Standard Model 1/4 Andreas Weiler (TU Munich)

CERN, 7/2024

Please don't hesitate to contact me via email if you have any questions or need assistance with the course material.

andreas.weiler@tum.de

		Monday	Tuesday	Wednesday	Thursday	Friday	
		1/7	2/7	3/7	4/7	5/7	
1	09h15- 10h10		Introduction	Particle World	Raw Data to Physics Results	Detectors	
/eek	10h25- 11h20		Particle World	Detectors	Particle World	Raw Data to Physics Results	
5	11h35- 12h30		Detectors	Raw Data to Physics Results	Detectors	Particle World Q&A	

		8/7	9/7	10/7	11/7	12/7		
Week 2	09h15- 10h10	Detectors	Accelerators & Beam Dynamics	Statistics	Nuclear Physics	Theoretical Particle Physics		
	10h25- 11h20	Accelerators & Beam Dynamics	Magnet superconductivity	Accelerators & Beam Dynamics	Theoretical Particle Physics	Statistics		
	11h35- 12h30	Magnet superconductivity	Statistics	Theoretical Particle Physics	Statistics	Nuclear Physics		

		15/7	16/7	17/7	18/7	19/7
8	09h15- 10h10	Theoretical Particle Physics	Theoretical Particle Physics	Future High Energy Colliders	Astroparticle Physics	Cosmology
/eek	10h25- 11h20	Standard Model	Physics & Medical Applications	Standard Model	Cosmology	Future High Energy Colliders
3	11h35- 12h30	Physics & Medical Applications	Standard Model	Astroparticle Physics	Standard Model	Cosmology

		22/7	23/7	24/7	25/7	26/7
4	09h15- 10h10	RF superconductivity	Electronics, DAQ and Triggers	Heavy lons	Neutrino Physics	Physics at Hadron Colliders
/eek	10h25- 11h20	Predictions at Hadron Colliders	RF superconductivity	Electronics, DAQ and Triggers	Physics at Hadron Colliders	Heavy lons
5	11h35- 12h30	Electronics, DAQ and Triggers	Predictions at Hadron Colliders	Physics at Hadron Colliders	Heavy lons	Physics at Hadron Colliders

_		29/7	30/7	31/7	1/8	2/8
5	09h15- 10h10	Quantum Gravity	Beyond the Standard Model	Antimatter in the Lab	Beyond the Standard Model	Flavour Physics
/eek	10h25- 11h20	Physics at Lepton Colliders	Accelerator Operation & Design	Flavour Physics	Antimatter in the Lab	Beyond the Standard Model
5	11h35- 12h30	Accelerator Operation & Design	Physics at Lepton Colliders	Beyond the Standard Model	Flavour Physics	Close out

NOT ONLY GOD KNOWS, I KNOW, AND BY THE END OF THE SEMESTER, YOU WILL KNOW.

- SIDNEY COLEMAN -

Overview

Very little formalism at first, will introduce some during the next lectures

Natural units reminder: $\hbar = c = 1$

We are expressing every **dimensionful** quantity in terms of **energy** (units of electronVolt = eV)

Energy ~ Mass ~ 1/Length ~ 1/Time

Energy	Mass	Length	Time
1 GeV	$1.8 \cdot 10^{-27}$ kg	$0.2 \cdot 10^{-15}$ m	$6.6 \cdot 10^{-25}$ s

e.g. $E = mc^2$

Conversion Table for natural and MKSA Units

Natural	units	defined	by:	$\hbar =$	c =	1	(and	$4\pi\varepsilon_0$	=	1).	Remaining	unit	is	choosen
Energy (eV).													

