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Very little formalism at first, will introduce some during the next lectures
Overview



We are expressing every dimensionful quantity in 
terms of energy (units of electronVolt = eV)

reminder:    ℏ = c = 1
Natural units

Conversion Table for natural and MKSA Units

Natural units defined by: ! = c = 1 (and 4πε0 = 1). Remaining unit is choosen to be
Energy (eV).

Quantity Symbol natural units MKSA

Length ℓ 1/eV 1.9732705 ·10−7 m ≈ 0.2 µm
Mass m 1 eV 1.7826627 ·10−36 kg

Time t 1/eV 6.5821220 ·10−16 s ≈ .66 fs
Frequency ν 1 eV 1.5192669 ·1015 Hz

Speed v 1 2.99792458 ·108 m/s
Momentum p 1 eV 5.3442883 ·10−28 kg·m/s
Force F 1 eV2 8.1194003 ·10−13 N

Power P 1 eV2 0.24341350 mW
Energy E 1 eV 1.6021773 ·10−19 J

Charge q 1 1.8755468 ·10−18 C
Charge density ρ 1 eV3 244.10013 C/m3

Current I 1 eV 2.8494561 mA
Current density J 1 eV3 7.3179379 ·1010 A/m2

Electric field E 1 eV2 432.90844 V/mm

Potential Φ 1 eV 85.424546 mV
Polarization P 1 eV2 4.8167560 ·10−5 C/m2

Conductivity σ 1 eV 1.6904124 ·105 S/m
Resistance R 1 29.979246 Ω
Capacitance C 1/eV 2.1955596 ·10−17 F

Magnetic flux φ 1 5.6227478 ·10−17 Wb
Magnetic induction B 1 eV2 1.4440271 mT

Magnetization M 1 eV2 1.4440271 ·104 A/m
Inductance L 1/eV 1.9732705 ·10−14 H

some constants:
Planck’s quantum ! 1 1.05457266 ·10−34 J·s

h = 2π! h 2π 6.6260755 ·10−34 J·s
Charge of electron e 8.5424546·10−2 1.60217733 ·10−19 C

Bohr radius, !2/me2 a0 2.6817268·10−4/eV 5.29177249 ·10−11 m
Energy 1 electron Volt eV 1 eV 1.60217733 ·10−19 J
Rydberg energy, e2/2a0 ERyd 13.605698 eV 2.1798741 ·10−18 J

Hartree energy, e2/a0 Eh 27.211396 eV 4.3597482 ·10−18 J
Speed of light c 1 2.99792458 ·108 m/s

Permeability of vacuum µ0 4π 4π · 10−7 H/m
Permittivity of vacuum ε0 1/4π 8.854187817 ·10−12 F/m

Bohr magneton µB 8.3585815·10−8/eV 9.2740154 ·10−24 J/T
Mass of electron me 510.99906 keV 9.1093897 ·10−31 kg
Mass of proton mp 938.27234 MeV 1.6726231 ·10−27 kg

Mass of neutron mn 939.56563 MeV 1.6749286 ·10−27 kg
Gravitation constant G 6.70711·10−57/eV2 6.67259 ·10−11 N·m2/kg2

1

Energy Mass Length Time

1 GeV

Energy ~ Mass ~ 1/Length ~ 1/Time

1.8 ⋅ 10−27kg 0.2 ⋅ 10−15m 6.6 ⋅ 10−25s

E = mc2e.g.
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rinos. The idea of the Dirac neutrino works in the sense that
we can generate neutrino masses via the Higgs mechanism
(figure 2b). However, it also suggests that neutrinos should have
similar masses to the other particles in the Standard Model. To
avoid this problem, we have to make the strength of neutrino
interactions with the Higgs boson at least 1012 times weaker
than that of the top quark. Few physicists accept such a tiny
number as a fundamental constant of nature.

An alternative way to make right-handed neutrinos ex-
tremely weakly interacting was proposed in 1998 by Nima
Arkani-Hamed at the Stanford Linear Accelerator Center,
Savas Dimopoulous of Stanford University, Gia Dvali of the
International Centre for Theoretical Physics in Trieste and
John March-Russell of CERN. They exploited an idea from
superstring theory in which the three dimensions of space
with which we are familiar are embedded in 10- or 11-dimen-
sional space–time. Like us, all the particles of the Standard
Model – electrons, quarks, left-handed neutrinos, the Higgs
boson and so on – are stuck on a three-dimensional “sheet”
called a three-brane.

One special property of right-handed neutrinos is that they
do not feel the electromagnetic force, or the strong and weak
forces. Arkani-Hamed and collaborators argued that right-
handed neutrinos are not trapped on the three-brane in the
same way that we are, rather they can move in the extra
dimensions. This mechanism explains why we have never
observed a right-handed neutrino and why their interactions
with other particles in the Standard Model are extremely
weak. The upshot of this approach is that neutrino masses
can be very small.

The second way to extend the Standard Model involves
particles that are called Majorana neutrinos. One advantage
of this approach is that we no longer have to invoke right-
handed neutrinos with extremely weak interactions. How-
ever, we do have to give up the fundamental distinction
between matter and antimatter. Although this sounds bizarre,
neutrinos and antineutrinos can be identical because they
have no electric charge.

Massive neutrinos sit naturally within this framework.
Recall the observer travelling at the speed of light who over-
takes a left-handed neutrino and sees a right-handed neut-
rino. Earlier we argued that the absence of right-handed
neutrinos means that neutrinos are massless. But if neutrinos
and antineutrinos are the same particle, then we can argue
that the observer really sees a right-handed antineutrino and
that the massive-neutrino hypothesis is therefore sound.

So how is neutrino mass generated? In this scheme, it is
possible for right-handed neutrinos to have a mass of their
own without relying on the Higgs boson. Unlike other quarks
and leptons, the mass of the right-handed neutrino, M, is not
tied to the mass scale of the Higgs boson. Rather, it can be
much heavier than other particles.

