AFB AND LIGHT PHYSICS (a mini review)

Jure Zupan U. of Cincinnati

partially based on work with Grinstein, Kagan, Trott, [\(1102.3374,](http://arxiv.org/abs/1006.0432) +unpublished)

1

THE SCOPE

- Working hypothesis: A_{FB} is due to New Physics
	- since the effects are large \Rightarrow tree level

- Here: I review models where *t*-channel is important
	- "light $NP'' \sim O(300-500 \text{ GeV})$

- Models have to be nontrivial
	- no significant effect in $d\sigma/dM_{tt}$ see also talks by T. Schwarz, A. Harel, B. Pecjak
	- constraints from dijets

see a talk by A. Kagan this afternoon

- same sign tops
- single top production
- flavor constraints

J. Zupan AFB and light physics (a mini review) Weizmann, mini-t workshop, May 28, 2011

3

- Models have to be nontrivial
	- no significant effect in $d\sigma/dM_{tt}$ see also talks by T. Schwarz, A. Harel, B. Pecjak

- Models have to be nontrivial
	- no significant effect in $d\sigma/dM_{tt}$ see also talks by T. Schwarz, A. Harel, B. Pecjak
	- constraints from dijets

see a talk by A. Kagan this afternoon

- same sign tops
- single top production
- flavor constraints

J. Zupan AFB and light physics (a mini review) Weizmann, mini-t workshop, May 28, 2011

3

- Models have to be nontrivial
	- no significant effect in $d\sigma/dM_{tt}$ see also talks by T. Schwarz, A. Harel, B. Pecjak
	- constraints from dijets

see a talk by A. Kagan this afternoon

- same sign tops
- single top production
- flavor constraints

J. Zupan AFB and light physics (a mini review) Weizmann, mini-t workshop, May 28, 2011

3

new physics?

• First question: does it have to interfere with SM?

$$
\boxed{A_{FB}^{t\bar{t}}=\frac{\sigma_F^{SM}-\sigma_B^{SM}+\sigma_F^{NP}-\sigma_B^{NP}}{\sigma_F^{SM}+\sigma_B^{SM}+\sigma_F^{NP}+\sigma_B^{NP}}}
$$

• cross section agrees with the SM

$$
\sigma_{exp}^{t\bar{t}}(M_{t\bar{t}} > 450 \text{GeV}) = 1.9 \pm 0.5 \text{ pb}
$$

$$
\sigma^{SM}(M_{t\bar{t}} > 450 \text{GeV}) = 1.78 \pm 0.14 \text{ pb}
$$

model indep. fit

- *σ_B* is large and negative
	- it has to interfere with the SM
- if s-channel resonance:
	- to interfere with one-gluon exchange has to be color-octet

• cannot be a scalar ⇒ "axigluon"

J. Zupan AFB and light physics (a mini review) Weizmann, mini-t workshop, May 28, 2011

5

THREE SETS OF "Tchannel"models

- "*t*-channel" models
	- large flavor violation
	- flavor conserving
	- not exactly ttbar, but ttbar+X (so no inteference)

for heavy modes and A_{FB} see a talk by O. Gedalia

J. Zupan A_{FB} and light physics (a mini review) 6 Weizmann, mini-t workshop, May 28, 2011

6

comparing with data

- CDF quotes also "deconvoluted" A_{FB} and $d\sigma/dm_{tt}$
- maybe easiest to compare with the NP models
- but deconvolution done assuming SM ttbar production
- Gresham, Kim, Zurek, 1103.3501 • for very forward ttbar production this may be a problem
	- especially for $d\sigma/dm_{tt}$ where deconvolution using *η* integrated efficiencies

7

comparing with data

- CDF quotes also "deconvoluted" A_{FB} and $d\sigma/dm_{tt}$
- maybe easiest to compare with the NP models
- but deconvolution done assuming SM ttbar production
- Gresham, Kim, Zurek, 1103.3501 • for very forward ttbar production this may be a problem
	- especially for $d\sigma/dm_{tt}$ where deconvolution using *η* integrated efficiencies