Quantity	Symbol	natural units	MKSA			
Length	ℓ	1/eV	$1.9732705 \cdot 10^{-7} \text{ m} \approx 0.2 \ \mu$			
Mass	m	$1 \mathrm{eV}$	$1.7826627 \cdot 10^{-36} \text{ kg}$			
Time	t	$1/\mathrm{eV}$	$6.5821220 \cdot 10^{-16} \text{ s} \approx .66 \text{ f}$			
Frequency	ν	$1 \mathrm{eV}$	$1.5192669 \cdot 10^{15} \text{ Hz}$			
Speed	v	1	$2.99792458 \cdot 10^8 \text{ m/s}$			
Momentum	p	$1 \mathrm{eV}$	$5.3442883 \cdot 10^{-28} \text{ kg} \cdot \text{m/s}$			
Force	F	1 eV^2	$8.1194003 \cdot 10^{-13} \text{ N}$			
Power	P	1 eV^2	0.24341350 mW			
Energy	E	$1 \mathrm{eV}$	$1.6021773 \cdot 10^{-19} \text{ J}$			
Charge	q	1	$1.8755468 \cdot 10^{-18} {\rm C}$			
Charge density	ho	1 eV^3	244.10013 C/m^3			
Current	Ι	$1 \mathrm{eV}$	2.8494561 mA			
Current density	J	1 eV^3	$7.3179379 \cdot 10^{10} \text{ A/m}^2$			
Electric field	E	1 eV^2	432.90844 V/mm			
Potential	Φ	$1 \mathrm{eV}$	85.424546 mV			
Polarization	P	1 eV^2	$4.8167560 \cdot 10^{-5} \text{ C/m}^2$			
Conductivity	σ	$1 \mathrm{eV}$	$1.6904124 \cdot 10^5 \text{ S/m}$			
Resistance	R	1	$29.979246 \ \Omega$			
Capacitance	C	$1/\mathrm{eV}$	$2.1955596 \cdot 10^{-17} \text{ F}$			
Magnetic flux	ϕ	1	$5.6227478 \cdot 10^{-17} \text{ Wb}$			
Magnetic induction	В	1 eV^2	$1.4440271 \ { m mT}$			
Magnetization	M	1 eV^2	$1.4440271 \cdot 10^4 \text{ A/m}$			
Inductance	L	$1/\mathrm{eV}$	$1.9732705 \cdot 10^{-14} \text{ H}$			
some constants:		·				
Planck's quantum	\hbar	1	$1.05457266 \cdot 10^{-34} \text{ J} \cdot \text{s}$			
$h = 2\pi\hbar$	h	2π	$6.6260755 \cdot 10^{-34} \text{ J} \cdot \text{s}$			
Charge of electron	e	$8.5424546 \cdot 10^{-2}$	$1.60217733 \cdot 10^{-19} \text{ C}$			
Bohr radius, \hbar^2/me^2	a_0	$2.6817268 \cdot 10^{-4} / eV$	$5.29177249 \cdot 10^{-11} \text{ m}$			
Energy 1 electron Volt	eV	1 eV	$1.60217733 \cdot 10^{-19} \text{ J}$			
Rydberg energy, $e^2/2a_0$	$E_{\rm Rvd}$	$13.605698 \ {\rm eV}$	$2.1798741 \cdot 10^{-18} \text{ J}$			
Hartree energy, e^2/a_0	$\dot{E_{ m h}}$	27.211396 eV	$4.3597482 \cdot 10^{-18} \text{ J}$			
Speed of light	c	1	$2.99792458 \cdot 10^8 \text{ m/s}$			
Permeability of vacuum	μ_0	4π	$4\pi \cdot 10^{-7} \text{ H/m}$			
Permittivity of vacuum	$arepsilon_0$	$1/4\pi$	$8.854187817 \cdot 10^{-12} \text{ F/m}$			
Bohr magneton	μ_B	$8.3585815 \cdot 10^{-8} / eV$	$9.2740154 \cdot 10^{-24} \text{ J/T}$			
Mass of electron	m_e	$510.99906~{ m keV}^{'}$	$9.1093897 \cdot 10^{-31} \text{ kg}$			
Mass of proton	m_p	$938.27234 { m ~MeV}$	$1.6726231 \cdot 10^{-27} \text{ kg}$			
Mass of neutron	m_n	$939.56563 { m ~MeV}$	$1.6749286 \cdot 10^{-27} \text{ kg}$			
Gravitation constant	G	$6.70711 \cdot 10^{-57} / eV^2$	$6.67259 \cdot 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$			

to be

μm

 fs

Fundamental scales

Fundamental scales

Fundamental scales

Matter Spin 1/2 (Fermions)

T₃ ← Weak Isospin (F ← Electric Charge $Q = Y + T_3$

Natter Spin 1/2 (Fermions)

Forces

Forces

Forces

Forces

Standard Model

top quark, Tevatron Fermilab 1995

Standard Model = subatomic Taxonomy?

top quark, Tevatron Fermilab 1995

Standard Model is not about particles!

Standard Model is not about particles!

Principles!