When a left-handed neutrino collides with the Higgs boson,
it acquires a mass, m, which is comparable to the mass of
other quarks and leptons. At the same time it transforms into
a right-handed neutrino, which is much heavier than energy
conservation would normally allow (figure 2c). However, the
Heisenberg uncertainty principle allows this state to exist for a
short time interval, ∆t, given by ∆t ~ h!/Mc2, after which the
particle transforms back into a left-handed neutrino with
mass m by colliding with the Higgs boson again. Put simply,
we can think of the neutrino as having an average mass of
m2/M over time.

This so-called seesaw mechanism can naturally give rise to
light neutrinos with normal-strength interactions. Normally
we would worry that neutrinos with a mass, m, that is similar
to the masses of quarks and leptons would be too heavy. How-
ever, we can still obtain light neutrinos if M is much larger
than the typical masses of quarks and leptons. Right-handed
neutrinos must therefore be very heavy, as predicted by grand-
unified theories that aim to combine electromagnetism with
the strong and weak interactions.

Current experiments suggest that these forces were unified
when the universe was about 10–32 m across. Due to the un-
certainty principle, the particles that were produced in such
small confines had a high momentum and thus a large mass.
It turns out that the distance scale of unification gives right-
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Why do we exist?
Abandoning the fundamental distinction between matter and
antimatter means that the two states can convert to each
other. It may also solve one of the biggest mysteries of our uni-
verse: where has all the antimatter gone? After the Big Bang,
the universe was filled with equal amounts of matter and anti-
matter, which annihilated as the universe cooled. However,
roughly one in every 10 billion particles of matter survived
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can exist?

With Majorana neutrinos it is possible to explain what
caused the excess matter. The hot Big Bang produced heavy
right-handed neutrinos that eventually decayed into their
lighter left-handed counterparts. As the universe cooled, there
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Being an antiparticle in its own right, these Majorana neut-
rinos decayed into left-handed neutrinos or right-handed
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further decays into heavy quarks. Even slight differences in the
probabilities of the decays into matter and antimatter would
have left the universe with an excess of matter.

3 Fermions weigh in

ν2ν1 ν3

d s b

u c t

e µ τ

meVµeV eV keV MeV GeV TeV

fermion masses

A comparison of the masses of all the fundamental fermions, particles with
spin h!/2. Other than the neutrino, the lightest fermion is the electron, with a
mass of 0.5 MeV c–2. Neutrino-oscillation experiments do not measure the
mass of neutrinos directly, rather the mass difference between the different
types of neutrino. But by assuming that neutrino masses are similar to this
mass difference, we can place upper limits on the mass of a few hundred
millielectron-volts.

h

massless: photon, gluon, (graviton) W
Z
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Standard Model

top quark, Tevatron Fermilab 1995



Standard Model

top quark, Tevatron Fermilab 1995
= subatomic Taxonomy?



Standard Model is not about 
particles!



Principles !
What are the rules at short and long distances?

Quantum Mechanics, Lorentz-Invariance, Locality, Unitarity, 
Global Symmetries, Gauge Redundancies, Conservation 

Laws, Spontaneous Symmetry Breaking…

Standard Model is not about 
particles!



SM = QM + relativity + symmetry + low energy expansion   }

QFT

}
accidental symmetries U(1)B × U(1)L

}
SU(3)c × SU(2)W × U(1)Y

+ Higgs mechanism



Weltformel



Quantum Field Theory
In quantum field theory the field is the fundamental 
object from which all properties of matter and 
forces emerge.



Fields



Isaac Newton (1642-1726)



Action at a distance?



19th century: matter consists of particles, forces are mediated by space-filling 
fields 

20th century: Everything is a field.



More precisely: everything is a quantum field

Tim’s 
QFT 
book
















• Particles is what we see. Fields are what reality  
is made of.



Minimal energy to get field vibrating 
= mass of particle

Couplings between different fields 
= particle interactions



(global) symmetries = 
conservation laws

Emmy Noether “Invariante Variationsprobleme” (1918) 



(global) symmetries = 
conservation laws

Emmy Noether “Invariante Variationsprobleme” (1918) 

e−γ → e−γ

but not

e−γ → e+γ

(charge conservation)

ψ(x) → eiα ψ(x)

e- e-



local symmetries = predict 
form of interactions

The SM is a 
 

gauge theory 
SU(3)c × SU(2)W × U(1)Y

  required for consistency of massless spin 1:   
QM + relativity impose this structure



local symmetries = predict 
form of interactions

The SM is a 
 

gauge theory 
SU(3)c × SU(2)W × U(1)Y

  required for consistency of massless spin 1:   
QM + relativity impose this structure

ℒ = ψ(x) γμ(i∂μ − m) ψ(x)

ℒ = ψ(x) γμ(i∂μ−eAμ(x)−m) ψ(x)

ψ(x) → eiα(x) ψ(x)

= ieγμ

U(1) example



Gravitational

Strong

Weak

Electromagnetic

local
Symmetry Particle

Four fundamental forces

SU(2)xU(1)

W,Z

photon

gluonSU(3)
color

space-time
diffeomorphism 
local SO(1,3)

spin=1

spin=2graviton

}



Phases of the Fundamental Interactions

M = 0

M 6= 0 Screened

Confined

Coulomb
phase Electro-

magnetism

Gravity

Strong

Weak F / e�Mr

✓
1
r2

+
M

r

◆
,

F / 1
r2{

Mass of force 
carrier 



Lagrangians

L = m
2

·x2 − 1
2 mω2x2

• Lagrangians reveal symmetries by remaining invariant under 
transformations 

• At low energies (small oscillations), accidental symmetries can 
appear

L = m
2

·θ2 − mg(1 − cos θ) ≈ m
2

·θ2 − 1
2 mg(θ2 − 1

12 θ4 + …)

https://www.physicswithelliot.com/pendulum-graph

https://www.physicswithelliot.com/pendulum-graph


Massive spin 1/2 particle:      (4 component Dirac spinor)ψ(x)
Matter (1st draft): relativistic field equation
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Fermion Lagrangian
 4-component Dirac spinor 

describes a spin-1/2 particle 
when quantised

 

L =  †�0 (i�µ@µ �m) 