J. Zupan A_{FB} and light physics (a mini review) 8 Weizmann, mini-t workshop, May 28, 2011

8

J. Zupan A_{FB} and light physics (a mini review) 8 Weizmann, mini-t workshop, May 28, 2011

8

SEVERAL COMMENTS

- effect most important for light t-channel
- expected bigger for vectors than scalar
- Gresham et al. compare with cross section in 1101.0034 not in 0903.2850
	- implicitly cuts(0903.2850)=cuts(1101.0034)
- have performed a new analysis Grinstein, Kagan, Trott, JZ, in preparation
	- approach that is useful for "Mathematica based" studies
	- easier to scan over many models
	- Madgraph+Pythia+PGS need to be run only ones
	- exact in the limit of small bins and no spill-over

- Gresham et al. compare with cross section in 1101.0034 not in 0903.2850
	- implicitly cuts(0903.2850)=cuts(1101.0034)
- have performed a new analysis

Grinstein, Kagan, Trott, JZ, in preparation

- approach that is useful for "Mathematica based " studies
- easier to scan over many models
- Madgraph+Pythia+PGS need to be run only ones
- exact in the limit of small bins and no spill-over

SEVERAL COMMENTS

- effect most important for light t-channel
- expected bigger for vectors than scalar
- Gresham et al. compare with cross section in 1101.0034 not in 0903.2850
	- implicitly cuts(0903.2850)=cuts(1101.0034)
- have performed a new analysis Grinstein, Kagan, Trott, JZ, in preparation
	- approach that is useful for "Mathematica based" studies
	- easier to scan over many models
	- Madgraph+Pythia+PGS need to be run only ones
	- exact in the limit of small bins and no spill-over

DETAILS

- make a 2D set of bins in m_{tt} and Δy
- use Madgraph to generate SM ttbar partonic cross section
	- but restricted to a particular bin in m_{tt} and Δy
	- trick: implement cuts directly in Subprocesses/ cuts.f
- run through Pythia+PGS to obtain efficiencies x_{ij} (*i*-bin in m_{tt} , *j*-bin in Δy)
- the "correction factor" to be used when comparing with CDF dsigma/dmtt measurement is

$$
\left(\frac{d\sigma^{\rm NP}}{dm_{t\bar t}}\right)^{CDF}_{i} = \epsilon_i \times \left(\frac{d\sigma^{\rm NP}}{dm_{t\bar t}}\right)_i
$$

$$
\epsilon_i^{\text{SM,NP}} = \frac{\sum_j \sigma_{ij}^{\text{SM,NP}} \kappa_{ij}}{\sum_j \sigma_{ij}^{\text{SM,NP}}}
$$

$$
\epsilon_i = \frac{\epsilon_i^{\text{NP}}}{\epsilon_i^{\text{SM}}}
$$

- run through Pythia+PGS to obtain efficiencies *κij* (*i* bin in m_{tt} , *j*-bin in Δy)
- the "correction factor" to be used when comparing with CDF dsigma/dmtt measurement is

$$
\left(\frac{d\sigma^{\rm NP}}{dm_{t\bar t}}\right)^{CDF}_{i} = \epsilon_i \times \left(\frac{d\sigma^{\rm NP}}{dm_{t\bar t}}\right)_i
$$

$$
\epsilon_i^{\text{SM,NP}} = \frac{\sum_j \sigma_{ij}^{\text{SM,NP}} \kappa_{ij}}{\sum_j \sigma_{ij}^{\text{SM,NP}}}
$$