Quantum Mechanics, Lorentz-Invariance, Locality, Unitarity, Global Symmetries, Gauge Redundancies, Conservation Laws, Spontaneous Symmetry Breaking...

What are the rules at short and long distances?

SM = QM + relativity + symmetry + low energy expansion

accidental symmetries $U(1)_{R} \times U(1)_{L}$

Weltformel

In quantum field theory the field is the fundamental object from which all properties of matter and forces emerge.

Quantum Field Theory

Fields

Action at a distance?

fields

20th century: Everything is a field.

19th century: matter consists of particles, forces are mediated by space-filling

More precisely: everything is a quantum field

 Particles is what we set is made of.

Journal Reference:

 Nam Mai Phan, Mei Fun Cheng, Dmitri A. Bessarab, Leonid A. Krivitsky. Interaction of Fixed Number of Photons with Retinal Rod Cells. *Physical Review Letters*, 2014; 112 (21) DOI: 10.1103/PhysRev-Lett.112.213601

• Particles is what we see. Fields are what reality

Couplings between different fields = particle interactions

Minimal energy to get field vibrating = mass of particle

(global) symmetries = conservation laws

$$j = \sum_{i=1}^{3} \frac{\partial L}{\partial \dot{x}_{i}} Q[x_{i}] - f$$

$$= m \sum_{i} \dot{x}_{i}^{2} - \left[\frac{m}{2} \sum_{i} \dot{x}_{i}^{2} - V(x) \right]$$

$$= \frac{m}{2} \sum_{i} \dot{x}_{i}^{2} + V(x).$$

$$\frac{d}{dt} \sum_{i} \frac{\partial \mathcal{L}_{\alpha}}{\partial \dot{q}_{i}} \frac{\partial \mathcal{L}_{\alpha}}{\partial \dot{q}} \frac{\partial \mathcal{L}_{\alpha}}$$

Emmy Noether "Invariante Variationsprobleme" (1918)

(global) symmetries = conservation laws

$$j = \sum_{i=1}^{3} \frac{\partial L}{\partial \dot{x}_{i}} Q[x_{i}] - f$$

$$= m \sum_{i} \dot{x}_{i}^{2} - \left[\frac{m}{2} \sum_{i} \dot{x}_{i}^{2} - V(x) \right]$$

$$= \frac{m}{2} \sum_{i} \dot{x}_{i}^{2} + V(x).$$

$$\frac{d}{dt} \sum_{i} \frac{\partial \mathcal{L}_{\alpha}}{\partial \dot{q}_{i}} \frac{\partial \mathcal{L}_{\alpha}}{\partial \dot{q}} \frac{\partial \mathcal{L}_{\alpha}}$$

Emmy Noether "Invariante Variationsprobleme" (1918)

(charge conservation)

but not

 $e \gamma \rightarrow e^+ \gamma$

ocal symmetries = predict form of interactions

The SM is a $SU(3)_{c} \times SU(2)_{W} \times U(1)_{Y}$ gauge theory

required for consistency of massless spin 1: QM + relativity impose this structure

ocal symmetries = predict form of interactions

The SM is a $SU(3)_{c} \times SU(2)_{W} \times U(1)_{Y}$ gauge theory

required for consistency of massless spin 1: QM + relativity impose this structure

U(1)example

 $\mathscr{L} = \overline{\psi}(x) \gamma^{\mu} (i\partial_{\mu} - m) \psi(x)$

 $\psi(x) \to e^{i\alpha(x)}\psi(x)$

 $= i e \gamma^{\mu}$

 $\mathscr{L} = \overline{\psi}(x) \, \gamma^{\mu}(i\partial_{\mu} - eA_{\mu}(x) - m) \, \psi(x)$

Four fundamental forces

Electromagnetic

Weak

Electro Magnetic

Strong

Gravitational

local Symmetry

 $SU(2) \times U(1)$

Particle

photon

VV,Z

spin=1

SU(3) color

gluon

space-time diffeomorphism grav local SO(1,3)

