NLO templates for Higgs jets

José Juknevich tmini workshop May 30, 2011

Outline:

- Introduction
- Template Overlap Method
- * NLO template for Higgs
- Summary

L. Almeida, O. Erdogan, JJ, S. Lee, G. Perez, & G. Sterman Work in progress

Motivation

- A key task in the search for BSM physics is to efficiently identify "signature" particles - W/Z, Higgs, top quarks - in various kinematic regimes
 - At the LHC, these particles will be frequently produced at high-transverse momentum
 - When these boosted objects decay they form a highly collimated topology in the detector
 - Standard approaches for indentifying these particles (e.g. jet recombination) fail, because all decay products end up in a single jet

Motivation

- A key task in the search for BSM physics is to efficiently identify "signature" particles - W/Z, Higgs, top quarks - in various kinematic regimes
 - At the LHC, these particles will be frequently produced at high-transverse momentum
 - When these boosted objects decay they form a highly collimated topology in the detector
 - Standard approaches for indentifying these particles (e.g. jet recombination) fail, because all decay products end up in a single jet
- Energy flow methods have been proposed to address these questions
 Almeida, Lee, Perez, Sterman, Sung, Virzi

Gur-Ari, Papucci, Perez;...

- These take advantage of the different energy flow in the decay pattern of signal and background
- IR-safe observables based on correlations of energy flow have been used to probe the jet substructure with increasing precision
 - E.g. jet cross sections, angularities, planar flow,...
 - Note that some useful original information is lost when computing correlations

L. Almeida, S. Lee, G. Perez,

G. Sterman, & I. Sung '10

We would like to measure how well the energy flow of a physical jet matches that of a boosted partonic decay

Functional measure
$$Ov(j,f)=\langle j|f
angle\equiv\mathcal{F}\left[rac{dE(j)}{d\Omega},rac{dE(f)}{d\Omega}
ight]$$

 $j \rightarrow set$ of particles that conform a jet

 $f \Rightarrow \{p_1, p_2, ..., p_n\}$ partonic distributions ("templates") with $\sum p_i = P$, $P^2 = M^2$

Overlap formalism

G. Sterman, & I. Sung '10

We would like to measure how well the energy flow of a physical jet matches that of a boosted partonic decay

Functional measure
$$Ov(j,f)=\langle j|f\rangle\equiv\mathcal{F}\left[rac{dE(j)}{d\Omega},rac{dE(f)}{d\Omega}
ight]$$

 $j \rightarrow set$ of particles that conform a jet

$$f \Rightarrow \{p_1, p_2, ..., p_n\}$$
 partonic distributions ("templates")
with $\sum p_i = P$, $P^2 = M^2$

Define "template overlap" as the maximum functional overlap of j to a state f[j]:

$$Ov(j, f) = \max_{\{f\}} \mathcal{F}(j, f)$$

G. Sterman, & I. Sung '10

We would like to measure how well the energy flow of a physical jet matches that of a boosted partonic decay

Functional measure
$$Ov(j,f)=\langle j|f\rangle\equiv\mathcal{F}\left[rac{dE(j)}{d\Omega},rac{dE(f)}{d\Omega}
ight]$$

 $j \rightarrow set$ of particles that conform a jet

 $f \Rightarrow \{p_1, p_2, ..., p_n\}$ partonic distributions ("templates") with $\sum p_1 = P$, $P^2 = M^2$

Define "template overlap" as the maximum functional overlap of j to a state f[i]: $Ov(j, f) = \max_{\{f\}} \mathcal{F}(j, f)$

A natural measure being the weighted difference of energy flows integrated over a fixed region of phase space

$$\begin{split} Ov^{(F)}(j,f) &= \max\nolimits_{\tau_n^{(R)}} \exp\left[-\frac{1}{2\sigma_E^2} \left(\int d\Omega \left[\frac{dE(j)}{d\Omega} - \frac{dE(f)}{d\Omega}\right] F(\Omega,f)\right)^2\right] \\ &\tau_n^{(R)} \equiv \int \prod\limits_{i=1}^n \frac{d^3\vec{p}_i}{(2\pi)^32\omega_i} \delta^4(P - \sum\limits_{i=1}^n p_i)\Theta(\{p_i\},R) \end{split} \qquad \begin{array}{l} \textbf{F(}\Omega,f) \Rightarrow \textbf{weight function ,} \\ \textbf{smooth enough} \end{split}$$

Example: Top and QCD jets G. Sterman, & I. Sung '10

At Lo, top decay has a simple 3 body kinematics

Top decay:
$$t \rightarrow W^+ b \rightarrow q q' b$$

While we expect high mass, QCD jets typically have a twosubjet topology

Example: Top and QCD jets G. Sterman, & I. Sung '10

At Lo, top decay has a simple 3 body kinematics

Top decay:

$$t \rightarrow W^+ b \rightarrow q q' b$$

While we expect high mass, QCD jets typically have a twosubjet topology

Selection cuts:

 $160 \text{ GeV} < m_{\tau} < 190 \text{ GeV},$

950 GeV < E_T < 1050 GeV

Jets found with anti-kt algorithms D=0.5

Calorimeter discretized with

 $\Delta\theta$ =0.06 and $\Delta\phi$ =0.1

Showering smears the top distributions, but top decays tend to give larger overlaps.