$$
\epsilon_i = \frac{\epsilon_i^{\text{NP}}}{\epsilon_i^{\text{SM}}}
$$

J. Zupan AFB and light physics (a mini review) Weizmann, mini-t workshop, May 28, 2011

10

THE MODELS

large flavor violation

- large flavor violation: e.g. only *t-u* coupling
- example: non-Abelian model of Jung et al. S. Jung, A. Pierce, J. D. Wells 1103.4835
	- t_R and u_R are in a doublet of $SU(2)_X$
	- W' and Z' gauge bosons of $SU(2)_X$ (EM neutral)
	- this avoids same sign *tt* constraints that kill the Abelian model S. Jung, H. Murayama, A. Pierce, J. D. Wells, 0907.4112
	- if $SU(2)_X$ broken by a scalar doublet \Rightarrow " $SU(2)_X$ " custodial symmetry" $\Rightarrow m_{W'}=m_{Z'}$
	- custodial symm. needs to be broken for viable phenomenology

non-custodial lagrangian

$$
\mathcal{L} = \frac{g_X}{\sqrt{2}} W_{\mu}^{\prime -} \left\{ \bar{t}_R \gamma^{\mu} t_R(-cs) + \bar{u}_R \gamma^{\mu} u_R(cs) + \bar{t}_R \gamma^{\mu} u_R(c^2) + \bar{u}_R \gamma^{\mu} t_R(-s^2) \right\} \n+ \frac{g_X}{\sqrt{2}} W_{\mu}^{\prime +} \left\{ \bar{t}_R \gamma^{\mu} t_R(-cs) + \bar{u}_R \gamma^{\mu} u_R(cs) + \bar{t}_R \gamma^{\mu} u_R(-s^2) + \bar{u}_R \gamma^{\mu} t_R(c^2) \right\} \n+ \frac{g_X}{2} Z_{\mu}^{\prime} \left\{ \bar{t}_R \gamma^{\mu} t_R(c^2 - s^2) + \bar{u}_R \gamma^{\mu} u_R(s^2 - c^2) + \bar{t}_R \gamma^{\mu} u_R(2cs) + \bar{u}_R \gamma^{\mu} t_R(2cs) \right\}.
$$
\n
$$
C = \cos \theta \text{ and } s = \sin \theta
$$

- $\theta \neq 0 \Rightarrow t_R$ and u_R numbers are broken
- $\cos\theta$ needs to be close to one so that large A_{FB} from u -t-W' and small $u-u-W'$ ($0.92 < cos\theta$)
- but dijets require cos*θ<1* so that reduced *u-u-Z'* coupling
- their prefered choice is

$M_{W'}$	(GeV)	$M_{Z'}$	(GeV)	α_X	$\cos \theta$
A:	200	280	0.060	0.95	

• gives A_{FB} (>450)=0.22 (0.30)

flavor structure

if there is an $SU(2)_X$ doublet with vev.

S. Jung, A. Pierce, J. D. Wells 1103.4835 another example: Shelton, Zurek 1101.5392

• generates (only) top mass from dim 5 operator

$$
\Delta \mathcal{L} \, \ni \, \frac{(\lambda_u')_i}{M} \, (\bar{Q}_i \cdot h_{SM}) \, (\phi_D \cdot q).
$$

$$
\boxed{q=(t_R,u_R)}
$$

- unspecified in their paper, but potentially
	- charm quark a mass from dim 4 operator (SM yukawa)
	- u-quark mass from higher dim. ops.?
- vacuum alignment problem:
	- the charm quark direction needs to be aligned finely so that no *uR-cR-W'* or *uR-cR-Z'* couplings
	- the direction of scalars giving mass to W'-Z' need to be aligned with top-quark mass direction to \sim 5% (note: these are necessarily different scalars)
- also extra states so that the $SU(2)_X$ is not anomalous