graviton spin=2

Phases of the Fundamental Interactions

Mass of force
carrierCoulomb
phaseM = 0

Confined

 $M \neq 0$

Gravity Electromagnetism

 $F\propto$ r^2

Strong

Weak $F \propto e^{-Mr} \left(\frac{1}{r^2} + \frac{M}{r} \right),$

Gry EEBus Bus $\begin{aligned} & \text{flles und und up} \\ & \text{flles und und up} \\ & \text{fles und und up} \\ & \text{fles up}$ $\chi_{1}^{'} = \alpha_{11}\chi_{1} + \alpha_{12}\chi_{2} \qquad \frac{2}{3\chi_{1}} = \alpha_{11}\frac{2}{3\chi_{1}} + \alpha_{21}\frac{2}{3\chi_{2}} \left[\frac{3^{2}}{3\chi_{1}^{2}} + 2\alpha_{11}\alpha_{1}\frac{2}{3\chi_{1}^{2}} + 2\alpha_{11}\alpha_{1}\frac{2}{3\chi_{1}^{2}}\right]$

$$\frac{1}{2}m\omega^2 x^2$$

 $L = \frac{m}{2}\dot{\theta}^2 - mg(1 - \cos\theta) \approx \frac{m}{2}\dot{\theta}^2 - \frac{1}{2}mg(\theta^2 - \frac{1}{12}\theta^4 + \dots)$

Lagrangians reveal symmetries by remaining invariant under

At low energies (small oscillations), accidental symmetries can

https://www.physicswithelliot.com/pendulum-graph

Massive spin 1/2 particle: $\psi(x)$ (4 component Dirac spinor)

- sistent with Einstein equation (m²=E²-p²) or $\int_{C} \frac{\psi}{\gamma^{\mu}} \frac{1}{\gamma^{\nu}} \int_{C} \frac{1}{\gamma^{\mu}} \frac$
- $\gamma^{\mu}~(\mu=0,1,2,3)$ are four 4x4 matrices particular realisation of the Dirac algebra (not unique)
- $\begin{pmatrix} -m \end{pmatrix} \delta \psi$ 1 1 , $\gamma^2 = \begin{pmatrix} i \\ i \\ i \\ i \end{pmatrix}$ *i* (see technical slides at the end of the set the end of th
- $x'^{\mu} = (\delta^{\mu}{}_{\nu} + \omega^{\mu}{}_{\nu})x^{\nu} \quad \text{with} \quad \omega_{\mu\nu}$

$$\begin{array}{l} \mathbf{H}i \\ \mathbf{,} \quad \gamma^{3} = \begin{pmatrix} i\gamma^{\mu}\partial_{\mu} - m \end{pmatrix} \psi = 0 \\ -1 \\ -1 \\ \mathbf{,} \quad \gamma^{3} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \end{pmatrix}$$

$$+\,\omega_{\nu\mu}=0$$

$(x) \rightarrow Matter (145) + (x^{\mu} \rightarrow x'^{\mu} = (\delta^{\mu}{}_{\nu} + \omega^{\mu}{}_{\nu})x^{\nu} \text{ with } \omega_{\mu\nu} + \omega_{\nu\mu} = 0$

• Dirac algebra: particle: $\psi(x)$ (4 component Dirac spinor)

For this equation to be consistent with Einstein equation ($m_{\tau}^2 = E_{4P}^2 Omponent Dirac since sistent with Grindstein herein herein have to obey the difference of the light of the Dirac as the difference of the difference$

 $\begin{pmatrix} -m \end{pmatrix} \delta \psi & 1 \\ 1 & \\ -1 &$

 $x'^{\mu} = (\delta^{\mu}{}_{\nu} + \omega^{\mu}{}_{\nu})x^{\nu} \quad \text{with} \quad \omega_{\mu\nu}$

- $\operatorname{particular}^{1} \operatorname{realisation}_{-1} \circ \operatorname{particular}^{1} \operatorname{realisation}_{-1} \circ \operatorname{particular}^{1} \operatorname{particular}^{1} \operatorname{realisation}_{-1} \circ \operatorname{particular}^{1} \operatorname{particular}^{1} \operatorname{particular}^{-i} \operatorname{partic$

