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The particle physics cycle
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• Lecture 1 

• The journey of raw data from the 
detector to a publication


• Lecture 2 

•How we reconstruct fundamental 
physics processes from raw detector 
data


• Lecture 3 

•How we extract our signals from the 
mountain of data, finding needles in the 
haystack

Course outline
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Data’s journey
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+ Distributed 
computing

Trigger/DAQ Data  
Preparation
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The ATLAS Detector @ LHC
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L ~ 46 m, ∅ ~ 22 m, 7000 tons 
~108 electronic channels 

Inner Tracker (|η|<2.5, B=2T):  
Si Pixels, Si strips, Trans. Rad. Det.  
Precise tracking and vertexing, e/π 
separation, momentum resolution:  
σ/pT ~ 0.04% pT (GeV) ⊕ 1.5% 

EM calorimeter: 
Pb-LAr Accordion, e/γ 
trigger, id. and meas., 
energy res.: σ/E ~ 
10%/√E ⊕ 0.7% 

HAD calorimetry (|η|<5): Fe/
scintillator Tiles (cen), Cu/W-LAr 
(fwd). trigger and meas. of jets 
and ET,miss, energy res.: σ/E ~ 
50%/√E ⊕ 3% 

Trigger system: 3-levels reducing 
the IA rate from 40 MHz to ~200 Hz Muon Spectrometer: air-core toroids with gas-based muon chambers. 

trigger and meas.  with momentum resolution < 10% up to  Eµ ~ 1 TeV 

Millions of detector readout channels read out to reconstruct one “event”
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Data Preparation

• Three major steps to prepare data for physics analysis and achieve


• reliable, high quality data (yes, we reject low quality data)


• the best performance from our detectors


• readiness for physics analysis


1. Reconstruct physics signals from the data


•  Produce information like how many muons does the event have?


2. Calibrate the detectors


•  Correct imperfections, account for changes over time…


3. Make sure that the data quality is excellent, also in real time


•  Maximise the amount of useful data 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Basic reconstruction =  
Tracks 
Calorimeter Clusters



Tracks are curved in the transverse plane

and straight in the longitudinal plane

This is a pattern recognition problem, which technique might be used to solve it?



Tracks are curved in the transverse plane

and straight in the longitudinal plane

Modern track pattern recognition uses Machine Learning: Connect the Dots

https://indico.cern.ch/event/1103637/timetable/?view=standard
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Track fitting
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Tracks are curved in the transverse plane

and straight in the longitudinal plane

Q. What would be a good track model ?



Here be dragons… and muons

Muon reconstruction =  
Track reconstruction  
+ muon spectrometer hits
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Slide
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At the LHC: more than one proton collision - more than one vertex

called “pileup”
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LHC collisions

• The LHC accelerates bunches of 1011 protons separated by 25ns gaps
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25ns

Figures adapted from Michaela  
Schaumann’s third lecture (11/07/19) on  
“Particle Accelerators and Beam Dynamics”

https://indico.cern.ch/event/817568/
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Pileup demonstration
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The more bunches 
are squeezed, the 
higher the luminosity, 
the larger the number 
of simultaneous 
proton collisions in 
one recorded event
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Pileup demonstration
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Most proton collisions 
are low momentum 
and uninteresting. 
We can remove them 
simply by making a 
cut on the transverse  
momentum
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Pileup demonstration
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Once we increase the 
transverse momentum 
cut sufficiently, we are 
left with only the 
interesting proton 
collision
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Calorimeter reconstruction
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Basic reconstruction =  
Calorimeter Clusters,  
aka Jets
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Jet reconstruction

• Quarks and gluons hadronize quickly and we detect sprays of hadronic 
particles in our detectors - we call these jets, proxies for the initial 
particle(s), we reconstruct them using jet algorithms


• Hadronic particles leave energy deposits in the cells of the calorimeter, to 
reconstruct the energy of the hadronic particle, e.g. a pion, we need to sum 
the energy of the cluster of cells in which the pion deposited energy


• Deciding which cells belong to which cluster is a pattern recognition problem
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Modern jet reconstruction uses Machine Learning! 