A_{FB} FROM GUTS

• non-SUSY SU(5) model

Dorsner, Fajfer, Kamenik, Kosnik, 0912.0972; 1007.2604

- 45-dim higgs rep. is split
	- two light scalars at TeV: $\Delta_6 \sim (3,1,-4/3)$, $\Delta_1 \sim (8,2,1/2)$
	- these do not mediate proton decay at tree level
	- the remaining part of the multiplet heavy
- to have gauge coupl. unif.: similar split in 24-dim fermionic mutiplet
	- also gives neutrino masses through type I and III see-saw
- to have positive A_{FB} m(Δ_6)~300 GeV, m(Δ_1)~1 TeV
	- Δ1 is making *AFB* more negative
- the couplings to fermions are nontrivial
	- u-c- $\Delta_{6,1}$ have to be small so that no D-Dbar mixing contribs.
	- they arise at 1-loop then
	- also dijets constraints

- these do not mediate proton decay at tree level
- the remaining part of the multiplet heavy
- to have gauge coupl. unif.: similar split in 24-dim fermionic mutiplet
	- also gives neutrino masses through type I and III see-saw
- to have positive A_{FB} m(Δ_6)~300 GeV, m(Δ_1)~1 TeV
	- Δ1 is making *AFB* more negative
- the couplings to fermions are nontrivial
	- u-c- $\Delta_{6,1}$ have to be small so that no D-Dbar mixing contribs.
	- they arise at 1-loop then
	- also dijets constraints

"Flavourful Production AT HADRON COLLIDERS"

Giudice, Gripaios, Sundrum, 1105.3161

- another example of large flavor violation
- focus on diquarks
- assume that couplings to quarks hierarchical in the same basis as yukawas are hierachical
	- depending on color assignment there may or may not be tree level FCNCs
- for A_{FB} most interesting the diquarks that couple antisymmetrically
	- "perverted hierarchy"
	- one needs "chiral hierarchy"

$$
\mathcal{L} = -\Sigma_{i,j} \left(y_{ij}^u \epsilon_i^q \epsilon_j^u \overline{q}_L^i Hu_R^j + y_{ij}^d \epsilon_i^q \epsilon_j^d \overline{q}_L^i H^c d_R^j \right) + \text{h.c.},
$$

"Flavourful Production AT HADRON COLLIDERS"

TABLE III: Bounds (with the process in parentheses) on the largest diquark coupling in units of $M/$ TeV, for each of the three hierarchies, for CKM-like mixing and Chiral Hierarchy.
The couplings are defined in eq'ns $(8|12)$.

one needs "chiral hierarchy"

$$
\mathcal{L} = - \Sigma_{i,j} \left(y_{ij}^u \epsilon_i^q \epsilon_j^u \overline{q}_L^i H u_R^j + y_{ij}^d \epsilon_i^q \epsilon_j^d \overline{q}_L^i H^c d_R^j \right) + \text{h.c.},
$$

J. Zupan A_{FB} and light physics (a mini review) 16 Weizmann, mini-t workshop, May 28, 2011

Sundrum, 1105.3161

flavor conserving models

- $t\bar{t}$ production is not flavor violating \overline{t}
	- so why flavor violating models?
- in **s-channel**: to have $A_{FB} > 0 \Rightarrow$ coupl. to $q\bar{q}$ opposite to $t\bar{t}$ Cao, McKeen, Rosner, Shaughnessy, Wagner, 1003.3461 Bai, Hewett, Kaplan, Rizzo, 1101.5203
	- is flavor diagonal but not flavor universal!
	- so inherent flavor violation to the model is likely
- in **t-channel**: large *u-t (d-t)* couplings
	- in concrete models one has to worry about FCNCs Dorsner, Fajfer, Kamenik, Kosnik, 1007.2604
		- option 1): make *c-t* and u-c coupls. small shelton, Zurek, 1101.5392 Jung, Pierce, Wells, 1103.4835 Jung, Murayama, Pierce , Wells, 0907.4112 Gresham, Kim, Zurek, 1102.0018

• option 2): protected by flavor symmetry

Grinstein, Kagan, Trott, JZ, 1102.3374 Delaunay, Gedalia, Lee, Perez, Ponton, 1101.2902 Babu, Frank, Kumar Rai, 1104.4782 Ligeti, Schmaltz, Tavares, 1103.2757

