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Goal of the course

• Overview of superconducting magnets for particle accelerators (dipoles and quadrupoles)

• Exciting, fancy and dirty mixture of physics, engineering, and chemistry

• Chemistry and material science: superconducting materials 

• Quantum physics: the key mechanisms of superconductivity

• Classical electrodynamics: magnet design

• Mechanical engineering: support structures

• Electrical engineering: powering of the magnets and their protection

• Cryogenics: keep them cool …

• Cost optimization also plays a relevant role

Superconducting 
strand

Superconducting 
cable

Superconducting 
coil

Superconducting 
magnet
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References

Superconducting magnets for particle accelerators are a vast domain. This 
lecture will be especially focused on magnets for colliders, with a special 
eye on the CERN high energy infrastructures (LHC and HL-LHC). They 

are based on:

• P. Ferracin, E. Todesco, S. Prestemon, “Superconducting accelerator 
magnets”, US Particle Accelerator School, www.uspas.fnal.gov.

• E. Todesco, “Masterclass -Design of superconducting magnets for particle 
accelerators”, https://indico.cern.ch/category/12408/

Many thanks to Paolo F., Ezio T. and Luca B., for all the 

material I took from them for this course, and for everything I 

learnt from them on superconducting magnets!

http://www.uspas.fnal.gov/
https://indico.cern.ch/category/12408/
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Outline

• Part I

• Particle accelerators, magnets and the need of superconductors

• Magnetic design and coil fabrication

• Part II

• Mechanical design and assembly

• Quench, training and protection

• Outlook, what brings the future
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Particle accelerators

ArcArc

Arc
Arc

LSS

LSS

LSS

LSS

𝑝 = 𝑒𝐵𝜌

Constant

Ԧ𝐹 = 𝑒𝐸

Ԧ𝐹 = 𝑒 Ԧ𝑣 × 𝐵
B

Principle of synchrotrons:

Driving particles in the same accelerating structure several times.

• Electro-magnetic field accelerates particles

• Magnetic field steers the particles in a  circular orbit

• Particle accelerated  → energy increased  → magnetic field increased 
(“synchro”) to keep the particles on the same orbit of curvature r
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Particle accelerators and magnets

• How do we keep the particles in a cycle? MAGNETS!

• Dipole magnets provide a constant field, to be 
increased with time to follow the particle acceleration, 
steering (bends) the particles in ≈ circular orbit

• Quadrupole magnets keep the particles in the orbit, 
providing a linear force that keep them focused acting 
as a spring. They provide a field 

• Equal to zero in the center

• Increasing linearly with the radius

𝐵𝑦 = 𝐵1
𝐵𝑥 = 0

𝐵𝑦 = 𝐺𝑥

𝐵𝑥 = 𝐺𝑦
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Particle accelerators: the LHC

“The Arc (20.7 km)”

• Dipoles: magnetic field steers (bends) the particles in a 
circular orbit

• Quadrupoles: magnetic field provides the force necessary to 
stabilize linear motion.

• They act as a spring: focus the beam

• Prevent protons from falling to the bottom of the aperture due to 
the gravitational force (it would happen in less than 60 ms!)

• Correctors

“Long straight sections (7.2 km)”

• Interaction regions (IR) where the experiments are 
housed

• Quadrupoles for strong focusing in interaction point

• Dipoles for beam crossing in two-ring machines

• Regions for other services
• Beam injection (dipole kickers)

• Accelerating structure (RF cavities)

• Beam dump (dipole kickers)

• Beam cleaning (collimators)

ArcArc

Arc
Arc

LSS

LSS

LSS

LSS
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Electromagnets

• Dipoles: the larger B, the larger the energy (𝑝 = 𝑒𝐵𝜌)

• Quadrupoles: the larger B, the larger the focusing strength (𝐺 = 𝐵/𝑟)

• For an electro-magnet, the larger B, the larger must be J

• In normal conducting magnets,  J ~ 5 A/mm2

• In superconducting magnets, Je ~ 600-700 A/mm2

If we want magnets with B>2T and a reasonable size (and energy consumptions), 

superconductors are needed

w
J

By
2

00−= 𝐺 = −
𝜇0𝐽0
2

𝑙𝑛
𝑟𝑜𝑢𝑡
𝑟𝑖𝑛

w



CERN Summer Students Lecture, 2024 Susana Izquierdo Bermudez 10

Superconductivity

• In 1911, Kammerling-Onnes, discovered superconductivity (ZERO resistance 
of mercury wire at 4.2 K)

• The temperature at which the transition takes 
place is called critical temperature Tc

• Observed in may materials

• but not in the typical best conductors (Cu, Ag, Au)

• At T > Tc , superconductor very poor conductor
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Superconductivity

• For 40-50 years, only “Type I” superconductors were known.

by L. Bottura B B
Increase of 

field Cool-down

Superconducting state
Normal state

• Then, in the 50’s, “Type II” superconductors

by L. Bottura

B<Bc1 Bc1<B<Bc2

• Perfect diamagnetism. With T<Tc

magnetic field is expelled

• But, the B must be < critical field Bc. 