• Equation of motion:
0 = �L =  †�0 (i�µ@µ �m) � Dirac equation (i�µ@µ �m) = 0

 are four 4x4 matrices�µ (µ = 0, 1, 2, 3)

• Lorentz invariance: (see technical slides at the end of the lecture)

 (x) !  0(x0) =

✓
14 +

1

8
!µ⌫ [�

µ, �⌫ ]

◆
 (x)

xµ ! x0µ = (�µ⌫ + !µ
⌫)x

⌫ with !µ⌫ + !⌫µ = 0

• Dirac algebra:
{�µ, �⌫} = 2⌘µ⌫

For this equation to be consistent with Einstein equation (m2=E2-p2) or

Klein-Gordon eq., the 𝛾μ matrices have to obey the Clifford algebra

• Dirac matrices: One particular realisation of the Dirac algebra (not unique)

�0 =

0

BB@

1
1

�1
�1

1

CCA , �1 =

0

BB@

1
1

�1
�1

1

CCA , �2 =

0

BB@

�i
i

i
�i

1

CCA , �3 =

0

BB@

1
�1

�1
1

1

CCA
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Dirac equation: 0 = δℒ = δψ†γ0 (iγμ∂μ − m) ψ

Predicts anti-particle exist: positron (discovered by Anderson 1932)

from Lagrangian



• Lagrangians are invariant (equation of 
motions are covariant)


• We impose global space-time symmetries, 
like Lorentz and space-time translation 
invariance


• We build the most general Lagrangian that 
is allowed by local symmetries (gauge 
symmetries)


• We read of the interactions and translate 
them to Feynman diagrams, with this we 
can calculate observables like cross-
sections, decay widths 

Model building the SM
How does an electron couple to photons ?

ℒ = ψ(x) γμ(i∂μ − m) ψ(x)
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Kinetic term for the photon
We can recycle the Maxwell action, i.e. classical 
electromagnetism. It can be quantized to give us quantum 
electrodynamics. The relativistic form of the Lagrangian is 

CG SSLP2023 15

Gauge Field Kinetic Term
To build the QED Lagrangian, we had to introduce a new field Aµ 

it is propagating degree of freedom we need to add a kinetic term in the Lagrangian.

Fµ⌫ = @µA⌫ � @⌫AµTensor field strength: 

• Lorentz transformations:
xµ ! x0µ = ⇤µ

⌫x
⌫

Aµ ! A0µ = ⇤µ
⌫A

⌫ Fµ⌫ ! F 0µ⌫ = ⇤µ
⇢⇤

µ
�F

⇢�

• U(1) gauge transformations: Aµ ! Aµ � 1

e
@µ✓ Fµ⌫ ! Fµ⌫

Lkin = �1

4
Fµ⌫F

µ⌫ invariant under 
• Lorentz transformation 

• local phase rotation

 equations of motion ↔ Maxwell equations of electromagnetism 

Remark: no interaction among photons (photons only interact with electrically charged fields) 

A0=EM scalar potential, Ai=1,2,3 = EM vector potential

tunnel. Compute the center-of-mass energy avaialble?

c) Calculate the center-of-mass energy in the frame where the two beams are colliding head-on

like at the LHC.

(6 Points)

Exercise 4: Rapidity and pseudo-rapidity

We define the rapidity, y, and the pseudo-rapidity, ⌘, of a particle , produced in a collider:

y =
1

2
log

E+ pL

E� pL

, ⌘ = � log tan✓/2,

where E is the energy of the particle, pL its momentum along the beam axis, and ✓ the angle

of the particle with the beam axis.

a) Show that in the limit m! 0, ⌘! y.

b) Show that the rapidity is bounded by: |y|  log
2E

m
.

c) Show that the di↵erence of rapidities of two particles is invariant under Lorentz boosts along

the beam axis.

(6 Points)

Exercise 5: EM action for photons

The photon field strength is constructed from the potential 4-vector A
µ = (�, ~A) as

Fµ⌫ = @µA⌫�@⌫Aµ.

We use a mostly minus metric: ⌘µ⌫ = diag(1,�1,�1,�1).

a) From the classical EM definition of the electric and magnetic fields from the scalar and

vector potential

~E = �~r�� 1

c

@~A

@t
, ~B = ~r^ ~A

show that

~Ei = �Fi0
~Bi = �

1

2
✏i jkF jk,

where ✏i jk is the totally antisymmetric 3-tensor normalised to ✏123 = 1. Conclude that

F
µ⌫ =

0
BBBBBBBBBBBBBBB@

0 �~Ex �~Ey �~Ez

~Ex 0 �~Bz
~By

~Ey
~Bz 0 �~Bx

~Ez �~By
~Bx 0

1
CCCCCCCCCCCCCCCA
.

b) Derive the expression of the gauge field Lagrangian density, � 1

4⇡Fµ⌫F
µ⌫

, in terms of the

electric and magnetic fields and recognise the usual expression of the energy density stored in

the electromagnetic fields.

c) It is helpful to introduce the dual field strength

F̃
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1

2
✏µ⌫⇢�F⇢�

2

tunnel. Compute the center-of-mass energy avaialble?

c) Calculate the center-of-mass energy in the frame where the two beams are colliding head-on

like at the LHC.

(6 Points)

Exercise 4: Rapidity and pseudo-rapidity

We define the rapidity, y, and the pseudo-rapidity, ⌘, of a particle , produced in a collider:

y =
1

2
log

E+ pL

E� pL

, ⌘ = � log tan✓/2,

where E is the energy of the particle, pL its momentum along the beam axis, and ✓ the angle

of the particle with the beam axis.

a) Show that in the limit m! 0, ⌘! y.

b) Show that the rapidity is bounded by: |y|  log
2E

m
.

c) Show that the di↵erence of rapidities of two particles is invariant under Lorentz boosts along

the beam axis.

(6 Points)

Exercise 5: EM action for photons

The photon field strength is constructed from the potential 4-vector A
µ = (�, ~A) as

Fµ⌫ = @µA⌫�@⌫Aµ.