GENERALLY

Grinstein, Kagan, Trott, JZ, 1102.3374

- a quick general analysis:
	- assume SM flavor symmetries
	- list all possible scalar and vector fields that can couple to quarks renormal.
- vectors: 22 possibilites
- scalars: 14 possibilities
- most of these could contribute to/generate A_{FB}
- will focus only on two
	- vector color octet, octet of flavor
	- scalar color sextet, sextet of flavor
- for concreteness for flavor breaking we can assume MFV
	- the exact form not really essential, just that is small

MFV scalars

- vector color octet, octet of flavor
- scalar color sextet, sextet of flavor
- for concreteness for flavor breaking we can assume MFV
	- the exact form not really essential, just that is small

MFV scalars

MFV vectors

forward backward **ASYMMETRY**

 $t\,$

 \bar{u} \bar{u}

 $\frac{1}{\sqrt{1-\frac{1}{2}}}$

- these fields have *O(1)* coupls. to quarks (all gens.)
- an example: **flavor singlet vector (***s***-channel)**

 $\overline{\bar{Q}_L \, \gamma^\mu \, Q_L V_\mu = \bar{t}_L \, \gamma^\mu \, t_L + \bar{u}_L \, \gamma^\mu \, u_L + \cdots}$

• need breaking : yukawas can flip the sign of *ttbar* coupling $\overline{\bar{Q}_L \ \gamma^\mu \ Y_U^\dagger Y_U Q_L V_\mu} = y_t^2 \overline{t}_L \ \gamma^\mu \ t_L$

• our example: **flavor octet vector (***s***-channel)**

$$
(\bar{Q}_L T^A \gamma^\mu Q_L) V^A_\mu = \frac{1}{\sqrt{3}} V^8_\mu (\bar{u}_L \gamma^\mu u_L + \bar{c}_L \gamma^\mu c_L - 2 \bar{t}_L \gamma^\mu t_L) + \dots
$$

- the sign of coupl. to top pair is opposite to the one for *u,c*
- this is without any flavor violation (no yukawa insertions)

forward backward **ASYMMETRY**

• flavor octet: *t***-channel**

$$
(\bar{Q}_L T^A \gamma^\mu Q_L) V^A_\mu = (V^4_\mu - iV^5_\mu)(\bar{t}_L \gamma^\mu u_L) + \dots \Big| u \Big/ u
$$

- t \boldsymbol{u} \overleftarrow{t} $\frac{1}{\sqrt{1}}$
- *O(1)* flavor changing term (no CKMs)
- so why no FCNCs?
- in the flavor symmetric limit the propagator

$$
(\bar{q}_i q_j \to \bar{q}_l q_k) \propto \dots \delta_{ij} \delta_{lk} + \dots \delta_{il} \delta_{jk}
$$

- there are no ΔF=2 amplitudes unless *GF* broken
- e.g. for B_s mixing would need $(\bar{s}b)^2$

VECTOR OCTET

- an example: vector, octet of color, $(8,1,1)$ of flavor (couples to $\bar{u}_R u_R$)
- plots $(m_V, (n_{ab}\eta_{33})^{1/2}, n_{a3}, \Gamma_V/m_V)$:
	- (300 GeV, 1,1.33, 0.08); (1200 GeV, 2.2, 4.88, 0.5)
- note: no large hierarchy in couplings

SEXTET SCALAR

- an example: scalar, sextet of color, $(6,1,1)$ of flavor (couples to $\bar{u}_R u_R$)
- plots *(mS, ηa3, ΓS/mS)*:
	- (390 GeV, 1.95, 0.1); (1300 GeV, 4.9, 0.5)

