcal{T}_{\!a}|^2}{arGamma_a^2}
ight]$$

- ► Logarithmic prior
- ▶ L2-like for $|\mathcal{T}_a| \to 0$

Regularization: Cauchy

 $\Gamma = 0.2$

- ► Less bias on large transition amplitudes
- Clear kink in intensity distribution
- ► Few additional waves
- ► Few small waves missing

Courtesy F. Kaspar, TUM

ALP DIST

For the $K^-\pi^-\pi^+$ Final State

Wave pool

- ▶ Spin $J \le 7$
- ightharpoonup Angular momentum $L \leq 7$
- Positive naturality of exchange particle
- ▶ 12 isobars
 - $[K\pi]_S^{K\pi}$, $[K\pi]_S^{K\eta}$, $K^*(892)$, $K^*(1680)$, $K_2^*(1430)$, $K_3^*(1780)$
 - \blacktriangleright $[\pi\pi]_S$, $f_0(980)$, $f_0(1500)$, $\rho(770)$, $f_2(1270)$, $\rho_3(1690)$

⇒ "Wave pool" of 596 waves

"only" 720 k events

For the $K^-\pi^-\pi^+$ Final State

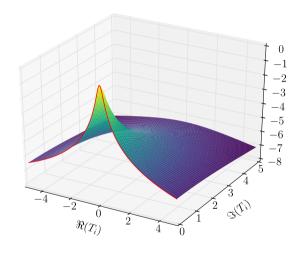
Jup Dy sit

Wave pool

- ▶ Spin $J \le 7$
- ightharpoonup Angular momentum $L \leq 7$
- ► Positive naturality of exchange particle
- ▶ 12 isobars
 - $[K\pi]_S^{K\pi}$, $[K\pi]_S^{K\eta}$, $K^*(892)$, $K^*(1680)$, $K_2^*(1430)$, $K_3^*(1780)$
 - \blacktriangleright $[\pi\pi]_S$, $f_0(980)$, $f_0(1500)$, $\rho(770)$, $f_2(1270)$, $\rho_3(1690)$

⇒ "Wave pool" of 596 waves

"only" 720 k events

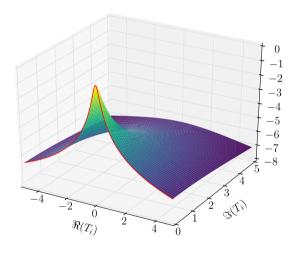

For the $K^-\pi^-\pi^+$ Final State

Regularization

$$\ln \mathcal{L}_{ ext{reg}}(|\mathcal{T}_{m{a}}|; arGamma) = - \ln \left[1 + rac{|\mathcal{T}_{m{a}}|^2}{arGamma_{m{a}}^2}
ight]$$

- ► Use Cauchy regularization
- ► Scale of |T_a| depends on experimental acceptance

For the $K^-\pi^-\pi^+$ Final State


Regularization

$$\ln \mathcal{L}_{ ext{reg}}(|\mathcal{T}_{ extsf{a}}|; arGamma) = - \ln \left[1 + rac{|\mathcal{T}_{ extsf{a}}|^2}{arGamma_{ extsf{a}}^2}
ight]$$

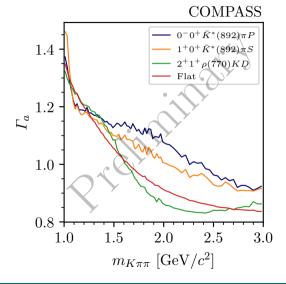
- Use Cauchy regularization
- ► Scale of |T_a| depends on experimental acceptance
 - Apply penalty on expected number \bar{N}_a of observed events

$$\Gamma_a = \frac{\Gamma}{\sqrt{\bar{\eta}_a}} \Rightarrow \frac{|\mathcal{T}_a|^2}{\Gamma_a^2} = \frac{\bar{N}_a}{\Gamma^2}$$

 $ightharpoonup \Gamma$ is a universal parameter

ArAgsit

For the $K^-\pi^-\pi^+$ Final State


Regularization

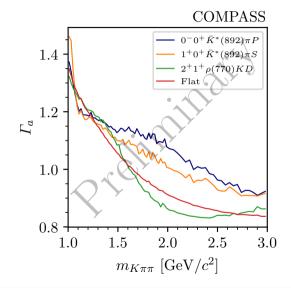
$$\ln \mathcal{L}_{ ext{reg}}(|\mathcal{T}_{ extsf{a}}|; arGamma) = - \ln \left[1 + rac{|\mathcal{T}_{ extsf{a}}|^2}{arGamma_{ extsf{a}}^2}
ight]$$

- Use Cauchy regularization
- ► Scale of |T_a| depends on experimental acceptance
 - Apply penalty on expected number N̄_a of observed events

$$\Gamma_{a} = rac{\Gamma}{\sqrt{ar{\eta}_{a}}} \; \Rightarrow \; rac{|\mathcal{T}_{a}|^{2}}{\Gamma_{a}^{2}} = rac{ar{N}_{a}}{\Gamma^{2}}$$

 $ightharpoonup \Gamma$ is a universal parameter

For the $K^-\pi^-\pi^+$ Final State


Regularization

$$\ln \mathcal{L}_{ ext{reg}}(|\mathcal{T}_{ extbf{a}}|; arGamma) = - \ln \left[1 + rac{|\mathcal{T}_{ extbf{a}}|^2}{arGamma_{ extbf{a}}^2}
ight]$$

- Use Cauchy regularization
- ► Scale of |T_a| depends on experimental acceptance
 - Apply penalty on expected number N̄_a of observed events

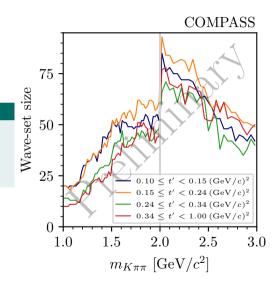
$$\Gamma_{a} = rac{\Gamma}{\sqrt{ar{\eta}_{a}}} \; \Rightarrow \; rac{|\mathcal{T}_{a}|^{2}}{\Gamma_{a}^{2}} = rac{ar{N}_{a}}{\Gamma^{2}}$$

 $ightharpoonup \Gamma$ is a universal parameter

Imposing continuity of the wave set

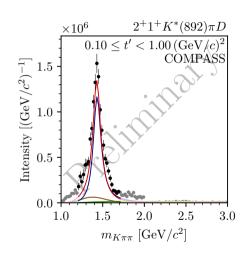
- ▶ Wave-set inferred independently for each $(m_{K\pi\pi}, t')$ cell
- Impose continuity of the wave set in $m_{K\pi\pi}$ by adding additional regularization term

$$\ln \mathcal{L}_{\text{cont}}(\{\mathcal{T}_{a}(m_{K\pi\pi},t')\};\lambda) = \sum_{j=i-3}^{j=i+3} \lambda \left| \mathcal{T}_{a}(m_{K\pi\pi},t')(m_{K\pi\pi}^{j+1}) - \mathcal{T}_{a}(m_{K\pi\pi},t')(m_{K\pi\pi}^{j}) \right|^{2},$$


which suppresses fluctuations among neighboring $m_{K\pi\pi}$ bins

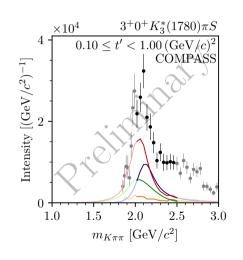
For the $K^-\pi^-\pi^+$ Final State

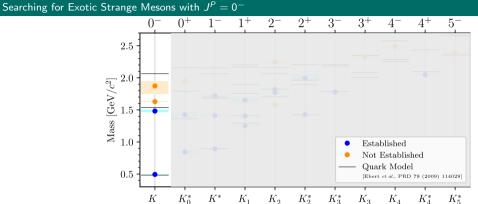
Wave-set size


- ▶ 5 to 90 waves per $(m_{K\pi\pi}, t')$ cell
- ▶ Larger wave set for larger binning in $m_{K\pi\pi}$
- ightharpoonup Larger wave set in t' bins with more events