We use a mostly minus metric: ⌘µ⌫ = diag(1,�1,�1,�1).

a) From the classical EM definition of the electric and magnetic fields from the scalar and

vector potential

~E = �~r�� 1

c

@~A

@t
, ~B = ~r^ ~A

show that

~Ei = �Fi0
~Bi = �

1

2
✏i jkF jk,

where ✏i jk is the totally antisymmetric 3-tensor normalised to ✏123 = 1. Conclude that

F
µ⌫ =

0
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b) Derive the expression of the gauge field Lagrangian density, � 1

4⇡Fµ⌫F
µ⌫

, in terms of the

electric and magnetic fields and recognise the usual expression of the energy density stored in

the electromagnetic fields.

c) It is helpful to introduce the dual field strength

F̃
µ⌫ =

1

2
✏µ⌫⇢�F⇢�

2

@µF
µ⌫ = J⌫
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Gauge Field Kinetic Term
To build the QED Lagrangian, we had to introduce a new field Aµ 

it is propagating degree of freedom we need to add a kinetic term in the Lagrangian.

Fµ⌫ = @µA⌫ � @⌫AµTensor field strength: 

• Lorentz transformations:
xµ ! x0µ = ⇤µ

⌫x
⌫

Aµ ! A0µ = ⇤µ
⌫A

⌫ Fµ⌫ ! F 0µ⌫ = ⇤µ
⇢⇤

µ
�F

⇢�

• U(1) gauge transformations: Aµ ! Aµ � 1

e
@µ✓ Fµ⌫ ! Fµ⌫

Lkin = �1

4
Fµ⌫F

µ⌫ invariant under 
• Lorentz transformation 

• local phase rotation

 equations of motion ↔ Maxwell equations of electromagnetism 

Remark: no interaction among photons (photons only interact with electrically charged fields) 

A0=EM scalar potential, Ai=1,2,3 = EM vector potential

tunnel. Compute the center-of-mass energy avaialble?

c) Calculate the center-of-mass energy in the frame where the two beams are colliding head-on

like at the LHC.

(6 Points)

Exercise 4: Rapidity and pseudo-rapidity

We define the rapidity, y, and the pseudo-rapidity, ⌘, of a particle , produced in a collider:

y =
1

2
log

E+ pL

E� pL

, ⌘ = � log tan✓/2,

where E is the energy of the particle, pL its momentum along the beam axis, and ✓ the angle

of the particle with the beam axis.

a) Show that in the limit m! 0, ⌘! y.

b) Show that the rapidity is bounded by: |y|  log
2E

m
.

c) Show that the di↵erence of rapidities of two particles is invariant under Lorentz boosts along

the beam axis.

(6 Points)

Exercise 5: EM action for photons

The photon field strength is constructed from the potential 4-vector A
µ = (�, ~A) as

Fµ⌫ = @µA⌫�@⌫Aµ.

We use a mostly minus metric: ⌘µ⌫ = diag(1,�1,�1,�1).

a) From the classical EM definition of the electric and magnetic fields from the scalar and

vector potential

~E = �~r�� 1

c

@~A

@t
, ~B = ~r^ ~A

show that

~Ei = �Fi0
~Bi = �

1

2
✏i jkF jk,

where ✏i jk is the totally antisymmetric 3-tensor normalised to ✏123 = 1. Conclude that

F
µ⌫ =

0
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b) Derive the expression of the gauge field Lagrangian density, � 1

4⇡Fµ⌫F
µ⌫

, in terms of the

electric and magnetic fields and recognise the usual expression of the energy density stored in

the electromagnetic fields.

c) It is helpful to introduce the dual field strength

F̃
µ⌫ =

1

2
✏µ⌫⇢�F⇢�

2

tunnel. Compute the center-of-mass energy avaialble?

c) Calculate the center-of-mass energy in the frame where the two beams are colliding head-on

like at the LHC.

(6 Points)

Exercise 4: Rapidity and pseudo-rapidity

We define the rapidity, y, and the pseudo-rapidity, ⌘, of a particle , produced in a collider:

y =
1

2
log

E+ pL

E� pL

, ⌘ = � log tan✓/2,

where E is the energy of the particle, pL its momentum along the beam axis, and ✓ the angle

of the particle with the beam axis.

a) Show that in the limit m! 0, ⌘! y.

b) Show that the rapidity is bounded by: |y|  log
2E

m
.

c) Show that the di↵erence of rapidities of two particles is invariant under Lorentz boosts along

the beam axis.

(6 Points)

Exercise 5: EM action for photons

The photon field strength is constructed from the potential 4-vector A
µ = (�, ~A) as

Fµ⌫ = @µA⌫�@⌫Aµ.

We use a mostly minus metric: ⌘µ⌫ = diag(1,�1,�1,�1).

a) From the classical EM definition of the electric and magnetic fields from the scalar and

vector potential

~E = �~r�� 1

c

@~A

@t
, ~B = ~r^ ~A

show that

~Ei = �Fi0
~Bi = �

1

2
✏i jkF jk,

where ✏i jk is the totally antisymmetric 3-tensor normalised to ✏123 = 1. Conclude that

F
µ⌫ =

0
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b) Derive the expression of the gauge field Lagrangian density, � 1

4⇡Fµ⌫F
µ⌫

, in terms of the

electric and magnetic fields and recognise the usual expression of the energy density stored in

the electromagnetic fields.

c) It is helpful to introduce the dual field strength

F̃
µ⌫ =

1

2
✏µ⌫⇢�F⇢�

2

@µF
µ⌫ = J⌫

Field strength tensor
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Gauge Field Kinetic Term
To build the QED Lagrangian, we had to introduce a new field Aµ 

it is propagating degree of freedom we need to add a kinetic term in the Lagrangian.

