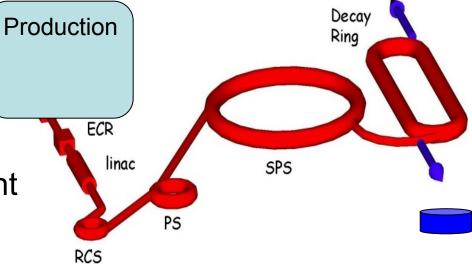
EUROnu Safety Workshop 9-10 June 2011, CERN

Beta Beams Safety issues and WBS


E. Benedetto and E. Wildner

Outline

- Introduction: the Beta Beams
- Tentative WBS and Safety considerations
- For discussion...

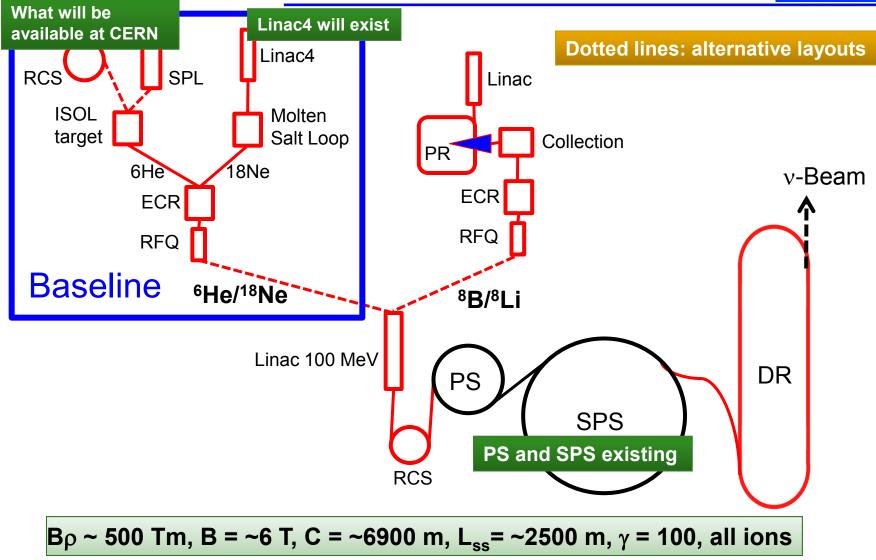
- Aim: production of electron (anti-)neutrino beams from β-decay of radioactive ions circulating in a storage ring (P. Zucchelli, Phys. Let. B, 532 (2002)166-172)
 - Produce radio-isotopes
 - Accelerate them
 - Store in Decay Ring (DR)
 - Let them β-decay (a straight section points to detector)

- **Pure** v_e /anti- v_e are emitted (need a pair of β^+/β^- emitters)
 - with a known energy spectrum ($E_v \sim 2\gamma Q$)
 - in forward direction (cone $\theta < 1/\gamma$)

Q = *Reaction Energy* ~ *few MeV*

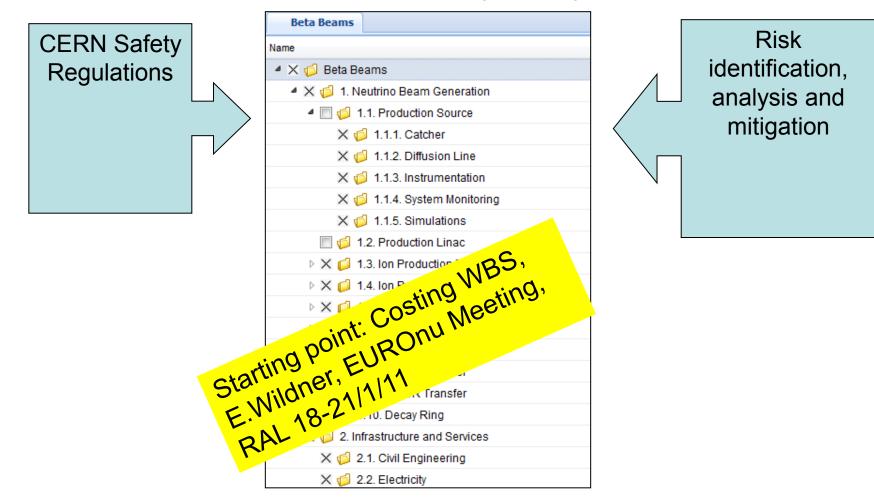
- (⁶He, ¹⁸Ne) or (⁸Li, ⁸B) pairs, considered as antineutrino and neutrino emitters
 - Lifetime at rest: $\tau_{1/2}$ ~1s
 - Low Z (minimize mass/charge & reduce space-charge)
 - Production rates & collection efficiency
- Stored in a race-track Decay Ring at $\gamma = 100$
- Q = Reaction Energy, $E_v \sim 2\gamma Q$
 - Different energy of produced neutrino
 - Different detector distance
 - Different physics (sensitivity to mass hierarchy)
 - (⁶He, ¹⁸Ne) "Low-Q" isotopes, Q ~3
 - (⁸Li, ⁸B) "High-Q" isotopes, Q ~13, but more difficult