Otherwise, superconductivity is lost

• Unfortunately, Bc very low ( 0.1 T), 

not practical for electro-magnets

• Between Bc1 and Bc2 : mixed phase

• B penetrates as flux tubes: fluxoids

• Much higher fields and link between Tc

and Bc2
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Practical superconductors

Critical current density in the superconductor versus field for different materials at 4.2 K [P. J. Lee, et al]

https://nationalmaglab.org/images/magnet_development/asc/plots/JeChart041614-1022x741-pal.png

BSCCO and YBCO
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BSCCO and YBCO

• BSSCO and YBCO are the two main HTS (high temperature 
superconductors)

• Discovered in 1988/86

• Large critical temperature ≈100 K

• Very large critical field above 150 T 

• Flat critical surface (little dependence on field)

• Large progress in reaching good current density

• Both expensive (more than 10 times Nb-Ti …)

• Drawbacks:

• YBCO round wires are not trivial – most application on tapes

• BSCCO requires a heat treatment at 800 C , and 100 bar of oxygen to increase j

• NMR/MRI solenoids with HTS tapes have been developed

• Projects of dipole inserts for accelerator magnets are ongoing in many labs 
(LBNL, BNL, CERN, CEA, …)
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Practical superconductors

Critical current density in the superconductor versus field for different materials at 4.2 K [P. J. Lee, et al]

https://nationalmaglab.org/images/magnet_development/asc/plots/JeChart041614-1022x741-pal.png

NbTi

Nb3Sn
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NbTi and Nb3Sn

Critical surface for Nb-Ti and Nb3Sn

Nb and Ti (1961) → ductile alloy 
Extrusion + drawing

• Tc is ~ 9.2 K at 0 T

• BC2 is ~ 14.5 T at 0 K

• Use in Tevatron (80s), then all the other

• ~50-200 US$ per kg of wire

(1 euro per m)

Nb and Sn (1954) → intermetallic compound
Brittle, strain sensitive, formed at ~650-700C

• TC is ~ 18 K at 0 T

• BC2 is ~ 28 T at 0 K

• Used in NMR, ITER, now HL-LHC

• ~700-1500 US$ per kg of wire

(5 euro per m)
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Practical superconductors

Typical operation parameters

(for a 0.85 mm diameter strand)

Cu Nb3SnNb-Ti

Je ~ 5 A/mm2

I ~ 3 A

B = 2 T

Je ~ 600-700 A/mm2

I ~ 300-400 A

B = 8-9 T

Je ~ 600-700 A/mm2

I ~ 300-400 A

B = 12-13 T

By P. Ferracin
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Practical superconductors

Cu Nb3SnNb-Ti

Je ~ 5 A/mm2

I ~ 3 A

B = 2 T

Je ~ 600-700 A/mm2

I ~ 300-400 A

B = 8-9 T

Je ~ 600-700 A/mm2

I ~ 300-400 A

B = 12-13 T

Typical operation parameters

(for a 0.85 mm diameter strand) By P. Ferracin
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Strand: multifilament wire

18

Superconducting materials are produced in small filaments and surrounded by a 

stabilizer (typically copper) to form a “multi-filament wire” o “strand”
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The strand: multifilament wire

19

WHY a multi-filament wire in a stabilizing matrix?

1. Flux jumps

Thermal disturbance → the local change in Jc → motion or “flux jump” → power dissipation

Stability criteria for a slab (adiabatic condition)

Bc1<B<Bc2

( )
2

0

03

c

c

j

C
a



 −


a is the half-thickness of the slab

jc is the critical current density [A m-2]

 is the density [kg m-3]

C is the specific heat [J kg-1]

c is the critical temperature. 

Cu

SC

2. Quench protection

• Superconductors have a very high normal state resistivity.

If quenched, could reach very high temperatures in few ms.