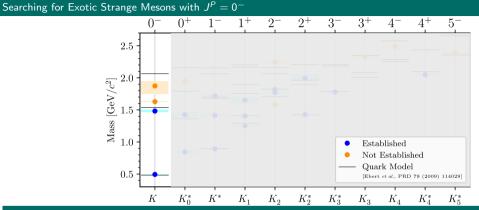
AL Arsit

For the $K^-\pi^-\pi^+$ Final State


- Selection of large signals
- as well as of signals at per-mil level

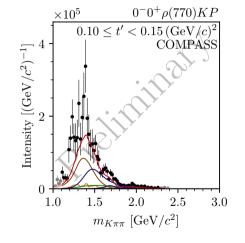

Wave-Set Selection For the $K^-\pi^-\pi^+$ Final State

- Selection of large signals
- ► as well as of signals at per-mil level



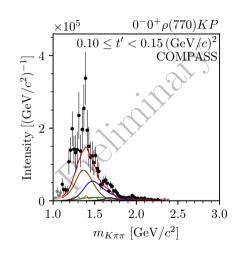
PDG (2022

- ► K(1460) and K(1830)
- ► K(1630)
 - ▶ Unexpectedly small width of only $16 \,\mathrm{MeV}/c^2$
 - \triangleright J^P of K(1630) unclear

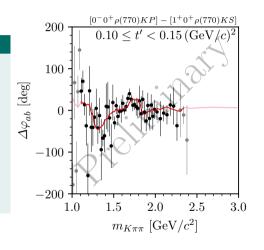

PDG (2022

- ► K(1460) and K(1830)
- ► K(1630)
 - ▶ Unexpectedly small width of only $16 \,\mathrm{MeV}/c^2$
 - $ightharpoonup J^P$ of K(1630) unclear

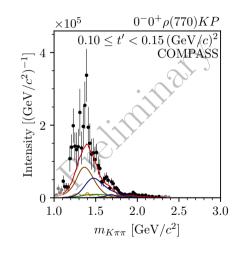
Searching for Exotic Strange Mesons with $J^P = 0^-$


- ▶ Peak at about $1.4 \, \text{GeV}/c^2$
 - ightharpoonup Potentially from established K(1460)
 - ▶ But, $m_{K\pi\pi} \lesssim 1.5\,{\rm GeV}/c^2$ region affected by analysis artifacts
- Second peak at about $1.7 \,\mathrm{GeV}/c^2$
 - ightharpoonup K(1630) signal with $8.3\,\sigma$ statistical significance
- ► Weak signal at about 2.0 GeV/c²

Searching for Exotic Strange Mesons with $J^P = 0^-$


- Peak at about 1.4 GeV/ c^2
 - ▶ Potentially from established *K*(1460)
 - ▶ But, $m_{K\pi\pi} \lesssim 1.5\,{\rm GeV}/c^2$ region affected by analysis artifacts
- Second peak at about 1.7 GeV/ c^2
 - \blacktriangleright K(1630) signal with 8.3 σ statistical significance
 - Accompanied by rising phase
- ▶ Weak signal at about 2.0 GeV/c²

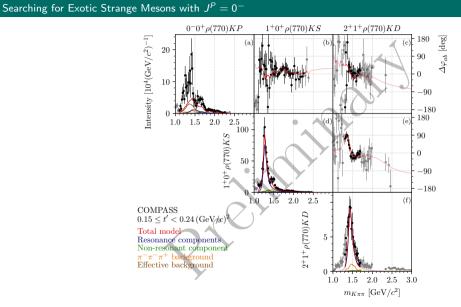
Searching for Exotic Strange Mesons with $J^P = 0^-$


- ▶ Peak at about $1.4 \, \text{GeV}/c^2$
 - ightharpoonup Potentially from established K(1460)
 - ▶ But, $m_{K\pi\pi} \lesssim 1.5\,{\rm GeV}/c^2$ region affected by analysis artifacts
- Second peak at about 1.7 GeV/ c^2
 - \blacktriangleright K(1630) signal with 8.3 σ statistical significance
 - Accompanied by rising phase
- ▶ Weak signal at about 2.0 GeV/c²

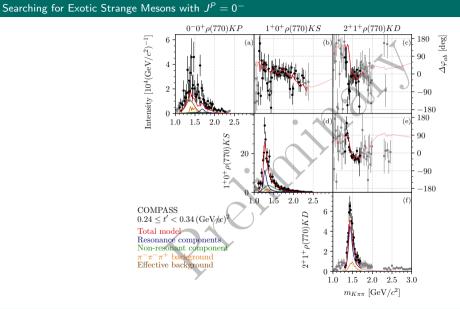
Searching for Exotic Strange Mesons with $J^P=0^-$

- Peak at about 1.4 GeV/ c^2
 - ▶ Potentially from established *K*(1460)
 - ▶ But, $m_{K\pi\pi} \lesssim 1.5\,{\rm GeV}/c^2$ region affected by analysis artifacts
- Second peak at about 1.7 GeV/ c^2
 - \blacktriangleright K(1630) signal with 8.3 σ statistical significance
 - Accompanied by rising phase
- Weak signal at about $2.0 \,\mathrm{GeV}/c^2$
 - K(1830) signal with 5.4 σ statistical significance

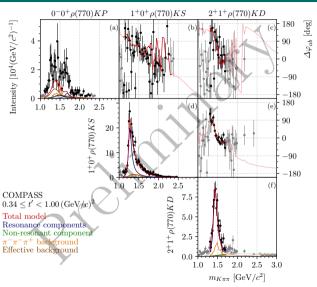
14-Wave Resonance-Model Fit Searching for Exotic Strange Mesons with $J^P = 0^-$

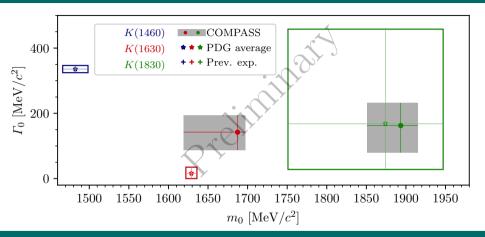


 $0^-0^+\rho(770)KP$ $1^{+}0^{+}\rho(770)KS$ $2^{+}1^{+}\rho(770)KD$ Intensity $[10^4 (\text{GeV}/c^2)^{-1}]$ (a) (b) 20 -90-180180 1.5 2.0 2.5 1.0 90 $1^{+}0^{+}\rho(770)KS$ 100 -90-1801.5 2.0 2.5 COMPASS $2^{+}1^{+}\rho(770)KD$ $0.10 \le t' < 0.15 \, (\text{GeV}/c)^2$ Total model Resonance components Non-resonant component $\pi^-\pi^-\pi^+$ background Effective background 1.5 2.0 2.5