$$+\,\omega_{\nu\mu}=0$$

$(x) \rightarrow \text{Watter} \left(\frac{1}{1} + \frac{1}{2} + \frac{1}{$

- Dirac algebra: particle: $\psi(x)$ (4 component Dirac spinor)
- For this equation to be consistent with Einstein equation ($m_{\tau}^2 = E_{\mu}^2 p_{\sigma}^2 p_{\tau}^2 p_{\tau}^2$
- sistent with Ginsteinhequation han $\overline{z} = \overline{w} p R$ difford alg $[\gamma^{\mu}, \gamma^{\nu}] = 2\eta^{\mu\nu}$ 2-particle $\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu}$ sed atrices hav 4-component Dirac spinor the Dirac as in a contract of the Dirac as the
- $Particular realistic when quantised are algebra <math>\binom{-i}{-i} = \binom{-i}{-1} = \binom{-1}{-1} \times 4 \text{ matrices}$
- $\begin{aligned} (\gamma \mathcal{H}n)(\delta \psi = 0, 1, 2, \mathbf{Bi}) \text{ are four } 4\mathbf{x}4 \text{ matrices} & (\partial_{\mu} m) \psi = 0 \\ \mathbf{Dirac} \stackrel{1}{\text{equation:}} \gamma^{2} \text{from Lagrangian} \quad \phi \neq \delta \mathcal{L} \equiv \delta \psi^{\dagger} \underline{\gamma}_{1}^{0} (i\gamma^{\mu}\partial_{\mu} m)^{1} \psi \end{aligned}$ $\frac{1}{x'^{\mu}} = \underbrace{(i\gamma^{\mu}\partial_{\mu} - m)}_{\nu \nu \nu} \psi = 0 - \frac{1}{\mu\nu} + \frac{1}{\nu} \frac{1}{\mu\nu} + \frac{1}{\mu} \frac{1}{\mu} + \frac{1}{\mu} \frac{1}{\mu\nu} + \frac{1}{\mu} \frac{1}{\mu\nu} + \frac{1}{\mu} \frac{1}{\mu} + \frac{1}{\mu}$

Predicts anti-particle exist: positron (discovered by Anderson 1932)

- Lagrangians are invariant (equation of motions are covariant)
- We impose global space-time symmetries, like Lorentz and space-time translation invariance
- We build the most general Lagrangian that is allowed by local symmetries (gauge symmetries)
- We read of the interactions and translate them to Feynman diagrams, with this we can calculate observables like crosssections, decay widths

 $\mathscr{L} = \overline{\psi}(x) \, \gamma^{\mu}(i\partial_{\mu} - m) \, \psi(x)$

- Lagrangians are invariant (equation of motions are covariant)
- We impose global space-time symmetries, like Lorentz and space-time translation invariance
- We build the most general Lagrangian that is allowed by **local** symmetries (gauge symmetries)
- We read of the interactions and translate them to Feynman diagrams, with this we can calculate observables like crosssections, decay widths

 $\mathscr{L} = \overline{\psi}(x) \, \gamma^{\mu} (i\partial_{\mu} - m) \, \psi(x)$

 $\psi(x) \to e^{i\alpha(x)}\psi(x)$ $A_{\mu}(x) \to A_{\mu}(x) - \frac{1}{e}\partial_{\mu}\alpha(x)$

U(1) gauge redundancy

- Lagrangians are invariant (equation of motions are covariant)
- We impose global space-time symmetries, like Lorentz and space-time translation invariance
- We build the most general Lagrangian that is allowed by **local** symmetries (gauge symmetries)
- We read of the interactions and translate them to Feynman diagrams, with this we can calculate observables like crosssections, decay widths

 $\mathscr{L} = \overline{\psi}(x) \, \gamma^{\mu} (i\partial_{\mu} - m) \, \psi(x)$

$$\psi(x) \to e^{i\alpha(x)}\psi(x)$$

 $A_{\mu}(x) \to A_{\mu}(x) - \frac{1}{e}\partial_{\mu}\alpha(x)$

U(1) gauge redundancy

$$\mathscr{L} = \overline{\psi}(x) \,\gamma^{\mu}(i\partial_{\mu} - eA_{\mu}(x) - m) \,\psi(x)$$

- Lagrangians are invariant (equation of motions are covariant)
- We impose global space-time symmetries, like Lorentz and space-time translation invariance
- We build the most general Lagrangian that is allowed by **local** symmetries (gauge symmetries)
- We read of the interactions and translate them to Feynman diagrams, with this we can calculate observables like crosssections, decay widths

$$\mathscr{L} = \overline{\psi}(x) \, \gamma^{\mu}(i\partial_{\mu} - m) \, \psi(x)$$

$$\psi(x) \to e^{i\alpha(x)}\psi(x)$$

 $A_{\mu}(x) \to A_{\mu}(x) - \frac{1}{e}\partial_{\mu}\alpha(x)$

U(1) gauge redundancy

$$\mathscr{L} = \overline{\psi}(x) \, \gamma^{\mu}(i\partial_{\mu} - eA_{\mu}(x) - m) \, \psi(x)$$

but **not** e.g.