M.Dracos, EUROnu Annual Meeting, 21/1/2011, RAL



- WBS for WP2, WP3, WP4 and WP5 to be prepared before the workshop, but before, the WPs have to well fix:
 - a baseline scenario
 - one main option (it will be painful to evaluate more options)
 - for open questions, the worst case will be considered
- WBS will be readjusted after the workshop according to the discussions/conclusions

Beta Beams: accelerator complex



Neu2012, EUCARD, Beta Beams, Elena Wildner

Beta Beam implementation

Work Breakdown Structure (WBS)

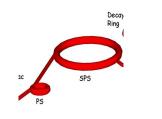
1st Level...easy!

- Production Source
- Production Linac
- Ion Production (ISOLDE-like)
- Ion Production Ring
- Collection + ECR Breeder
- Linac

Production

Accel + Storage

- Transfer lines
- RCS
- PS & SPS
- Decay Ring

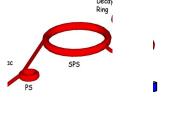

- Existing machines: PS & SPS
 - Integrate βBeams case in what existing
 - Work ongoing now for LHC Injectors

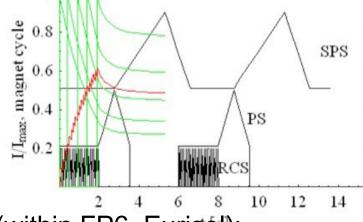
Injectors and Experimental Facilities Committee 2011 Workshop, Monday Session: <u>http://indico.cern.ch/conferenceOtherViews.py?view=standard&confld=123526</u>

- Following decision to run for another 25years
- Radio protection, technical safety, consolidation, reliability
- Access safety & control systems, shutdown activities,...

– Safety:

- No specific modifications
- Radio Protection:
 - Some issues specific to BetaBeams


EUROnu Safety 9-10/6/2011 E.Benedetto, WBS-BetaBeams


- Existing machines: PS & SPS
 - RP β Beams specific issues
 - Decay losses due to Long acceleration (constrain of existing hardware)

Acceleration & Storage

- **PS**: 3.6s
- SPS: 3.6s for ⁶He and 6s for ¹⁸Ne
- 50% ⁶He and 20% ¹⁸Ne decay

- Activation \rightarrow Done & documented (within FP6, Eurisol):
 - Identified area of controlled access or remote handling
- Localized losses → Just started
 - Mitigation, shielding, collimators...
- Mainly for PS, SPS will follow

- New Machines: Decay Ring (cold), RCS, Lines
 - **Safety:** Learn from LHC experience
 - 1. Access system
 - 2. Fire detection system
 - 3. Evacuation alarm system
 - 4. Gas detection system
 - 5. Oxygen deficiency hazard detection (cold machine)
 - 6. Ventilation
 - on with to all not into the second static to all the second static to a 7. Electrical risks (Powering interlocked with Access)
 - 8. Cryogenic risks (cold machine)
 - 9. Civil engineering and construction
 - 10. Lifting/handling

- New Machines:
 - Radio Protection: Learn from CERN experience
 - 1. Environment (dose to public):
 - 1. Stray radiation
 - 2. Releases of radioactivity (air & water) into the environment

2. Workers:

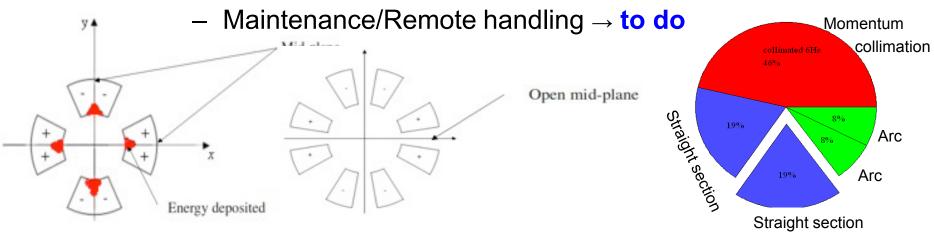
- 1. Shielding
- 2. Air & water activation