Fµ⌫ = @µA⌫ � @⌫AµTensor field strength: 

• Lorentz transformations:
xµ ! x0µ = ⇤µ

⌫x
⌫

Aµ ! A0µ = ⇤µ
⌫A

⌫ Fµ⌫ ! F 0µ⌫ = ⇤µ
⇢⇤

µ
�F

⇢�

• U(1) gauge transformations: Aµ ! Aµ � 1

e
@µ✓ Fµ⌫ ! Fµ⌫

Lkin = �1

4
Fµ⌫F

µ⌫ invariant under 
• Lorentz transformation 

• local phase rotation

 equations of motion ↔ Maxwell equations of electromagnetism 

Remark: no interaction among photons (photons only interact with electrically charged fields) 

A0=EM scalar potential, Ai=1,2,3 = EM vector potential

tunnel. Compute the center-of-mass energy avaialble?

c) Calculate the center-of-mass energy in the frame where the two beams are colliding head-on

like at the LHC.

(6 Points)

Exercise 4: Rapidity and pseudo-rapidity

We define the rapidity, y, and the pseudo-rapidity, ⌘, of a particle , produced in a collider:

y =
1

2
log

E+ pL

E� pL

, ⌘ = � log tan✓/2,

where E is the energy of the particle, pL its momentum along the beam axis, and ✓ the angle

of the particle with the beam axis.

a) Show that in the limit m! 0, ⌘! y.

b) Show that the rapidity is bounded by: |y|  log
2E

m
.

c) Show that the di↵erence of rapidities of two particles is invariant under Lorentz boosts along

the beam axis.

(6 Points)

Exercise 5: EM action for photons

The photon field strength is constructed from the potential 4-vector A
µ = (�, ~A) as

Fµ⌫ = @µA⌫�@⌫Aµ.

We use a mostly minus metric: ⌘µ⌫ = diag(1,�1,�1,�1).

a) From the classical EM definition of the electric and magnetic fields from the scalar and

vector potential

~E = �~r�� 1

c

@~A

@t
, ~B = ~r^ ~A

show that

~Ei = �Fi0
~Bi = �

1

2
✏i jkF jk,

where ✏i jk is the totally antisymmetric 3-tensor normalised to ✏123 = 1. Conclude that

F
µ⌫ =

0
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b) Derive the expression of the gauge field Lagrangian density, � 1

4⇡Fµ⌫F
µ⌫

, in terms of the

electric and magnetic fields and recognise the usual expression of the energy density stored in

the electromagnetic fields.

c) It is helpful to introduce the dual field strength

F̃
µ⌫ =

1

2
✏µ⌫⇢�F⇢�

2

tunnel. Compute the center-of-mass energy avaialble?

c) Calculate the center-of-mass energy in the frame where the two beams are colliding head-on

like at the LHC.

(6 Points)

Exercise 4: Rapidity and pseudo-rapidity

We define the rapidity, y, and the pseudo-rapidity, ⌘, of a particle , produced in a collider:

y =
1

2
log

E+ pL

E� pL

, ⌘ = � log tan✓/2,

where E is the energy of the particle, pL its momentum along the beam axis, and ✓ the angle

of the particle with the beam axis.

a) Show that in the limit m! 0, ⌘! y.

b) Show that the rapidity is bounded by: |y|  log
2E

m
.

c) Show that the di↵erence of rapidities of two particles is invariant under Lorentz boosts along

the beam axis.

(6 Points)

Exercise 5: EM action for photons

The photon field strength is constructed from the potential 4-vector A
µ = (�, ~A) as

Fµ⌫ = @µA⌫�@⌫Aµ.

We use a mostly minus metric: ⌘µ⌫ = diag(1,�1,�1,�1).

a) From the classical EM definition of the electric and magnetic fields from the scalar and

vector potential

~E = �~r�� 1

c

@~A

@t
, ~B = ~r^ ~A

show that

~Ei = �Fi0
~Bi = �

1

2
✏i jkF jk,

where ✏i jk is the totally antisymmetric 3-tensor normalised to ✏123 = 1. Conclude that

F
µ⌫ =

0
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b) Derive the expression of the gauge field Lagrangian density, � 1

4⇡Fµ⌫F
µ⌫

, in terms of the

electric and magnetic fields and recognise the usual expression of the energy density stored in

the electromagnetic fields.

c) It is helpful to introduce the dual field strength

F̃
µ⌫ =

1

2
✏µ⌫⇢�F⇢�

2

@µF
µ⌫ = J⌫

Lagrangian invariant:

equation of motion:

Aμ(x) → Aμ(x) − 1
e

∂μα(x)

Note: Photons do not carry charge and do not interact with themselves.



Kinetic term for the photon
We can recycle the Maxwell action, i.e. classical 
electromagnetism. It can be quantized to give us quantum 
electrodynamics. The relativistic form of the Lagrangian is 

CG SSLP2023 15

Gauge Field Kinetic Term
To build the QED Lagrangian, we had to introduce a new field Aµ 

it is propagating degree of freedom we need to add a kinetic term in the Lagrangian.

Fµ⌫ = @µA⌫ � @⌫AµTensor field strength: 

• Lorentz transformations:
xµ ! x0µ = ⇤µ

⌫x
⌫

Aµ ! A0µ = ⇤µ
⌫A

⌫ Fµ⌫ ! F 0µ⌫ = ⇤µ
⇢⇤

µ
�F

⇢�

• U(1) gauge transformations: Aµ ! Aµ � 1

e
@µ✓ Fµ⌫ ! Fµ⌫

Lkin = �1

4
Fµ⌫F

µ⌫ invariant under 
• Lorentz transformation 

• local phase rotation

 equations of motion ↔ Maxwell equations of electromagnetism 

Remark: no interaction among photons (photons only interact with electrically charged fields) 

A0=EM scalar potential, Ai=1,2,3 = EM vector potential

tunnel. Compute the center-of-mass energy avaialble?

c) Calculate the center-of-mass energy in the frame where the two beams are colliding head-on

like at the LHC.

(6 Points)

Exercise 4: Rapidity and pseudo-rapidity

We define the rapidity, y, and the pseudo-rapidity, ⌘, of a particle , produced in a collider:

y =
1

2
log

E+ pL

E� pL

, ⌘ = � log tan✓/2,

where E is the energy of the particle, pL its momentum along the beam axis, and ✓ the angle

of the particle with the beam axis.

a) Show that in the limit m! 0, ⌘! y.

b) Show that the rapidity is bounded by: |y|  log
2E

m
.

c) Show that the di↵erence of rapidities of two particles is invariant under Lorentz boosts along

the beam axis.