Physics object  
reconstruction =  
Tracks + 
Jets 
+ Muons

Here be dragons… and muons
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Neutrinos

• Let’s look at the simplest case for reconstructing neutrinos


• Remember, we are looking down the beam pipe, so the plane of the display is transverse 
to the proton beam direction


• Recall: Can you quantify the momentum in this plane before the proton collision 

• What does that tell you about the distribution of momentum after the collision? 

Q. How would this look if we had a W boson instead of a Z boson ?
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Reconstruction today

• Modern simulation, reconstruction and analysis employ heavy use of Machine 
Learning techniques.  See Foundations of Statistics for an introduction to the 
key concepts.  There are also some excellent resources online, e.g.:


• Google Machine Learning Crash Course
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https://developers.google.com/machine-learning/crash-course
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Track fitting
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What is the connection 
between least-squares 
minimisation and machine 
learning?
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Machine learning (regression)
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L = ∑
N

(ymodel − ydata)2

• Linear least squares minimisation compares a model to data


• L is the sum of the (squared) differences between the model prediction and 
the data


• Minimising L gives us the best parameters of the model


• We are often in a situation where we need to guess the model

ymodel = (x * amodel) + bmodel
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Machine learning (regression)
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L = ∑
N

(ymodel − ydata)2

• Linear least squares minimisation compares a model to data


• L is the sum of the (squared) differences between the model prediction and 
the data


• Minimising L gives us the best parameters of the model


• We are often in a situation where we need to guess the model

ymodel = (x * amodel) + bmodel
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Machine learning (regression)
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• Increasing the #parameters of the model will often achieve a better 
description of the data (reduce L)


• But this has drawbacks, we want a model that can describe ALL data, 
including data we haven’t seen yet / included in the fit


• Important to strike a balance between #parameters and quality of fit (L)

L = ∑
N

(ymodel − ydata)2
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Machine learning (regression)
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• Increasing the #parameters of the model will often achieve a better 
description of the data (reduce L)


• But this has drawbacks, we want a model that can describe ALL data, 
including data we haven’t seen yet / data not included in the fit


• Important to strike a balance between #parameters and quality of fit (L)

L = ∑
N

(ymodel − ydata)2
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ML classification (supervised)
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Underfitting Balanced Overfitting

• Classification works in a similar way, here we model the separation between 
two populations, red and blue


• We fit a model that describes the shape that separates the data points


• Again we need to be careful not to overfit our training data or our model will not 
be general enough to describe new data that were not included in the fit
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Clustering, unsupervised ML classification

• Sometimes there is no model, for example reconstructing clusters of 
energy deposits in calorimeters


• Instead of defining a number of clusters to reconstruct and tuning that 
model, we cluster energy deposits (cells) around a varying number of 
centres ( )


• We need a metric to choose the best solution ( ), e.g. increasing the 
number of clusters by 1 did not improve the total cluster quality by >10%

Nclusters = 1,2,3...

Nclusters
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Data Preparation

• Three major steps to prepare data for physics analysis and achieve


• reliable, high quality data (yes, we reject low quality data)


• the best performance from our detectors


• readiness for physics analysis


1. Reconstruct physics signals from the data


•  Produce information like how many muons does the event have?


2. Calibrate the detectors


•  Correct imperfections, account for changes over time…


3. Make sure that the data quality is excellent, also in real time


•  Maximise the amount of useful data 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Real detector effects
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Correcting detector effects - calibration
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Q. How could we measure detector  
misalignment ?
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Real vs perfect tracking detectors
• The perfect tracking detector  

• is constructed from zero mass material 

• has no noise 

• is 100% efficient 

• has perfect resolution 

• A real tracking detector 

• is constructed from real material 

• particles interact with the detector and scatter, altering the particle trajectory 

• suffers from noise 

• noise can be confused with particle tracks 

• has less than 100% efficiency 

• particles are not always detected, there can be dead regions 

• has finite resolution 

• it may not always be possible to resolve two particle trajectories
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• During the break between Run 1 and Run 2, ATLAS inserted the IBL, an extra layer 
of silicon tracker close to the beam pipe


• At the start of data taking in Run 2, it started to move


• As time went on, the movement was very significant, much more than the detector 
precision so the movement could be seen in physics distributions and data quality


• ATLAS quickly implemented and commissioned a correction procedure as part of 
its calibration process


• Following the correction the performance of the detector was back to nominal

Calibration
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ATLAS detector IBL