22

SEXTET SCALAR

J. Zupan A_{FB} and light physics (a mini review) 22 Weizmann, mini-t workshop, May 28, 2011

22

other observations

Grinstein, Kagan, Trott, JZ, 1102.3374

- if *V*,*S* in nontrivial flavor representation \Rightarrow no like-sign top pairs (*t*-channel)
- since $O(1)$ couplings to all generations: dijet constraints are potentially important
	- but small enough/below bounds
	- need some flavor breaking for the sextet scalars

Ligeti, Schmaltz, Tavares, 1103.2757

- can we explain B_s mixing anomaly?
	- using just one set of fields?
	- need to couple to *QL*

B_s MIXING

Grinstein, Kagan, Trott, JZ, in preparation

- the set of models that involve *QL*: possible to generate *Bs* mixing anomaly
- need flavor breaking (here from MFV)
	- these MFV theories are protected against large FCNCs
	- effects naturally of the right order
	- need large tan*β* (i.e. *yb~O(1)*) for large phase
	- flavor universal phases needed

typical scales

- three classes of models
	- type-I operators: universal B_d and B_s

$$
h_{d,s}e^{i2\sigma_{d,s}} \sim 0.2 \left(\frac{\eta}{0.1}\right)^2 \left(\frac{1\text{TeV}}{m_V}\right)^2
$$

• type-II operators: contribute just to *Bs*

$$
\bullet \quad \text{linear in } y_s \quad \left(h_s e^{i2\sigma_s} \sim \eta^2 \left(\frac{y_s}{0.02 y_b} \right) \left(\frac{500 \text{GeV}}{m_V} \right)^2 \right)
$$

• quadratic in *ys*

$$
h_s e^{i2\sigma_s} \sim 0.05 \,\eta^2 \left(\frac{y_s}{0.02 y_b}\right)^2 \left(\frac{500 \text{GeV}}{m_V}\right)^2
$$

• the couplings are different than in $t\bar{t}$ production

incoherent production

- Isidori, Kamenik, 1103.0016 • *A_{FB}* due to incoherent production of ttbar+invisible
	- at present cannot give better than *2σ* agreement with exp.
	- somewhat comparable with other *t*-channel models
- one needs large A_{FB} in new sector (ideally \sim 100%)
	- necessarily from light *t*-channel
	- stop $(200 \text{ GeV}) + SU(2)_L x U(1)_Y$ singlet (2 GeV)

$$
\mathcal{L} = \mathcal{L}_{SM} + (D_{\mu}\tilde{t})^{\dagger} (D^{\mu}\tilde{t}) - m_{\tilde{t}}^{2} \tilde{t}^{\dagger} \tilde{t} + \bar{\chi}^{0} (i\gamma_{\mu}D^{\mu}) \chi^{0} - m_{\chi} \bar{\chi}_{c}^{0} \chi^{0} + \sum_{q=u,c,t} (\tilde{Y}_{q} \bar{q}_{R} \tilde{t} \chi^{0} + \text{h.c.}) ,
$$

- the production process is $p\bar{p} \rightarrow \tilde{t}\tilde{t}^{\dagger} \rightarrow t\bar{t}\chi^{0}\chi^{0}$
	- extra MET changes ttbar spectrum, could be used for detection - at present not sensitive yet
- χ can be a dark matter candidate, but not a simple thermal relic

enik, 1103.0016

• χ can be a dark matter candidate, but not a simple thermal relic

- some signals are quite generic for many *t*-channel models
	- a *t+j* resonance in *pp*→*t tbar+j* Dorsner, Fajfer, Kamenik, Kosnik, 0912.0972 Gresham, Kim, Zurek, 1102.0018
	- in addition use also distrib. in $cos\theta_{ti}$

27

27

27

- measurement of the \sim A_{FB} directly at LHC
	- LHC: symmetric init. state
	- but the distribution in *η* is different

so one can define charge asymmetry in the central

region

 $A_C(y_C) = \frac{N_t(|y| \le y_C) - N_{\bar{t}}(|y| \le y_C)}{N_t(|y| \le y_C) + N_{\bar{t}}(|y| \le y_C)}$ • Theory prediction for Standard Model (G. Rodrigo): $A_c = 0.0130(11)$ \rightarrow only small asymmetry from NLO effects \rightarrow only due to qqbar induced initial states