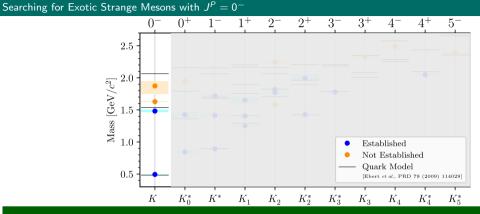

3.0

 $m_{K\pi\pi}$ [GeV/ c^2]

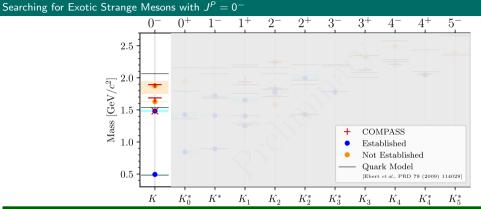




Searching for Exotic Strange Mesons with $J^P=0^-$

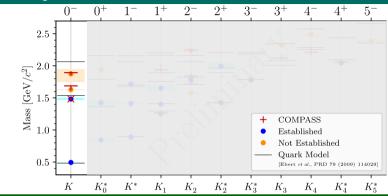

ALP Dy sit

Searching for Exotic Strange Mesons with $J^P = 0^-$


- ► K(1830) parameters in good agreement with LCHb measurement [PRL 118 (2017) 022003]
- ▶ Realistic K(1630) width of about $140 \,\mathrm{MeV}/c^2$

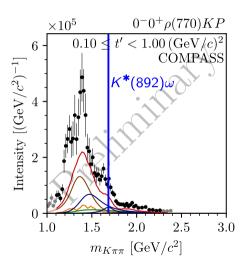
Aur Agist

- Indications for 3 excited K from a single analysis
- ightharpoonup Quark-model predicts only two excited states: potentially K(1460) and K(1830)
 - \rightarrow K(1630) supernumerary signal
 - ightharpoonup Candidate for exotic non- $q\bar{q}$ state; other explanations possible ($K^*(892)$ ω threshold nearby)



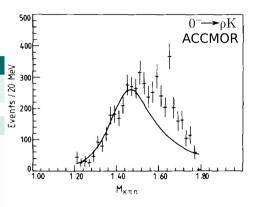
- ► Indications for 3 excited *K* from a single analysis
- ightharpoonup Quark-model predicts only two excited states: potentially K(1460) and K(1830)
 - \rightarrow K(1630) supernumerary signal
 - ightharpoonup Candidate for exotic non- $q\overline{q}$ state; other explanations possible ($K^*(892)$ ω threshold nearby)

Searching for Exotic Strange Mesons with $J^P=0^-$



- ► Indications for 3 excited *K* from a single analysis
- ▶ Quark-model predicts only two excited states: potentially K(1460) and K(1830)
 - ightharpoonup K(1630) supernumerary signal
 - **▶** Candidate for exotic non- $q\bar{q}$ state; other explanations possible ($K^*(892)$ ω threshold nearby)

 $0^-0^+\rho(770)KP$ $\times 10^5$ $0.10 \le t' < 1.00 \, (\text{GeV/}c)^2$ 6 COMPASS Intensity $[(\text{GeV}/c^2)^{-1}]$ 1.0 1.5 2.0 2.5 3.0 $m_{K\pi\pi} \left[\text{GeV}/c^2 \right]$


Searching for Exotic Strange Mesons with $J^P=0^-$

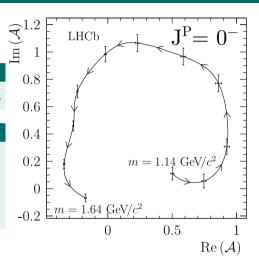
$K^-\pi^-\pi^+$ from ACCMOR

▶ Potential K(1630) signal already in ACCMOR analysis

$K^-\pi^-\pi^+$ from LHCb

Measurement of D⁰ → K[∓]π[±]π[±]π[∓] at LHCb
 Study strange mesons in Kππ subsystem
 MIPWA of J^P = 0⁻ amplitude
 Potential signal above 1 6 GeV/c²

Aragait


Searching for Exotic Strange Mesons with $J^P=0^-$

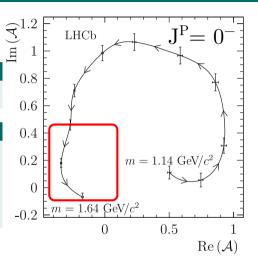
$K^-\pi^-\pi^+$ from ACCMOR

▶ Potential K(1630) signal already in ACCMOR analysis

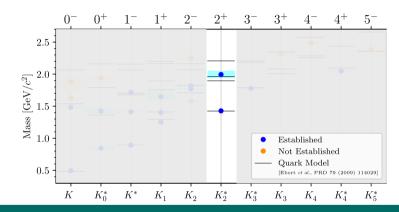
$K^-\pi^-\pi^+$ from LHCb

- ▶ Measurement of $D^0 \to K^{\mp} \pi^{\pm} \pi^{\pm} \pi^{\mp}$ at LHCb
 - ▶ Study strange mesons in $K\pi\pi$ subsystem
 - ightharpoonup MIPWA of $J^P = 0^-$ amplitude
 - Potential signal above 1.6 GeV/ c^2
 - Limited by kinematic range

Ap Dy sit

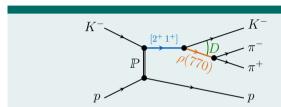

Searching for Exotic Strange Mesons with $J^P=0^-$

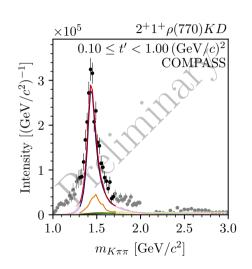
$K^-\pi^-\pi^+$ from ACCMOR


▶ Potential K(1630) signal already in ACCMOR analysis

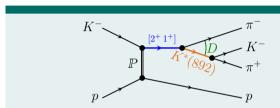
$K^-\pi^-\pi^+$ from LHCb

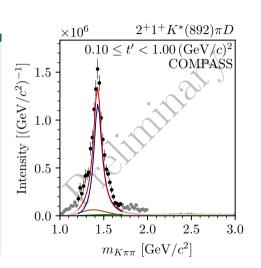
- ▶ Measurement of $D^0 \to K^{\mp} \pi^{\pm} \pi^{\pm} \pi^{\mp}$ at LHCb
 - ▶ Study strange mesons in $K\pi\pi$ subsystem
 - ightharpoonup MIPWA of $J^P = 0^-$ amplitude
 - Potential signal above 1.6 GeV/ c^2
 - Limited by kinematic range

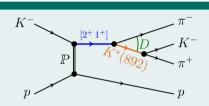


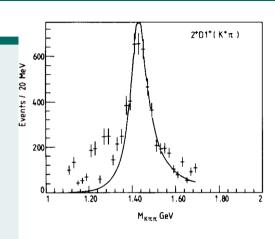

PDG (2022)