• If embedded in a copper matrix, when a quench occurs, current redistributes in the low-

resisitivity matrix → lower peak temperature
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The strand: multifilament wire
3. Persistent currents

When a filament is in a varying Bext, its inner part is 
shielded by currents distribution in the filament 
periphery

They do not decay when Bexis held constant →
persistent currents

20
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External magnetic field
Tesla

by K.-H. Mess, et al.

These currents produce field errors that are 

particular important at low energy (when the 

beam is injected), which are proportional to the 

filament diameter (dsub) and the current density.

𝑀(𝐵) ∝ 𝑑𝑠𝑢𝑏 ∙ 𝐽𝑐 (𝐵) Allowable limits
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The strand: multifilament wire

21

by M. Wilson

by L. Bottura

4. Inter-filament coupling 

• When a multi-filamentary wire is subjected 

to a time varying magnetic field, current 

loops are generated between filaments.

• If filaments are straight, large loops with 

large currents → ac losses

• If the strands are magnetically coupled the 

effective filament size is larger → flux 

jumps 

To reduce these effects, filaments are twisted

• twist pitch of the order of 20-30 times of the 

wire diameter.
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Strand: Manufacturing process (NbTi)

• Nb-Ti ingots

• 200 mm ∅, 750 mm long

• Monofilament rods are stacked to form a 
multifilament billet 

• then extruded and drawn down

• can be re-stacked: double-stacking process

22
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Strand: Manufacturing process (Nb3Sn)

23

• Since Nb3Sn is brittle

• It cannot be extruded and drawn like Nb-

Ti. It must be formed at the end of the 

fabrication of the cable (or the coil).

• Process in several steps

• Fabrication of the wire, assembling 

multifilament billets from with Nb and 

Sn separated. Different processes tried 

in industrial scale (bronze process, 

internal tin process, powder in tube 

process) 

• Fabrication of the cable

• Fabrication of the coil. Two different 

techniques:  

• Wind & react” (more common). First 

coil winding and then formation of 

Nb3Sn

• “React & wind”. First formation of 

Nb3Sn and then coil winding

• Reaction. Heating to about 600-700 C in 

vacuum or inert gas (argon) atmosphere, 

and the Sn diffuses in Nb and reacts to 

form Nb3Sn.
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The cable

• Most of the superconducting coils for particle accelerators wound from a multi-strand cable 
(Rutherford cable). The strands are twisted to

• Reduce inter-strand coupling currents

• Losses and field distortions. 

• Provide more mechanical stability

• Current redistribution (in case a defect in one strand)

• Reduction the number of turns (easier winding, lower inductance)

• Reduction strand piece length

• Strands wound on spools 
mounted on a rotating drum

• Strands twisted around a 
conical mandrel into rolls

• The rolls compact the cable 
and provide the final shape
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The cable insulation

25

Polyimide insulation for Nb-Ti Fiber glass insulation for Nb3Sn

• The cable insulation must feature

• Good electrical properties to withstand turn-to-turn V after a quench

• Good mechanical properties to withstand high pressure conditions

• Porosity to allow penetration of helium (or epoxy)

• Radiation hardness
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Filling ratio and current density

Coil :

≈ 1/3 superconductor 

≈ 1/3 copper

≈ 1/3 insulation

• Engineering current density is the 

current divided by the strand area 

(Cu+sc)

• Overall current density is the current 

divided by the total area (Cu+sc+ins)

LHC-MB
11 T DS

IL OL

Jsc 1259 1817 1655

Jengineering 475 616 770

Joverall 349 430 522

Current density (A/mm2)
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Summary

• 𝒑 = 𝒆𝑩𝝆→ More energy?

• Either brute force (longer collider) 

• Or technological development (higher magnetic field)

• Basic magnetic elements in the ‘arc’ of a circular accelerator:

• Dipoles: magnetic field steers (bends) the particles in a  circular orbit

• Quadrupoles: keep the particles in the orbit, providing a linear force that keep 
them focused acting as a spring. 