 $\mathscr{L}_{wrong} = \overline{\psi}(x)\,\psi(x)\,e^2 A_{\mu}(x) A^{\mu}(x)$

- Lagrangians are invariant (equation of motions are covariant)
- We impose global space-time symmetries, like Lorentz and space-time translation invariance
- We build the most general Lagrangian that is allowed by local symmetries (gauge symmetries)
- We read of the interactions and translate them to Feynman diagrams, with this we can calculate observables like crosssections, decay widths

 $\mathscr{L} = \overline{\psi}(x) \, \gamma^{\mu} (i\partial_{\mu} - m) \, \psi(x)$

$$\psi(x) \to e^{i\alpha(x)}\psi(x)$$

 $A_{\mu}(x) \to A_{\mu}(x) - \frac{1}{e}\partial_{\mu}\alpha(x)$

U(1) gauge redundancy

$$\mathscr{L} = \overline{\psi}(x) \, \gamma^{\mu} (i\partial_{\mu} - eA_{\mu}(x) - m) \, \psi(x)$$

equation of motion:

$\partial_{\mu}F^{\mu\nu} = J^{\nu}$ ectrom

Non-abelian gauge symmetry

Generalize the Maxwell theory from U(1) -> SU(N)

Now consider the presence of multiple massless spin 1 force carriers, such as the 8 gluons responsible for strong interactions or the **3** bosons involved in weak interactions.

Goal: generalize Maxwell's equations to accommodate these multiple carriers!

Instead of one Dirac field, consider N-dimensional vector of Dirac fields: $\vec{\psi}$

$$\overrightarrow{\psi} \longrightarrow U \overrightarrow{\psi}$$

U: matrix of SU(N) "N dimensional special unitary group" $U^{\dagger}U = \mathbf{1}_{N \times N},$ det(U) = 1

 $e^{i\alpha} \implies e^{i\sum_a \alpha^a T^a_{ij}}$

Non-abelian gauge symmetry

Generalize the Maxwell theory from U(1) -> SU(N)

Now consider the presence of multiple massless spin 1 force carriers, such as the 8 gluons responsible for strong interactions or the **3** bosons involved in weak interactions.

Goal: generalize Maxwell's equations to accommodate these multiple carriers!

Instead of one Dirac field, consider N-dimensional vector of Dirac fields: $\vec{\psi}$

$$\overrightarrow{\psi} \longrightarrow U \overrightarrow{\psi}$$

U: matrix of SU(N) "N dimensional special unitary group" $\overrightarrow{\psi}^{\dagger}\overrightarrow{\psi} \longrightarrow \overrightarrow{\psi}^{\dagger}U^{\dagger}U \overrightarrow{\psi} = \overrightarrow{\psi}^{\dagger}\overrightarrow{\psi}$ Invariants

Using invariants as building blocks for our Lagrangian.

 $e^{i\alpha} \implies e^{i\sum_a \alpha^a T^a_{ij}}$

 $U^{\dagger}U = \mathbf{1}_{N \times N},$ det(U) = 1 $\mathscr{L} = \overrightarrow{\psi}^{\dagger} \gamma^0 \left(i \gamma^{\mu} \partial_{\mu} - m \right) \overrightarrow{\psi}$

Example: SU(2) with $U = \exp(i\alpha^a \sigma^a)$, $\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Pauli matrices

Note: SU(N) is non-abelian because two elements do not generally commute.

Exercise: Show that $g_1g_3 - g_3g_2 = [$

$$[\sigma^{a}, \sigma^{b}] = i2e^{abc}\sigma^{c}$$

(e.g. $g_{1} = e^{i\alpha\sigma^{1}} = \begin{pmatrix} \cos(\alpha) & i\sin(\alpha) \\ i\sin(\alpha) & \cos(\alpha) \end{pmatrix}$

$$g_{3} = e^{i\beta\sigma^{3}} = \begin{pmatrix} e^{i\beta} & 0 \\ 0 & e^{-i\beta} \end{pmatrix}$$

$$[g_1, g_3] = \begin{pmatrix} 0 & -2\sin\alpha\sin\beta \\ 2\sin\alpha\sin\beta & 0 \end{pmatrix} \neq$$

Matter Lagrangian Generalize quantum electrodynamics U(1)

$$\mathscr{L} = \overline{\psi}(x) \, \gamma^{\mu}(i\partial_{\mu} - eA_{\mu}(x) - m) \, \psi(x)$$