(6 Points)

Exercise 5: EM action for photons

The photon field strength is constructed from the potential 4-vector A
µ = (�, ~A) as

Fµ⌫ = @µA⌫�@⌫Aµ.

We use a mostly minus metric: ⌘µ⌫ = diag(1,�1,�1,�1).

a) From the classical EM definition of the electric and magnetic fields from the scalar and

vector potential

~E = �~r�� 1

c

@~A

@t
, ~B = ~r^ ~A

show that

~Ei = �Fi0
~Bi = �

1

2
✏i jkF jk,

where ✏i jk is the totally antisymmetric 3-tensor normalised to ✏123 = 1. Conclude that

F
µ⌫ =

0
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b) Derive the expression of the gauge field Lagrangian density, � 1

4⇡Fµ⌫F
µ⌫

, in terms of the

electric and magnetic fields and recognise the usual expression of the energy density stored in

the electromagnetic fields.

c) It is helpful to introduce the dual field strength

F̃
µ⌫ =

1

2
✏µ⌫⇢�F⇢�

2

tunnel. Compute the center-of-mass energy avaialble?

c) Calculate the center-of-mass energy in the frame where the two beams are colliding head-on

like at the LHC.

(6 Points)

Exercise 4: Rapidity and pseudo-rapidity

We define the rapidity, y, and the pseudo-rapidity, ⌘, of a particle , produced in a collider:

y =
1

2
log

E+ pL

E� pL

, ⌘ = � log tan✓/2,

where E is the energy of the particle, pL its momentum along the beam axis, and ✓ the angle

of the particle with the beam axis.

a) Show that in the limit m! 0, ⌘! y.

b) Show that the rapidity is bounded by: |y|  log
2E

m
.

c) Show that the di↵erence of rapidities of two particles is invariant under Lorentz boosts along

the beam axis.

(6 Points)

Exercise 5: EM action for photons

The photon field strength is constructed from the potential 4-vector A
µ = (�, ~A) as

Fµ⌫ = @µA⌫�@⌫Aµ.

We use a mostly minus metric: ⌘µ⌫ = diag(1,�1,�1,�1).

a) From the classical EM definition of the electric and magnetic fields from the scalar and

vector potential

~E = �~r�� 1

c

@~A

@t
, ~B = ~r^ ~A

show that

~Ei = �Fi0
~Bi = �

1

2
✏i jkF jk,

where ✏i jk is the totally antisymmetric 3-tensor normalised to ✏123 = 1. Conclude that

F
µ⌫ =

0
BBBBBBBBBBBBBBB@

0 �~Ex �~Ey �~Ez

~Ex 0 �~Bz
~By

~Ey
~Bz 0 �~Bx

~Ez �~By
~Bx 0

1
CCCCCCCCCCCCCCCA
.

b) Derive the expression of the gauge field Lagrangian density, � 1

4⇡Fµ⌫F
µ⌫

, in terms of the

electric and magnetic fields and recognise the usual expression of the energy density stored in

the electromagnetic fields.

c) It is helpful to introduce the dual field strength

F̃
µ⌫ =

1

2
✏µ⌫⇢�F⇢�

2

@µF
µ⌫ = J⌫
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Gauge Field Kinetic Term
To build the QED Lagrangian, we had to introduce a new field Aµ 

it is propagating degree of freedom we need to add a kinetic term in the Lagrangian.

Fµ⌫ = @µA⌫ � @⌫AµTensor field strength: 

• Lorentz transformations:
xµ ! x0µ = ⇤µ

⌫x
⌫

Aµ ! A0µ = ⇤µ
⌫A

⌫ Fµ⌫ ! F 0µ⌫ = ⇤µ
⇢⇤

µ
�F

⇢�

• U(1) gauge transformations: Aµ ! Aµ � 1

e
@µ✓ Fµ⌫ ! Fµ⌫

Lkin = �1

4
Fµ⌫F

µ⌫ invariant under 
• Lorentz transformation 

• local phase rotation

 equations of motion ↔ Maxwell equations of electromagnetism 

Remark: no interaction among photons (photons only interact with electrically charged fields) 

A0=EM scalar potential, Ai=1,2,3 = EM vector potential

tunnel. Compute the center-of-mass energy avaialble?

c) Calculate the center-of-mass energy in the frame where the two beams are colliding head-on

like at the LHC.

(6 Points)

Exercise 4: Rapidity and pseudo-rapidity

We define the rapidity, y, and the pseudo-rapidity, ⌘, of a particle , produced in a collider:

y =
1

2
log

E+ pL

E� pL

, ⌘ = � log tan✓/2,

where E is the energy of the particle, pL its momentum along the beam axis, and ✓ the angle

of the particle with the beam axis.

a) Show that in the limit m! 0, ⌘! y.

b) Show that the rapidity is bounded by: |y|  log
2E

m
.

c) Show that the di↵erence of rapidities of two particles is invariant under Lorentz boosts along

the beam axis.

(6 Points)

Exercise 5: EM action for photons

The photon field strength is constructed from the potential 4-vector A
µ = (�, ~A) as

Fµ⌫ = @µA⌫�@⌫Aµ.

We use a mostly minus metric: ⌘µ⌫ = diag(1,�1,�1,�1).

a) From the classical EM definition of the electric and magnetic fields from the scalar and

vector potential

~E = �~r�� 1

c

@~A

@t
, ~B = ~r^ ~A

show that

~Ei = �Fi0
~Bi = �

1

2
✏i jkF jk,

where ✏i jk is the totally antisymmetric 3-tensor normalised to ✏123 = 1. Conclude that

F
µ⌫ =

0
BBBBBBBBBBBBBBB@

0 �~Ex �~Ey �~Ez

~Ex 0 �~Bz
~By

~Ey
~Bz 0 �~Bx

~Ez �~By
~Bx 0

1
CCCCCCCCCCCCCCCA
.

b) Derive the expression of the gauge field Lagrangian density, � 1

4⇡Fµ⌫F
µ⌫

, in terms of the

electric and magnetic fields and recognise the usual expression of the energy density stored in

the electromagnetic fields.

c) It is helpful to introduce the dual field strength

F̃
µ⌫ =

1

2
✏µ⌫⇢�F⇢�

2

tunnel. Compute the center-of-mass energy avaialble?

c) Calculate the center-of-mass energy in the frame where the two beams are colliding head-on

like at the LHC.