• Superconductivity is destroyed by temperature, current density, magnetic 
field

• Critical surface is j(B,T) giving values below which the superconducting 
state exists

• For making magnets it is fundamental to have penetration of magnetic field 
(type II). Practical superconductors came only 50 years after the discovery 
of superconductivity
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Summary

Cable made from twisted wires 

(stability, protection, field quality)

Strand made from twisted filaments in a stabilizing 

matrix (stability, protection, field quality)
Cable is insulated (dielectric 

strength, mechanical 

robustness)
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Introduction

• The magnetic design is one of the first steps in the design of a superconducting magnet 
development

• It starts from the requirements(from accelerator physicists, researchers, medical 
doctors…others) 

• A field shape: Dipole, quadrupole, etc

• A field magnitude usually with low temperature superconductors from 5 to 20 T

• A field homogeneity, uniformity inside a solenoid, harmonics in a accelerator magnet

• A given aperture (and volume), some cm diameter for accelerator magnets, much more 
for detectors and fusion magnets 
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Magnetic design and coil

• How do we create a perfect field?

• How do we express field and its “imperfections”?

• How do we design a coil to minimize field errors?
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How to create a dipole field?

Perfect dipole: intercepting circle/ellipses

• Within a cylinder carrying j0, the field is perpendicular to the radial direction and 
proportional to the distance to the centre r:

• Combining the effect of two intersecting cylinders

-J0 +J0+J0 -J0

2

00 rj
B


−=

  0sinsin
2

2211

00 =+−= 


rr
rj

Bx

𝐵𝑦 =
𝜇0𝑗0𝑟

2
−𝑟1 cos 𝜃1 + 𝑟2 cos𝜃2 = −

𝜇0𝑗0
2

𝑤

But…

• The aperture is not circular

• Not easy to simulate with a flat cable

• Similar proof for intercepting ellipses
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How to create a dipole field?

34

Perfect dipole: thick shell with cosθ current distribution

• If we assume a current distribution proportional to the 
angle

𝑗 𝜃 = 𝑗0𝑐𝑜𝑠 𝜃

𝐵𝑦 = −4
𝜇0𝑗0
2𝜋

න
0

𝜋/2

න
𝑟

𝑟+𝑤 𝑐𝑜𝑠2 𝜃

𝜌
𝜌𝑑𝜌𝑑𝜃 = −

𝜇0𝑗0
2

𝑤

From ideal to practical 

configuration

• The generated dipole field is

j0

0

-j0

w

• A bit easier to reproduce with a flat cable (Rectangular 
cross-section and constant J)

• More layers and wedges to reduce J towards the 90 
degrees plane

• It will not be a perfect field…but it can be pretty close!

In a dipole:

B ∝ current density (obvious)

B ∝ coil width w (less obvious)

B independent of the aperture r (surprising)

r
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Perfect 2n-pole field

• Four intercepting circles/ellipses and a cos2θ current distribution generate a 
perfect quadrupole field

j0

0

-j0

r w𝐺 =
𝐵𝑦

𝑟
= −

𝜇0𝑗0
2

ln 1 +
𝑤

𝑟

• And so on…

• Perfect sextupole: cos3θ or 3 intersecting ellipses 

• Perfect 2n-poles: cos(nθ) or n intersecting ellipses 
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From ideal to real configurations

• ‘The solution’ to go from the ideal cosθ current distribution to a windable 
configuration →Approximation of the cos-theta layout by sectors with uniform 
current density

• Now we can use the multipolar expansion to optimize our “practical” cross-section

• The first allowed harmonic in a dipole configuration is B3

• The second allowed harmonic in a dipole configuration is B5


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
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for =/3 (i.e. a 60° sector coil) one has B3=0

for =/5 (i.e. a 36° sector coil) or for =2/5 
(i.e. a 72° sector coil)
one has B5=0
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Dipole sector coils

• With one sector, we can only set to zero one multipole

• With two sectors, equations to set to zero B3, B5 and B7 

• With three sectors, one can set to zero 5 multipoles

ቊ
sin( 3𝛼3) − sin( 3𝛼2) + sin( 3𝛼1) = 0
sin( 5𝛼3) − sin( 5𝛼2) + sin( 5𝛼1) = 0

for instance (48°,60°,72°) or (36°,44°,64°) are solutions 

 

 

0)3sin()3sin()3sin()3sin()3sin( 12345 =+−+− 
0)5sin()5sin()5sin()5sin()5sin( 12345 =+−+− 
0)7sin()7sin()7sin()7sin()7sin( 12345 =+−+− 
0)9sin()9sin()9sin()9sin()9sin( 12345 =+−+− 

0)11sin()11sin()11sin()11sin()11sin( 12345 =+−+− 

~[0°-33.3°, 37.1°- 53.1°, 63.4°- 71.8°] 

𝛼2

𝛼3

𝛼1
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Coil fabrication

38

• The coil: most critical component of a superconducting magnet

• Cross-sectional accuracy of few tens of micrometers over ~15 m

• Manufacturing tolerances (~30 µm on blocks position) are accounted as 
random components for field quality.