 A_c - A_c SM \sim -0.02, -0.03
R. Chierici [CMS] talk at CERN, May 6th 2011,

• with LHCb also possible to measure charge assymm. in very forward region

• very forward region

Kagan, Kamenik, Perez, Stone, 1103.3747 see talks by J. Kamenik, A. Thuy Trang Phan

$$
A_\eta^{t\bar t}=\left(\frac{d\sigma^t/d\eta-d\sigma^{\bar t}/d\eta}{d\sigma^t/d\eta+d\sigma^{\bar t}/d\eta}\right)_{\eta\in 2-5}
$$

• another definition: asymmetry with respect to boost direction Jung, Pierce, Wells, 1103.4835

$$
A_{boost} = \frac{N(a > 0) - N(a < 0)}{N(a > 0) + N(a < 0)}, \qquad a \equiv (y_t + y_{\bar{t}})(y_t - y_{\bar{t}}).
$$

1. Zupan A_{FB} and light physics (a mini review) 29 Weizmann, mini-t workshop, May 28, 2011

• with LHCb also possible to measure charge assymm. in very forward region

• very forward region

Kagan, Kamenik, Perez, Stone, 1103.3747 see talks by J. Kamenik, A. Thuy Trang Phan

$$
A_{\eta}^{t\bar{t}} = \left(\frac{d\sigma^{t}/d\eta - d\sigma^{\bar{t}}/d\eta}{d\sigma^{t}/d\eta + d\sigma^{\bar{t}}/d\eta}\right)_{\eta \in 2-5}
$$
\n\n**or revatron top tric top tric top int anti-top anti-top int unit-top int int**

• another definition: asymmetry with respect to boost direction Jung, Pierce, Wells, 1103.4835

$$
A_{boost} = \frac{N(a > 0) - N(a < 0)}{N(a > 0) + N(a < 0)}, \qquad a \equiv (y_t + y_{\bar{t}})(y_t - y_{\bar{t}}).
$$

$$
A_{boost} \approx 0.06 \text{ at LHC7 for point } A \text{ with } m_{t\bar{t}} \ge 450 \text{ GeV}
$$

J. Zupan A_{FB} and light physics (a mini review) 29 Weizmann, mini-t workshop, May 28, 2011

additional signals

- other signals that may depend on the models
	- pair production of new states
	- single top production
	- if the states very light: top decays
	- potential for a signal in the presently constraining observables
		- dijets
		- like-sign tops
		- FCNCs
	- *t tbar+X* (e.g. *t tbar +MET*)

conclusions

- if *AFB* due to light *O(300 GeV)* states
	- vectors slightly preferred
- models with large flavor breaking and flavor conserving models

BACKUP SLIDES

forward-backward **ASYMMETRY**

CDF announced evidence for FBA in *tt* \overleftarrow{t}

$$
\left(A_{FB}^{t\bar{t}}=\frac{\sigma_F-\sigma_B}{\sigma_F+\sigma_B}\right)
$$

- for $M_{tt} > 450$ GeV $A_{tt} = 0.475 \pm 0.114$ vs. SM@NLO: $A_{tt} = 0.088 \pm 0.013$ (3.4 σ discr.)
- a new meaurm. in dileptonic channel (CDF@La Thuille 2011), inclusive:

$$
A_{sub}^{\Delta y_t} = 0.205 \pm 0.073
$$

\n
$$
\Rightarrow A_{true}^{\Delta y_t} = 0.417 \pm 0.148 \pm 0.053
$$

• the challenge: cross section agrees well with the SM

• the challenge: cross section agrees well with the SM

forward-backward

• the challenge: cross section agrees well with the SM