(6 Points)

Exercise 4: Rapidity and pseudo-rapidity

We define the rapidity, y, and the pseudo-rapidity, ⌘, of a particle , produced in a collider:

y =
1

2
log

E+ pL

E� pL

, ⌘ = � log tan✓/2,

where E is the energy of the particle, pL its momentum along the beam axis, and ✓ the angle

of the particle with the beam axis.

a) Show that in the limit m! 0, ⌘! y.

b) Show that the rapidity is bounded by: |y|  log
2E

m
.

c) Show that the di↵erence of rapidities of two particles is invariant under Lorentz boosts along

the beam axis.

(6 Points)

Exercise 5: EM action for photons

The photon field strength is constructed from the potential 4-vector A
µ = (�, ~A) as

Fµ⌫ = @µA⌫�@⌫Aµ.

We use a mostly minus metric: ⌘µ⌫ = diag(1,�1,�1,�1).

a) From the classical EM definition of the electric and magnetic fields from the scalar and

vector potential

~E = �~r�� 1

c

@~A

@t
, ~B = ~r^ ~A

show that

~Ei = �Fi0
~Bi = �

1

2
✏i jkF jk,

where ✏i jk is the totally antisymmetric 3-tensor normalised to ✏123 = 1. Conclude that

F
µ⌫ =

0
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b) Derive the expression of the gauge field Lagrangian density, � 1

4⇡Fµ⌫F
µ⌫

, in terms of the

electric and magnetic fields and recognise the usual expression of the energy density stored in

the electromagnetic fields.

c) It is helpful to introduce the dual field strength

F̃
µ⌫ =

1

2
✏µ⌫⇢�F⇢�

2

@µF
µ⌫ = J⌫

Field strength tensor
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Gauge Field Kinetic Term
To build the QED Lagrangian, we had to introduce a new field Aµ 

it is propagating degree of freedom we need to add a kinetic term in the Lagrangian.

Fµ⌫ = @µA⌫ � @⌫AµTensor field strength: 

• Lorentz transformations:
xµ ! x0µ = ⇤µ

⌫x
⌫

Aµ ! A0µ = ⇤µ
⌫A

⌫ Fµ⌫ ! F 0µ⌫ = ⇤µ
⇢⇤

µ
�F

⇢�

• U(1) gauge transformations: Aµ ! Aµ � 1

e
@µ✓ Fµ⌫ ! Fµ⌫

Lkin = �1

4
Fµ⌫F

µ⌫ invariant under 
• Lorentz transformation 

• local phase rotation

 equations of motion ↔ Maxwell equations of electromagnetism 

Remark: no interaction among photons (photons only interact with electrically charged fields) 

A0=EM scalar potential, Ai=1,2,3 = EM vector potential

tunnel. Compute the center-of-mass energy avaialble?

c) Calculate the center-of-mass energy in the frame where the two beams are colliding head-on

like at the LHC.

(6 Points)

Exercise 4: Rapidity and pseudo-rapidity

We define the rapidity, y, and the pseudo-rapidity, ⌘, of a particle , produced in a collider:

y =
1

2
log

E+ pL

E� pL

, ⌘ = � log tan✓/2,

where E is the energy of the particle, pL its momentum along the beam axis, and ✓ the angle

of the particle with the beam axis.

a) Show that in the limit m! 0, ⌘! y.

b) Show that the rapidity is bounded by: |y|  log
2E

m
.

c) Show that the di↵erence of rapidities of two particles is invariant under Lorentz boosts along

the beam axis.

(6 Points)

Exercise 5: EM action for photons

The photon field strength is constructed from the potential 4-vector A
µ = (�, ~A) as

Fµ⌫ = @µA⌫�@⌫Aµ.

We use a mostly minus metric: ⌘µ⌫ = diag(1,�1,�1,�1).

a) From the classical EM definition of the electric and magnetic fields from the scalar and

vector potential

~E = �~r�� 1

c

@~A

@t
, ~B = ~r^ ~A

show that

~Ei = �Fi0
~Bi = �

1

2
✏i jkF jk,

where ✏i jk is the totally antisymmetric 3-tensor normalised to ✏123 = 1. Conclude that

F
µ⌫ =

0
BBBBBBBBBBBBBBB@

0 �~Ex �~Ey �~Ez

~Ex 0 �~Bz
~By

~Ey
~Bz 0 �~Bx

~Ez �~By
~Bx 0

1
CCCCCCCCCCCCCCCA
.

b) Derive the expression of the gauge field Lagrangian density, � 1

4⇡Fµ⌫F
µ⌫

, in terms of the

electric and magnetic fields and recognise the usual expression of the energy density stored in

the electromagnetic fields.

c) It is helpful to introduce the dual field strength

F̃
µ⌫ =

1

2
✏µ⌫⇢�F⇢�

2

tunnel. Compute the center-of-mass energy avaialble?

c) Calculate the center-of-mass energy in the frame where the two beams are colliding head-on

like at the LHC.

(6 Points)

Exercise 4: Rapidity and pseudo-rapidity

We define the rapidity, y, and the pseudo-rapidity, ⌘, of a particle , produced in a collider:

y =
1

2
log

E+ pL

E� pL

, ⌘ = � log tan✓/2,

where E is the energy of the particle, pL its momentum along the beam axis, and ✓ the angle

of the particle with the beam axis.

a) Show that in the limit m! 0, ⌘! y.

b) Show that the rapidity is bounded by: |y|  log
2E

m
.

c) Show that the di↵erence of rapidities of two particles is invariant under Lorentz boosts along

the beam axis.