 $ightharpoonup K_2^*(1430)$ well known resonance




- ▶ Signal in $K_2^*(1430)$ mass region
- ► In different decays
 - ρ(770) K D
 - $K^*(892) \pi D$
- In agreement with previous measurements
- ► Cleaner signal in COMPASS data

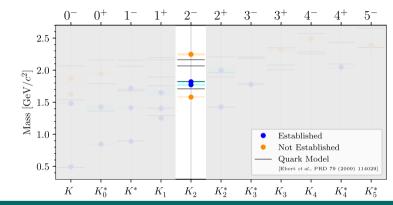



- ▶ Signal in $K_2^*(1430)$ mass region
- ► In different decays
 - $ightharpoonup
 ho(770) \, K \, D$
 - ► K*(892) π D
- In agreement with previous measurements
- ► Cleaner signal in COMPASS data

- ► Signal in $K_2^*(1430)$ mass region
- ► In different decays
 - $ightharpoonup
 ho(770) \, K \, D$
 - ► K*(892) π D
- ▶ In agreement with previous measurements
- ► Cleaner signal in COMPASS data

Partial Waves with $J^P = 2^+$

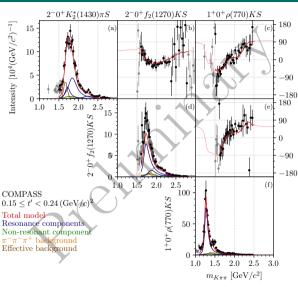
ALP DIST


140 120 $\Gamma_0 \left[\mathrm{MeV}/c^2 \right]$ 100 $K_2^*(1430)^{\pm}$ $K_2^*(1430)^0$ COMPASS 80 PDG average + Prev. exp. 1415 1420 1425 1430 1435 1440 1445 1450

- $ightharpoonup K_2^*(1430)$ parameters consistent with previous observations
- ▶ Better agreement with PDG average values for neutral $K_2^*(1430)$

 $m_0 \, [\mathrm{MeV}/c^2]$

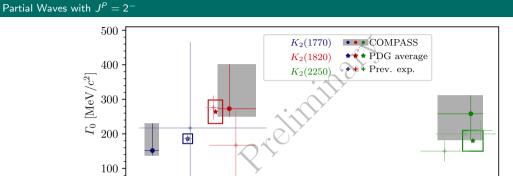
Partial Waves with $J^P = 2^-$



PDG

- ► Established $K_2(1770)$ and $K_2(1820)$
- $ightharpoonup K_2(2250)$ need further confirmation

- ► Simultaneously fit 4 waves with $J^P = 2^-$
- ► 1.8 GeV/ c^2 peak modeled by $K_2(1770)$, $K_2(1820)$
- ▶ High-mass shoulder modeled by $K_2(2250)$
- ▶ Different intensity spectra and large phase motions among 2⁻ waves



- ► Simultaneously fit 4 waves with $J^P = 2^-$
- ▶ 1.8 GeV/ c^2 peak modeled by $K_2(1770)$, $K_2(1820)$
- ▶ High-mass shoulder modeled by $K_2(2250)$
- ► Different intensity spectra and large phase motions among 2⁻ waves

Ap Ag sit

$K_2(1770)$ and $K_2(1820)$

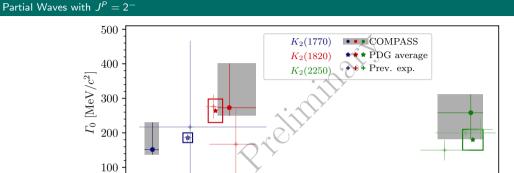
► Two states were considered by only three measurements ACCMOR, LASS, LHCb

1900

- lacktriangle Only LHCb measurement could confirm two states (3 σ statistical significance)
- \blacktriangleright We observe two sates with 11 σ statistical significance

1800

1700


2000

 $m_0 \, [\mathrm{MeV}/c^2]$

2100

2200

1900

$K_2(2250)$

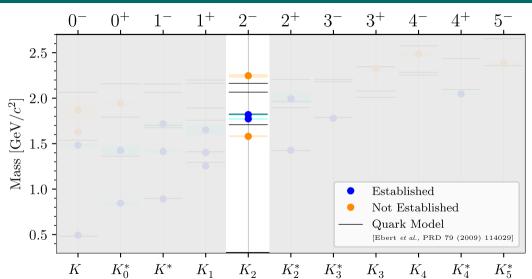
► Studied so far mainly in $(\overline{A})(\overline{p})$ final states

1700

▶ First simultaneous measurement of $K_2(1770)$, $K_2(1820)$, and $K_2(2250)$

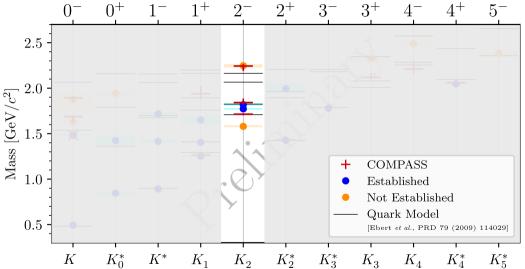
1800

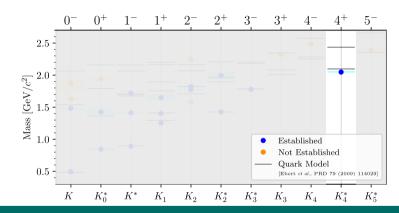
Resonance parameters consistent with previous observations


2000

 $m_0 \, [\mathrm{MeV}/c^2]$

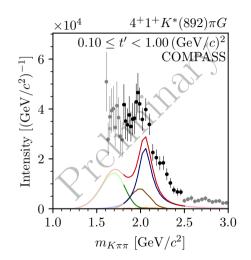
2100


2200



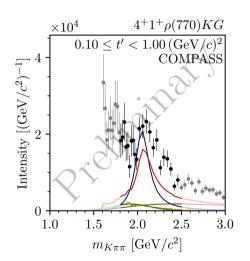
Partial Waves with $J^P = 2^-$

Partial Waves with $J^P = 4^+$

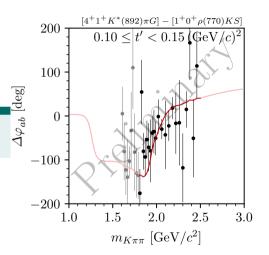


PDG (2022)

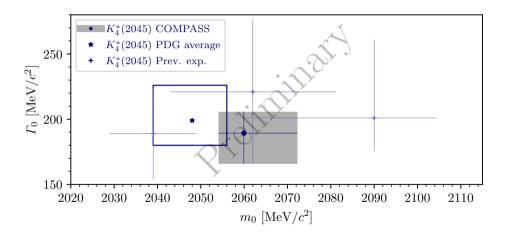
 $ightharpoonup K_4^*(2045)$ known resonance



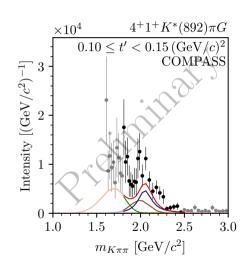
► Signal K_4^* (2045) signal in K^* (892) π and ρ (770) K decays