Cross section of a Nb3Sn practice coil



CERN Summer Students Lecture, 2024 Susana Izquierdo Bermudez 39

Coil fabrication (Nb3Sn)

39

Winding & Curing Reaction Impregnation

The cable is wound around a pole 

on a mandrel.

A ceramic binder is applied and 

cured (T~ 150 C) to have a rigid 

body easy to manipulate.

Sn and Nb are heated to 650-

700 C in vacuum or inert gas 

(argon) →Nb3Sn

The cable becomes brittle

In order to have a solid block, the 

coil placed in a impregnation fixture 

The fixture is inserted in a vacuum 

tank, evacuated → epoxy injected
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Coil at different manufacturing steps

40
After curing After reaction After impregnation
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The iron yoke

• Keep the return magnetic flux close to 
the coils, thus avoiding fringe fields

• In some cases the iron is partially or totally 
contributing to the mechanical structure

• Considerably enhance the field for a 
given current density

• The increase is relevant (10-30%), getting 
higher for thin coils

• This allows using lower currents, easing 
the protection

11 T Double Aperture Magnet
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Peak Field, Aperture Field and Margin
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• The margin of a magnet is defined with respect to its weakest point, i.e. the peak field

• What matters for the margin is the peak field in the coil, not the field in the aperture

Bap = 11.2 T

Bp = 11.6 T
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Margin

• The margin of a magnet is defined with respect to its weakest point, i.e. the peak field

• Short sample(SS) corresponds to the intersection of the load line for the peak field and the 
critical current density curve: ideally is the maximum performance of the magnet

• Among magnet engineers, a 
commonly used concept is the 
loadline margin

• The concept is always criticized (not 
physical) but never replaced: the 
success of a magnet judged on its 
ability of reaching the max 
performance

• LLmargin = 1−I𝑜𝑝/I𝑆𝑆

• High field accelerator magnets 
typically are design to operate at ≈ 
80% of the short sample level (20 % 
margin)
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Summary

• B ∝ J∙w → Two ways to increase the field:

• Larger current density (up to a certain level, then hard limits in terms of stress and 
protection)

• Larger coils (cost)

• The coil is most critical component of a superconducting magnet. 

• Typically,  1/3 of the coil material is superconductor, 1/3 copper and 1/3 
insulation/resin

• The iron keeps the return magnetic flux and considerably enhances the field. In some 
cases it also has a mechanical function.

• The margin of a magnet is defined with respect to its weakest point, i.e. the peak field
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Thank you

For questions, don’t hesitate!

susana.izquierdo.bermudez@cern.ch
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Maxwell equations

• Maxwell equations for magnetic field 

• In absence of charge and magnetized material

(inside a magnet)

• If                    (constant longitudinal field), then

• x and y perpendicular to the beam (transverse coordinates), z along the beam
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Analytic functions

• If                     Maxwell gives0=

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Cauchy-Riemann conditions

and therefore, the function By+iBx is analytic

where Cn are complex coefficients
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• Advantage: we reduce the description of the field to a (simple) series of 
complex coefficients
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Field harmonics

• The field can be described as a (simple) series of complex coefficients, each 
coefficient corresponds to a “pure” multipolar field

• Magnets usually aim at generating a single multipole

• Dipole, quadrupole, sextupole, octupole, decapole, dodecapole …
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By K.-H. Mess et al.
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• The field harmonics are rewritten as

• We factorize the main component (B1 for dipoles, B2 for quadrupoles)

• We introduce a reference radius Rref to have dimensionless coefficients 
(usually chosen as 2/3 of the aperture radius)

• We factorize 10-4 since the deviations from ideal field in superconducting 
magnets for particle accelerators have to be 0.01%

• The coefficients bn, an are called normalized multipoles

• bn are the normal, an are the skew (adimensional)

Field harmonics
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Considerations on margin

• For Nb3Sn and Nb-Ti the 
temperature margin depends only 
on the loadline margin and very 
weakly on the field. 

• For a given a material and an 
operational temperature, load line 
margin and temperature margin 
are equivalent

• For a given LL margin, Nb3Sn T 
margin is about 2.5 times greater 
than NbTi T margin

Temperature margins at 20% on loadline

Operational temperature 1.9 K 4.2 K

Nb-Ti 2.1 K 1.2 K

Nb3Sn 4.5 K 3.0 K