Addition of the IBL
LHC!ATLAS detector!trigger/operation!reconstruction/performance!physics

Beyond repairs and upgrades, one major addition: the IBL
Insertable B-Layer: new tracking detector 3.3 cm from the beam

Lies within the previously innermost tracking detector

Required a new (smaller) beam pipe to fit

IBL significantly improves tracking performance, shown later

ATL-PHYS-PUB-2015-018 ATLAS-PHO-COLLAB-2014-008-17
Steven Schramm (Université de Genève) ATLAS status and performance in Run-II October 15, 2015 5 / 19



Dr Paul Laycock

• During the break between Run 1 and Run 2, ATLAS inserted the IBL, an extra layer 
of silicon tracker close to the beam pipe


• At the start of data taking in Run 2, it started to move during data taking runs


• As time went on, the movement was very significant, much more than the detector 
precision so the movement could be seen in physics distributions and data quality


• ATLAS quickly implemented and commissioned a correction procedure as part of 
its calibration process


• Following the correction the performance of the detector was back to nominal

Calibration
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ATLAS detector IBL
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LHC!ATLAS detector!trigger/operation!reconstruction/performance!physics

Beyond repairs and upgrades, one major addition: the IBL
Insertable B-Layer: new tracking detector 3.3 cm from the beam

Lies within the previously innermost tracking detector

Required a new (smaller) beam pipe to fit
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Calibration

• During the break between Run 1 and Run 2, ATLAS inserted the IBL, an extra layer 
of silicon tracker close to the beam pipe


• At the start of data taking in Run 2, it started to move during data taking runs


• As time went on, the movement was very significant, much more than the detector 
precision, so the movement could be seen in physics distributions and data quality


• ATLAS implemented and commissioned a correction procedure per run (red) and 
then per sub-run (black) as part of its calibration process


• Following the correction the performance of the detector was back to nominal
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ATLAS detector IBL

Addition of the IBL
LHC!ATLAS detector!trigger/operation!reconstruction/performance!physics

Beyond repairs and upgrades, one major addition: the IBL
Insertable B-Layer: new tracking detector 3.3 cm from the beam

Lies within the previously innermost tracking detector

Required a new (smaller) beam pipe to fit

IBL significantly improves tracking performance, shown later

ATL-PHYS-PUB-2015-018 ATLAS-PHO-COLLAB-2014-008-17
Steven Schramm (Université de Genève) ATLAS status and performance in Run-II October 15, 2015 5 / 19
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Calibration quality

• Explain why the correction procedure per run (red) still resulted 
in a loss of precision and the per sub-run (black) procedure 
was necessary to retrieve the nominal detector performance
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Data Preparation
• Three major steps to prepare data for physics analysis and achieve


• reliable, high quality data (yes, we reject low quality data)


• the best performance from our detectors


• readiness for physics analysis


1. Reconstruct physics signals from the data


•  Produce information like how many muons does the event have?


2. Calibrate the detectors


•  Correct imperfections, account for changes over time…


3. Make sure that the data quality is excellent, also in real time


•  Maximise the amount of useful data 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Data Quality
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Check during data taking 

Check a fraction of the data 
with a quick calibration 

Check all of the data with the 
best calibration 

- Publish this data !!
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What makes good data quality?

• The ATLAS IBL is a good example of a data quality problem


Potential data quality issues need to be monitored


• We need a reference, here that would be the black histogram, how we expect the data to look


• If the data quality shifter sees the blue or red histogram, they will raise the alarm!
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Reconstruction figures of merit and data quality
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Data Preparation
• Three major steps to prepare data for physics analysis and achieve


• reliable, high quality data (yes, we reject low quality data)


• the best performance from our detectors


• readiness for physics analysis


1. Reconstruct physics signals from the data


•  Produce information like how many muons does the event have?


2. Calibrate the detectors


•  Correct imperfections, account for changes over time…


3. Make sure that the data quality is excellent, also in real time


•  Maximise the amount of useful data 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Data’s journey - next time, analysis!
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+

Trigger/DAQ Data  
Preparation
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Contact details

• I am usually based at Geneva 
Observatory in Versoix, but will 
be here at CERN Wednesday 
3rd through Friday 5th July


• Tonight you will find me 
here 


• email: paul.laycock@unige.ch
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