3. Induced radioactivity in accelerator components

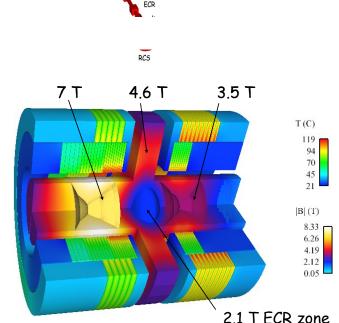
- 1. Activated fluids and contamination risk (closed circuit et et
- 2. Optimized design of components (material composition)
- 3. Optimized design for maintenance and repair
- 4. Optimized handling of devices, remote handling
- 5. Ventilation and pressure cascades

- **New Machines:**
 - Radio Protection: (continue)
 - 4. Radiation monitoring System (like RAMSES)
 - Buffer Zones for Cool Down Repair Workshop 5. (access control, filters, fire proof...)
 - **Operational Dosimetry system** 6.
 - **Closed systems** (cooling water?) 7.
 - Maintenance & Remote handling 8.
 - Incident & accident releases 9
 - eraile all no chines 10. Dismantling and waste (high costs!)

- New Machines, RP specific to βBeams
 - RCS:
 - Activation study \rightarrow **done (FP6)**

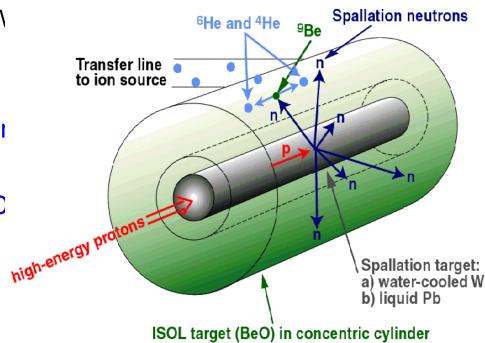


- Integration in the CERN site (where? On surface or underground ?)
- Linac for radioisotopes:
 - Up to 100 MeV
 - To do, but should not be an issue



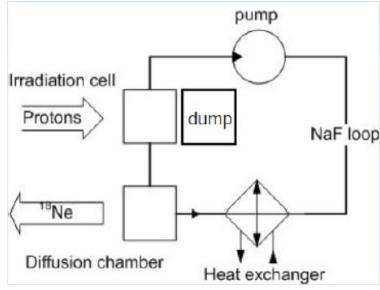
- New Machines, RP specific to β Beams
 - Decay Ring:
 - Momentum Collimators → to do
 - SC-magnets in radioactive environment \rightarrow done
 - Losses in SC magnets, how to deal with?
 - » Absorbers → but impedance, how to remove/maintenance?
 - » Open mid-plane quadrupoles
 - » Beam dumps \rightarrow **to be designed, standard**

- Production area (Primary Linac, Target, ECR Breeder)
 - Radioactive environment
 - ECR Breeder:
 - e- resonance
 - 60 GHz ECR
 - 50us long pulses at 10Hz
 - High magnetic fields, high voltages
 - Microwave & X-rays monitored
 - Need controlled access
 - Production and collection devices
 - Depends on the choice of ions & baseline



Production area

- Radioactive environment
- ⁶He production
 - RCS (or SPL)
 - \rightarrow will be "existing CERN machine"
 - 2 GeV x 0.07mA = 135 kW
 - Spallation target:
 - W or Pb , BeO
 - Remote handling, ventilation
 - Hot cell?
 - Is it comparable with ISOLD
 - ... or SPIRAL2 ?


- Radioactive environment
- ¹⁸Ne production
 - LINAC4

 \rightarrow will be "existing CERN machine"

- 160 MeV x 6mA = 960 kW

- NaF molten salt loop: ¹⁹F(p,2n)¹⁸Ne
- Heat exchanger

- Newly developed concept
- Experimental verification soon, then safety issues will be better understood

Target

Summary & discussion

- BetaBeam implementation is site-specific (CERN)
- Need to identify in details risks due to:
 - Construction
 - Operation
 - Maintenance
 - Accidents
- Profit of what already exists at CERN:
 - Machines
 - Safety procedures
- But many (RP) issues specific to BetaBeams
- Isotopes Production: baseline identified but important option still open (different physics reach)

Summary & discussion

- WBS: to what detail?
- Which database, structure & connection to the costing WBS?
 - i.e. can we attach the entry 'safety' to the costing DB?
- Costing of the safety?
- Need common tooling & methodology for all the facilities
- Contacts at CERN aware /available for our needs?