Top decays often feature a triangular structure, transverse to the boost axis

<u>Planar flow:</u> measures the planarity of the energy flow within a jet

$$I_{\omega}^{kl} = \frac{1}{m_J} \sum_{i} \omega_i \frac{p_{i,k}}{\omega_i} \frac{p_{i,l}}{\omega_i}$$
$$Pf = \frac{4 \det I_{\omega}}{(\operatorname{tr} I_{\omega})^2}$$

Planar Flow

Top decays often feature a triangular structure, transverse to the boost axis

<u>Planar flow:</u> measures the planarity of the energy flow within a jet

$$I_{\omega}^{kl} = \frac{1}{m_J} \sum_{i} \omega_i \frac{p_{i,k}}{\omega_i} \frac{p_{i,l}}{\omega_i}$$
$$Pf = \frac{4 \det I_{\omega}}{(\operatorname{tr} I_{\omega})^2}$$

Planar-flow jet shapes can be used to distinguish between many 3-jet events with large template overlap

For the Higgs, both signal and background have two-parton states at LO. Hence, their templates are only slightly different.

Templates and Pf for Higgs

Almeida, Lee, Perez, Sterman, & Sung '10

For the Higgs, both signal and background have two-parton states at LO. Hence, their templates are only slightly different.

Templates can be improved by making use of color flow, partly captured by planar flow

L. Almeida, O. Erdogan, JJ, S. Lee, G. Perez, & G. Sterman (in preparation)

For the Higgs, both signal and background have a two-subjet topology at LO

IDEA: Enhance templates by including the effects of gluon emissions

L. Almeida, O. Erdogan, JJ, S. Lee, G. Perez, & G. Sterman (in preparation)

For the Higgs, both signal and background have a twosubjet topology at LO

Enhance templates by including the effects of gluon emissions

NLO templates and Higgs decay

Differential branching ratio

Since the Higgs is a color singlet, we can provide a precise NLO computation

$$\frac{d\Gamma(H \to q\bar{q}g)}{\Gamma_0} = \frac{1}{8\pi^2} C_F \alpha_s \frac{(1-x_1-x_2)^2+1}{(1-x_1)(1-x_2)} dx_1 dx_2 d(\cos\theta) d\phi.$$

NLO template and Higgs decay

Template overlap from LO to NLO

- L. Almeida, S. Lee, G. Perez,
- G. Sterman, & I. Sung '10

NLO template and Higgs decay

Template overlap from LO to NLO

NLO Planar Flow for Higgs decay

NLO planar flow for Higgs:

$$\frac{d\sigma^{\text{NLO}}}{d\text{Pf}} = \int dx_1 dx_2 d(\cos\theta) d\phi \, \frac{d\sigma}{dx_1 dx_2} \delta \left(\text{Pf} - \frac{E_J^3}{E_1 E_2 E_3} \, S \cos^2\theta \right)$$

θ =0 approximation:

$$S=(1-x_1)(1-x_2)(x_1+x_2-1)$$

$$\frac{1}{\sigma_0} \frac{d\sigma^{(3)}}{d \mathrm{Pf}} = \frac{\alpha_s}{2\pi} \mathrm{C_F} \int_{x_2^-}^{x_2^+} dx \frac{8x \left[\mathrm{Pf}((x-3)x^2 + 4x) + 8x((x-1)x + 1) - 8 \right]}{\mathrm{Pf}(\mathrm{Pf} + 8)^2 (\frac{8}{\mathrm{Pf} + 8} - x) \sqrt{(\frac{8}{\mathrm{Pf} + 8} - x)(x_2^+ - x)(x_2^- - x)x}}$$

Resummation needed.
But, tail (Pf>0) region
already well described
by simple NLO

Summary

Template overlaps:

- □ New class of finite jet observables, based on functional comparison of the energy flow in data with the flow in selected templates of partonic states → help identify boosted jets from tops/Higgs
- Do not require computationally intensive algorithms
- Allow for systematic improvement
 - By incorporating higher order QCD matrix element corrections
- □ Can be combined with jet shapes to improve rejection power.
- Can use our knowledge of the signal to design a custom analysis for each resonance

Recent progress on understanding how to generate NLO templates for Higgs... ... but more ideas on the way...