Local SU(N) invariance

$$\psi(x) \to U(x)\psi(x) = e^{i\alpha^a(x)T^a}\psi(x)$$
$$A_\mu(x) \to U(x)A_\mu(x)U(x)^{\dagger} - \frac{i}{g}(\partial_\mu U)$$

SU(N)

$$\mathscr{L} = \overline{\psi}_i(x) \, \gamma^\mu(i\partial_\mu - gA^a_\mu(x)T^a_{ij} - m) \, \psi_j$$

Matter Lagrangian Generalize quantum electrodynamics U(1)

$$\mathscr{L} = \overline{\psi}(x) \, \gamma^{\mu}(i\partial_{\mu} - eA_{\mu}(x) - m) \, \psi(x)$$

Local SU(N) invariance

$$\psi(x) \to U(x)\,\psi(x) = e^{i\alpha^a(x)T^a}\,\psi(x)$$
$$A_\mu(x) \to U(x)A_\mu(x)U(x)^\dagger - \frac{i}{g}(\partial_\mu U(x)^\dagger)$$

Exercise: show invariance of (1)

SU(N)

$$\mathscr{L} = \overline{\psi}_i(x) \, \gamma^\mu (i\partial_\mu - gA^a_\mu(x)T^a_{ij} - m) \, \psi_j$$

Example: Coulomb potential

(

quark-quark potential is only attractive for color neutral combinations *

$$u_i \frac{-i\eta_{\mu
u}}{k^2} \bar{v}_k \gamma^{
u} v_l$$

 \overline{d}

* QCD is strongly coupled at low energies, perturbative calculations are not reliable

(

quark-quark potential is only attractive for color neutral combinations *

$$u_i \frac{-i\eta_{\mu
u}}{k^2} \bar{v}_k \gamma^{
u} v_l$$

 \overline{d}

* QCD is strongly coupled at low energies, perturbative calculations are not reliable

quark-quark potential is only attractive for color neutral combinations *

$$\iota_i \frac{-i\eta_{\mu\nu}}{k^2} \bar{v}_k \gamma^\nu v_l$$

* QCD is strongly coupled at low energies, perturbative calculations are not reliable

(color octet) $u(\mathbf{r})\overline{d}(\mathbf{g}) \to u(\mathbf{r})\overline{d}(\mathbf{g})$

(color singlet) $u(\mathbf{r})\overline{d}(\mathbf{r}) \rightarrow u(\mathbf{b})\overline{d}(\mathbf{b})$

Kinetic term for SU(N) gauge boson

We can cannot recycle the Maxwell action. The Lagrangian would not be invariant under a local SU(N) transformation

$$A_{\mu}(x) \rightarrow U(x)A_{\mu}(x)U(x)^{\dagger} - \frac{i}{\rho}(\partial_{\mu}U(x))U(x)^{\dagger}$$

Field strength now contains a non-abelian contribution

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + ig[A_{\mu}, A_{\mu}]$$

It transforms homogeneously

N

$$F_{\mu\nu} \to U(x) F_{\mu\nu} U^{-1}(x)$$

and we can build an invariant Lagrangian

$$\mathscr{L} = -\frac{1}{4} \operatorname{Tr}(F_{\mu\nu}F^{\mu\nu}) = \dots + gAAA + g^2AAAA$$

ote: Gluons carry colour charge and do interact

 A_{ν}

0

with themselves.

Kinetic term for SU(N) gauge boson

We can cannot recycle the Maxwell action. The Lagrangian would not be invariant under a local SU(N) transformation

0

$$A_{\mu}(x) \rightarrow U(x)A_{\mu}(x)U(x)^{\dagger} - \frac{i}{\rho}(\partial_{\mu}U(x))U(x)^{\dagger}$$

Field strength now contains a non-abelian contribution

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + ig[A_{\mu}, A_{\mu}]$$

It transforms homogeneously

$$F_{\mu\nu} \to U(x) F_{\mu\nu} U^{-1}(x)$$

and we can build an invariant Lagrangian

$$\mathscr{L} = -\frac{1}{4} \operatorname{Tr}(\mathbf{F}_{\mu\nu}\mathbf{F}^{\mu\nu}) = \dots +$$

Note: Gluons carry colour charge

How can we discover the Lagrangian of the universe?

We need experiments! -> next lecture