► Signal K_4^* (2045) signal in K^* (892) π and ρ (770) K decays



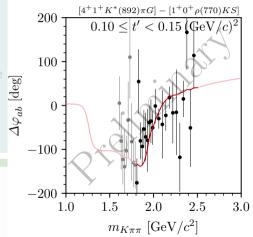
► Signal K_4^* (2045) signal in K^* (892) π and ρ (770) K decays



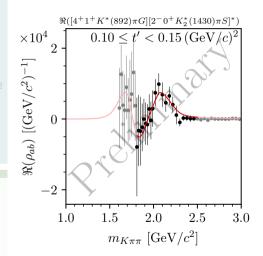
AL Ag sit

- Imperfect description of magnitude of intensity,
- Also, real and imaginary parts of interference terms described well, including their magnitude
- Intensities and real and imaginary parts of interference terms not directly related as $\mathrm{Rank}[\rho_{ab}]>1$

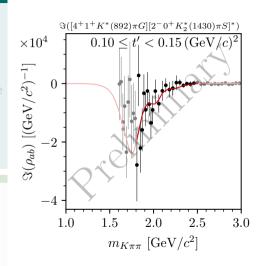
$$|P_{ab}| \neq \sqrt{|P_{aa}||P_{bb}|}$$
Analysis artifacts in intensities of small


- Results validated by Monte Carlo input-output and systematic studies
- Imperfections considered in systematic uncertainties
- ► Results in agreement with previous experiments

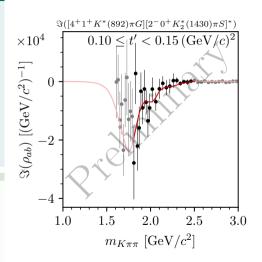
- Imperfect description of magnitude of intensity, , while relative phase described well
- ► Also, real and imaginary parts of interference terms described well, including their magnitude
- Intensities and real and imaginary parts of interference terms not directly related as $\mathrm{Rank}[\rho_{ab}] > 1$

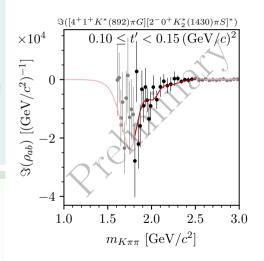

- ► Results validated by Monte Carlo input-output and
- Imperfections considered in systematic uncertainties
- ► Results in agreement with previous experiments

- Imperfect description of magnitude of intensity, , while relative phase described well
- ► Also, real and imaginary parts of interference terms described well, including their magnitude
- Intensities and real and imaginary parts of interference terms not directly related as $\operatorname{Rank}[\rho_{ab}] > 1$ $|\rho_{ab}| \neq \sqrt{|\rho_{aa}| |\rho_{bb}|}$

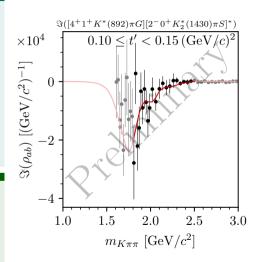

- Results validated by Monte Carlo input-output and systematic studies
- Imperfections considered in systematic uncertainties
- ► Results in agreement with previous experiments

- ► Imperfect description of magnitude of intensity, , while relative phase described well
- ► Also, real and imaginary parts of interference terms described well, including their magnitude
- Intensities and real and imaginary parts of interference terms not directly related as $\mathrm{Rank}[\rho_{ab}] > 1$ $|\rho_{ab}| \neq \sqrt{|\rho_{aa}|\,|\rho_{bb}|}$

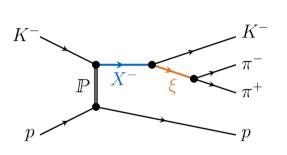

- Results validated by Monte Carlo input-output and systematic studies
- Imperfections considered in systematic uncertainties
- ► Results in agreement with previous experiments

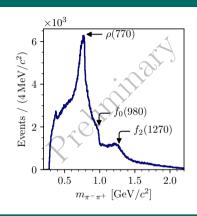


- Imperfect description of magnitude of intensity, , while relative phase described well
- ► Also, real and imaginary parts of interference terms described well, including their magnitude
- Intensities and real and imaginary parts of interference terms not directly related as $\mathrm{Rank}[\rho_{ab}] > 1$ $|\rho_{ab}| \neq \sqrt{|\rho_{aa}|\,|\rho_{bb}|}$
 - ➡ Analysis artifacts in intensities of small waves, which are the least constrained by data
- Results validated by Monte Carlo input-output and systematic studies
- Imperfections considered in systematic uncertainties
- ► Results in agreement with previous experiments

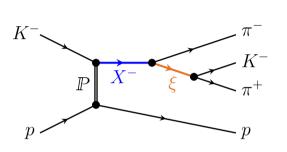


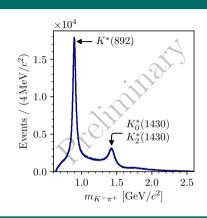
- Imperfect description of magnitude of intensity, , while relative phase described well
- ► Also, real and imaginary parts of interference terms described well, including their magnitude
- Intensities and real and imaginary parts of interference terms not directly related as $\operatorname{Rank}[\rho_{ab}] > 1$ $|\rho_{ab}| \neq \sqrt{|\rho_{aa}| |\rho_{bb}|}$
 - ➡ Analysis artifacts in intensities of small waves, which are the least constrained by data
- Results validated by Monte Carlo input-output and systematic studies
- Imperfections considered in systematic uncertainties
- ▶ Results in agreement with previous experiments



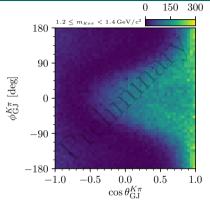


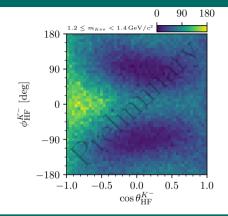
- Imperfect description of magnitude of intensity, , while relative phase described well
- ► Also, real and imaginary parts of interference terms described well, including their magnitude
- Intensities and real and imaginary parts of interference terms not directly related as $\operatorname{Rank}[\rho_{ab}] > 1$ $|\rho_{ab}| \neq \sqrt{|\rho_{aa}| |\rho_{bb}|}$
 - ➡ Analysis artifacts in intensities of small waves, which are the least constrained by data
- Results validated by Monte Carlo input-output and systematic studies
- ▶ Imperfections considered in systematic uncertainties
- ► Results in agreement with previous experiments



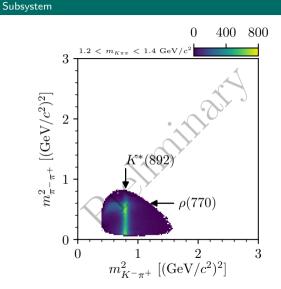


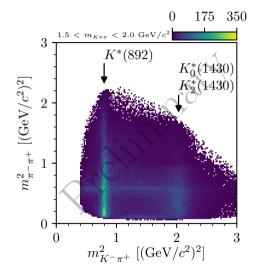
- Also structure in $\pi^-\pi^+$ and $K^-\pi^+$ subsystems
 - ightharpoonup Successive 2-body decay via $\pi^-\pi^+$ / $K^-\pi^+$ resonance called isobar
- ► Also structure in angular distributions



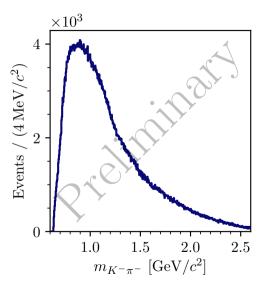


- ▶ Also structure in $\pi^-\pi^+$ and $K^-\pi^+$ subsystems
 - ightharpoonup Successive 2-body decay via $\pi^-\pi^+$ / $K^-\pi^+$ resonance called isobar
- ► Also structure in angular distributions

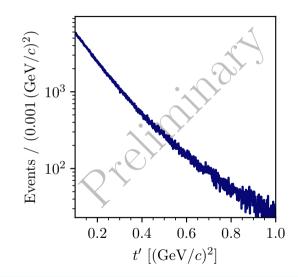

Subsystem



- Also structure in $\pi^-\pi^+$ and $K^-\pi^+$ subsystems
 - **▶** Successive 2-body decay via $\pi^-\pi^+$ / $K^-\pi^+$ resonance called isobar
- Also structure in angular distributions

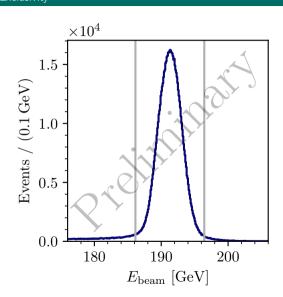


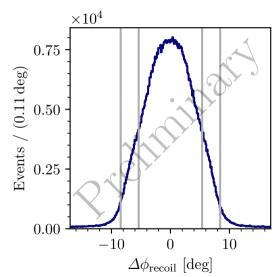
No dominant resonant structures



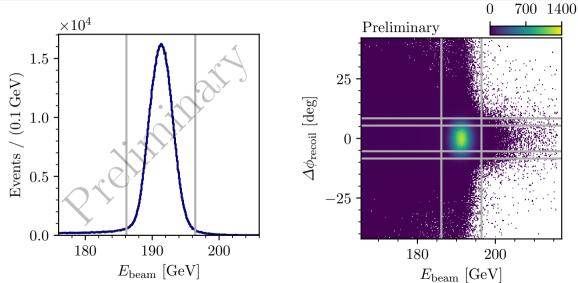
 $m_{K^-\pi^-}$

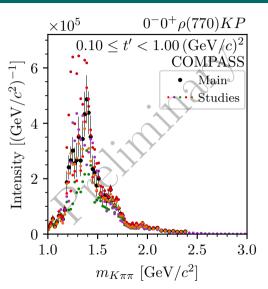
Kinematic Distribution of $K^-\pi^-\pi^+$ Events t' Spectrum



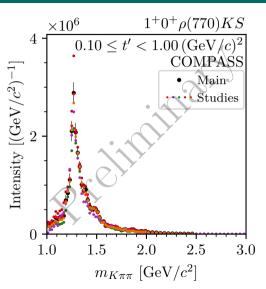

- ► Exponential shape
- ► Shallower for larger t'

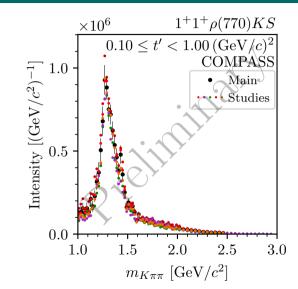
Kinematic Distribution of $K^-\pi^-\pi^+$ Events Exclusivity

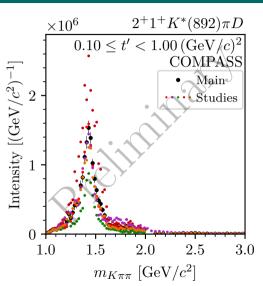


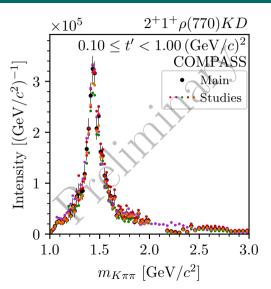


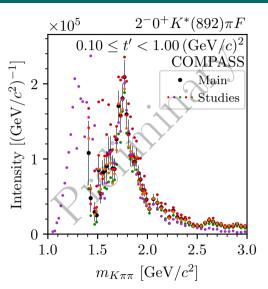
Kinematic Distribution of $K^-\pi^-\pi^+$ Events Exclusivity

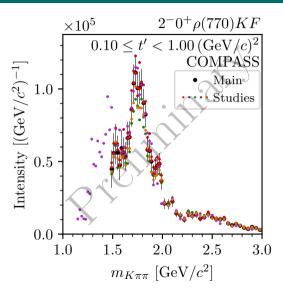


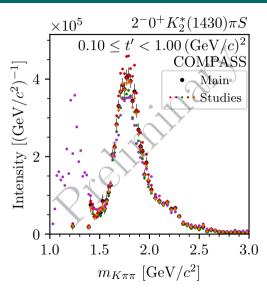


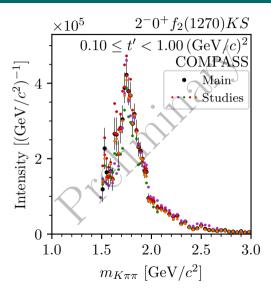


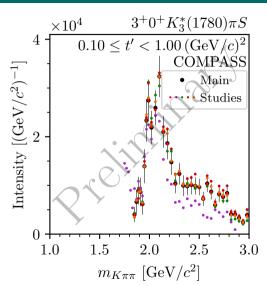


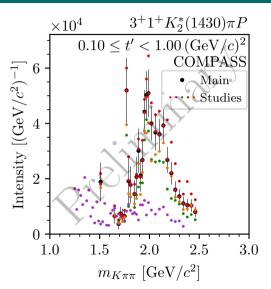


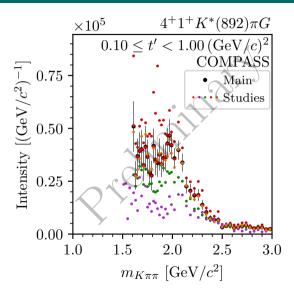




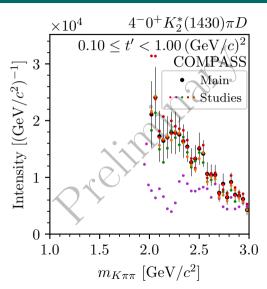


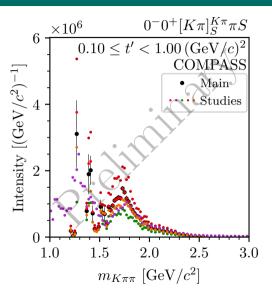


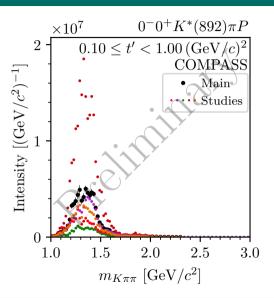


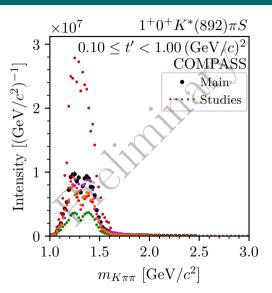


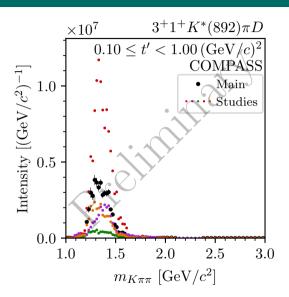


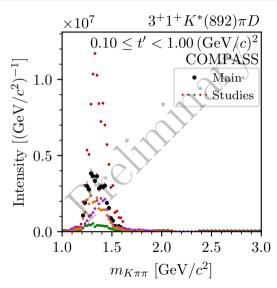




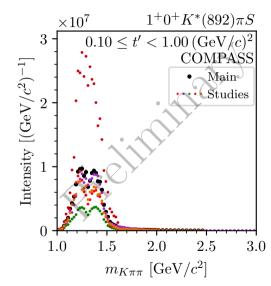




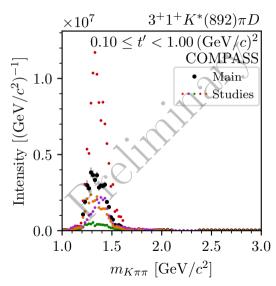




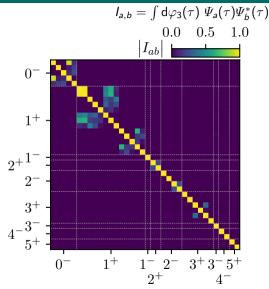
Leakage Effect


- ▶ Unexpected low-mass enhancement in 3^+1^+ $K^*(892) \pi D$ wave
- ► Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- \triangleright Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected

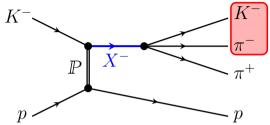
Leakage Effect


- ▶ Unexpected low-mass enhancement in 3^+1^+ $K^*(892) \pi D$ wave
- ► Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- \triangleright Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected

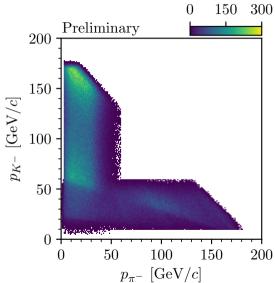
Leakage Effect



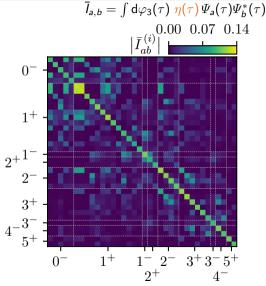
- ▶ Unexpected low-mass enhancement in 3^+1^+ $K^*(892) \pi D$ wave
- ► Similar to dominant 1⁺ wave
- ► Sensitive to systematic effects
- \triangleright Decay amplitudes of different J^P are orthogonal
- two negative particles
- range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected



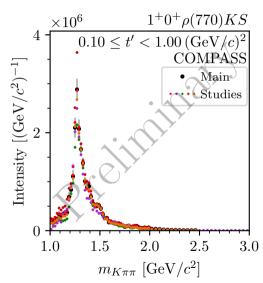
- ▶ Unexpected low-mass enhancement in $3^+ 1^+$ $K^*(892) \pi D$ wave
- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- ightharpoonup Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
- Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected



- ▶ Unexpected low-mass enhancement in 3^+1^+ $K^*(892) \pi D$ wave
- ► Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- ightharpoonup Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected

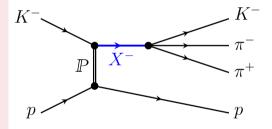


- ▶ Unexpected low-mass enhancement in 3^+1^+ $K^*(892) \pi D$ wave
- ► Similar to dominant 1⁺ wave
- ► Sensitive to systematic effects
- ightharpoonup Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected

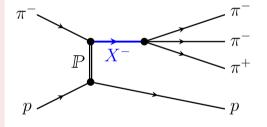


- ▶ Unexpected low-mass enhancement in $3^+ 1^+ K^*(892) \pi D$ wave
- ► Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- ightharpoonup Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected

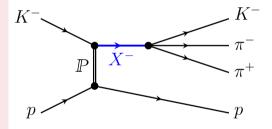
- ► Unexpected low-mass enhancement in $3^+ 1^+ K^*(892) \pi D$ wave
- ► Similar to dominant 1⁺ wave
- ► Sensitive to systematic effects
- \triangleright Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - ► Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected



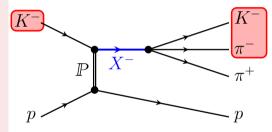
- Unexpected low-mass enhancement in $3^+ 1^+ K^*(892) \pi D$ wave
- ► Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- ightharpoonup Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected



- $K^-\pi^-\pi^+$ and $\pi^-\pi^-\pi^+$ similar experimental footprint
- Distinguishable only by
 - Beam particle identification
 - Final-state particle identification
- Excellent beam PID:
 - \triangleright Expect small contamination from beam π^-
- Final-state PID does not suppress $\pi^-\pi^-\pi^+$ background
 - Non-negligible $\pi^-\pi^-\pi^+$ background in $K^-\pi^-\pi^+$ sample of about 7 %
 - ightharpoonup Dominant background in $K^-\pi^-\pi^+$ sample



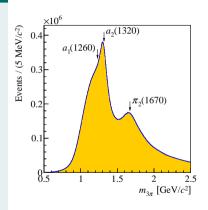
- $K^-\pi^-\pi^+$ and $\pi^-\pi^-\pi^+$ similar experimental footprint
- Distinguishable only by
 - Beam particle identification
 - Final-state particle identification
- Excellent beam PID:
 - \triangleright Expect small contamination from beam π^-
- Final-state PID does not suppress $\pi^-\pi^-\pi^+$ background
 - Non-negligible $\pi^-\pi^-\pi^+$ background in $K^-\pi^-\pi^+$ sample of about 7 %
 - \rightarrow Dominant background in $K^-\pi^-\pi^+$ sample



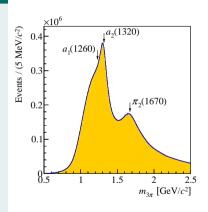
- $K^-\pi^-\pi^+$ and $\pi^-\pi^-\pi^+$ similar experimental footprint
- Distinguishable only by
 - Beam particle identification
 - Final-state particle identification
- Excellent beam PID:
 - \triangleright Expect small contamination from beam π^-
- Final-state PID does not suppress $\pi^-\pi^-\pi^+$ background
 - Non-negligible $\pi^-\pi^-\pi^+$ background in $K^-\pi^-\pi^+$ sample of about 7 %
 - ightharpoonup Dominant background in $K^-\pi^-\pi^+$ sample



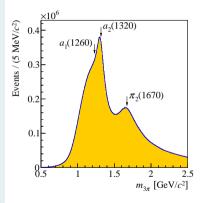
- $K^-\pi^-\pi^+$ and $\pi^-\pi^-\pi^+$ similar experimental footprint
- ► Distinguishable only by
 - Beam particle identification
 - ► Final-state particle identification
- ► Excellent beam PID:
 - \blacktriangleright Expect small contamination from beam π^-
- Final-state PID does not suppress $\pi^-\pi^-\pi^+$ background
 - Non-negligible $\pi^-\pi^-\pi^+$ background in $K^-\pi^-\pi^+$ sample of about 7 %
 - \rightarrow Dominant background in $K^-\pi^-\pi^+$ sample



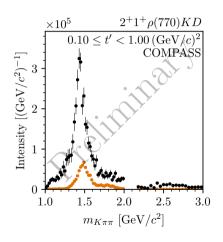
- ▶ Well established model for $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p$
 - From very same data set
 - Measured with high precision
 - Acceptance corrected
- ► Generate $\pi^-\pi^-\pi^+$ Monte Carlo sample
- Mis-interpret $\pi^-\pi^-\pi^+$ Monte Carlo events as $K^-\pi^-\pi^+$
 - ► Apply wrong mass assumption
 - \triangleright Same event reconstruction and selection as for $K^-\pi^-\pi^+$
- Perform partial-wave decomposition of mis-interpreted $\pi^-\pi^-\pi^+$ Monte Carlo sample
 - ▶ Using the same PWA model as for measured $K^-\pi^-\pi^+$ sample



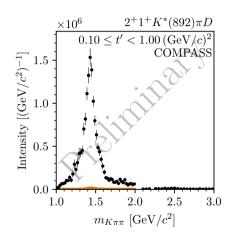
- ▶ Well established model for $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p$
 - From very same data set
 - Measured with high precision
 - Acceptance corrected
- ► Generate $\pi^-\pi^-\pi^+$ Monte Carlo sample
- Mis-interpret $\pi^-\pi^-\pi^+$ Monte Carlo events as $K^-\pi^-\pi^+$
 - Apply wrong mass assumption
 - \triangleright Same event reconstruction and selection as for $K^-\pi^-\pi^+$
- Perform partial-wave decomposition of mis-interpreted $\pi^-\pi^-\pi^+$ Monte Carlo sample
 - ▶ Using the same PWA model as for measured $K^-\pi^-\pi^+$ sample



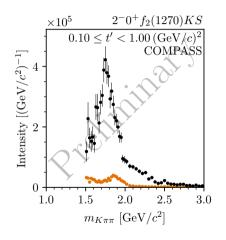
- ▶ Well established model for $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p$
 - From very same data set
 - Measured with high precision
 - Acceptance corrected
- ► Generate $\pi^-\pi^-\pi^+$ Monte Carlo sample
- Mis-interpret $\pi^-\pi^-\pi^+$ Monte Carlo events as $K^-\pi^-\pi^+$
 - Apply wrong mass assumption
 - Same event reconstruction and selection as for $K^-\pi^-\pi^+$
- Perform partial-wave decomposition of mis-interpreted $\pi^-\pi^-\pi^+$ Monte Carlo sample
 - ▶ Using the same PWA model as for measured $K^-\pi^-\pi^+$ sample



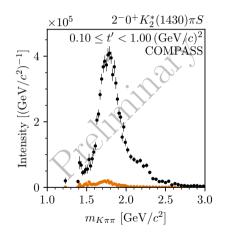
- ► Well established model for $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p$
 - From very same data set
 - Measured with high precision
 - Acceptance corrected
- ► Generate $\pi^-\pi^-\pi^+$ Monte Carlo sample
- Mis-interpret $\pi^-\pi^-\pi^+$ Monte Carlo events as $K^-\pi^-\pi^+$
 - Apply wrong mass assumption
 - Same event reconstruction and selection as for $K^-\pi^-\pi^+$
- Perform partial-wave decomposition of mis-interpreted $\pi^-\pi^-\pi^+$ Monte Carlo sample
 - ▶ Using the same PWA model as for measured $K^-\pi^-\pi^+$ sample
 - ightharpoonup Study $\pi^-\pi^-\pi^+$ background in individual $K^-\pi^-\pi^+$ partial waves


- ▶ Significant contribution to waves with $\rho(770)$ isobar
- $\blacktriangleright \pi^-\pi^-\pi^+$ produces peaking structures
- ► Largest relative contribution to $2^+ 1^+ \rho(770) \ K \ D$ wave
- \triangleright Small contribution to waves with $K^*(892)$ isobar
- Also significant contribution to waves with $f_2(1270)$ and $K_3(1430)$ isobars
- ▶ No contribution to flat wave

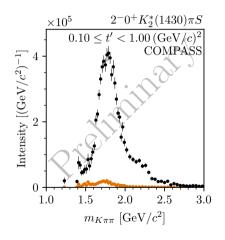
 $K^-\pi^-\pi^+$ data, $\pi^-\pi^-\pi^+$ pseudo data



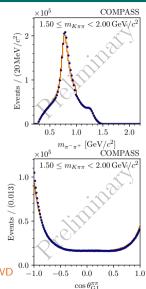
- ▶ Significant contribution to waves with $\rho(770)$ isobar
- $\blacktriangleright \pi^-\pi^-\pi^+$ produces peaking structures
- ► Largest relative contribution to $2^+ 1^+ \rho(770) K D$ wave
- ▶ Small contribution to waves with $K^*(892)$ isobar
- Also significant contribution to waves with $f_2(1270)$ and $K_3(1430)$ isobars
- ► No contribution to flat wave


- ▶ Significant contribution to waves with $\rho(770)$ isobar
- $\blacktriangleright \pi^-\pi^-\pi^+$ produces peaking structures
- Largest relative contribution to $2^+ \, 1^+ \, \rho(770) \, K \, D$ wave
- ▶ Small contribution to waves with $K^*(892)$ isobar
- Also significant contribution to waves with $f_2(1270)$ and $K_2^*(1430)$ isobars
- ► No contribution to flat wave

$$K^-\pi^-\pi^+$$
 data, $\pi^-\pi^-\pi^+$ pseudo data


- ▶ Significant contribution to waves with $\rho(770)$ isobar
- $\blacktriangleright \pi^-\pi^-\pi^+$ produces peaking structures
- Largest relative contribution to $2^+ 1^+ \rho(770) \ K D$ wave
- ▶ Small contribution to waves with $K^*(892)$ isobar
- Also significant contribution to waves with $f_2(1270)$ and $K_2^*(1430)$ isobars
- ► No contribution to flat wave

$$K^-\pi^-\pi^+$$
 data, $\pi^-\pi^-\pi^+$ pseudo data




- ▶ Significant contribution to waves with $\rho(770)$ isobar
- $\rightarrow \pi^-\pi^-\pi^+$ produces peaking structures
- Largest relative contribution to $2^+ 1^+ \rho(770) \ K D$ wave
- ▶ Small contribution to waves with $K^*(892)$ isobar
- Also significant contribution to waves with $f_2(1270)$ and $K_2^*(1430)$ isobars
- ► No contribution to flat wave

- 238-wave set can describe main features of $\pi^-\pi^-\pi^+$ pseudodata sufficiently well
- ▶ Largest deviation for $K^-\pi^+$ isobar system at thigh $m_{K\pi\pi}$

 $\pi^-\pi^-\pi^+$ pseudo data. prediction (weighted-MC) of $K^-\pi^-\pi^+$ PWD

to $\pi^-\pi^-\pi^+$ pseudo data