(6 Points)
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We use a mostly minus metric: ⌘µ⌫ = diag(1,�1,�1,�1).

a) From the classical EM definition of the electric and magnetic fields from the scalar and

vector potential

~E = �~r�� 1

c

@~A
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, ~B = ~r^ ~A

show that

~Ei = �Fi0
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2
✏i jkF jk,

where ✏i jk is the totally antisymmetric 3-tensor normalised to ✏123 = 1. Conclude that

F
µ⌫ =

0
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b) Derive the expression of the gauge field Lagrangian density, � 1

4⇡Fµ⌫F
µ⌫

, in terms of the

electric and magnetic fields and recognise the usual expression of the energy density stored in

the electromagnetic fields.

c) It is helpful to introduce the dual field strength

F̃
µ⌫ =

1

2
✏µ⌫⇢�F⇢�

2

@µF
µ⌫ = J⌫

Lagrangian invariant:

equation of motion:

Aμ(x) → Aμ(x) − 1
e

∂μα(x)

Note: Photons do not carry charge and do not interact with themselves.



Now consider the presence of multiple massless spin 1 force carriers, such as the 8 gluons 
responsible for strong interactions or the 3 bosons involved in weak interactions. 


Goal: generalize Maxwell's equations to accommodate these multiple carriers!

Generalize the Maxwell theory from U(1) -> SU(N)

Non-abelian gauge symmetry

⃗ψ ⟶ U ⃗ψ

U : matrix of SU(N) “N dimensional special unitary group”

Instead of one Dirac field, consider N-dimensional vector of Dirac fields:  ⃗ψ

U†U = 1N×N, det(U) = 1

eiα ⟹ ei∑a αa Ta
ij



Now consider the presence of multiple massless spin 1 force carriers, such as the 8 gluons 
responsible for strong interactions or the 3 bosons involved in weak interactions. 


Goal: generalize Maxwell's equations to accommodate these multiple carriers!

Generalize the Maxwell theory from U(1) -> SU(N)

Non-abelian gauge symmetry

⃗ψ ⟶ U ⃗ψ

U : matrix of SU(N) “N dimensional special unitary group”

Instead of one Dirac field, consider N-dimensional vector of Dirac fields:  ⃗ψ

U†U = 1N×N, det(U) = 1
⃗ψ † ⃗ψ ⟶ ⃗ψ †U†U ⃗ψ = ⃗ψ † ⃗ψInvariants:

Using invariants as building blocks for our Lagrangian. ℒ = ⃗ψ †γ0 (iγμ∂μ − m) ⃗ψ

eiα ⟹ ei∑a αa Ta
ij



Example: SU(2) with U = exp(iαaσa), [σa, σb] = i2ϵabcσc

Pauli matrices

e.g. g1 = eiασ1 = ( cos(α) i sin(α)
i sin(α) cos(α) )

g3 = eiβσ3 = (eiβ 0
0 e−iβ)

Note: SU(N) is non-abelian because two elements do not generally commute.

Exercise: Show that g1g3 − g3g2 = [g1, g3] = ( 0 −2 sin α sin β
2 sin α sin β 0 ) ≠ 0



Generalize quantum electrodynamics 
Matter Lagrangian

ℒ = ψi(x) γμ(i∂μ − gAa
μ(x)Ta

ij−m) ψj(x)

ψ(x) → U(x) ψ(x) = eiαa(x)Ta ψ(x)

Aμ(x) → U(x)Aμ(x)U(x)† − i
g

(∂μU(x))U(x)† = ψi

ga

ψj

iTa
ijγμ

ℒ = ψ(x) γμ(i∂μ−eAμ(x)−m) ψ(x)

Local SU(N) invariance

U(1) SU(N)



Generalize quantum electrodynamics 
Matter Lagrangian

ℒ = ψi(x) γμ(i∂μ − gAa
μ(x)Ta

ij−m) ψj(x)

ψ(x) → U(x) ψ(x) = eiαa(x)Ta ψ(x)

Aμ(x) → U(x)Aμ(x)U(x)† − i
g

(∂μU(x))U(x)† = ψi

ga

ψj

iTa
ijγμ

ℒ = ψ(x) γμ(i∂μ−eAμ(x)−m) ψ(x)

Local SU(N) invariance

U(1) SU(N)

Exercise: show invariance of (1)

(1)
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Example 1:

ux?
i=1

red and d̄x?
k=2

anti-green:

T a

ji
T a

kl
=

1

2
(�jl�ik �

1

N
�ij�kl). (6.5)

So we get

T a

j1
T a

2l
= �

1

2N
�1j�2l. (6.6)

So the final state has red quark and anti-green also: color is con-

served.

Compare to e�p+-scattering:

e�

p+

= (�ie)2(ū�µu)
�i⌘µ⌫

k2
(v̄�⌫v). (6.7)

Eq. (6.6) shows that this color amplitude has the opposite sign: This

color combination leads to a repulsive interaction/potential.

Example 2:

u: red and d̄: anti-red:1 1 Or one of the other two combina-
tions: green and anti-green, or blue
and anti-blue.

i = k = 1

T a

j1
T a

1l

N=3?y
=

0

B@
1/3

1/2

1/2

1

CA

jl

(6.8)

Final state can be: (red, anti-red), (blue, anti-blue), (green, anti-

green). The color factor is now > 0, which implies an attractive

potential.

In general, we can decompose the color structure of ūidj according

to

3 ⌦ 3̄ = 1x?
singlet

�

octet?y
8 (6.9)

Among the 9 color combinations of uid̄j , we find 8 with color and

1 color neutral2 all of which will be left invariant under gluon ex- 2 See Eq. (6.10) for the definition.

change. We already saw that color-octet states (like red anti-green

above in example 1) will be left invariant in the amplitude. The final state in example 1 is also
red anti-green.

For the color singlet states, which can go to any color-anticolor

combination, the invariant, normalized combination is

|1ci =
1

p
3
(|rr̄i + |bb̄i + |gḡi) (6.10)

QED V(r) = − e2

4πr

electron-proton potential is attractive
ph

ot
on
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Final state can be: (red, anti-red), (blue, anti-blue), (green, anti-

green). The color factor is now > 0, which implies an attractive

potential.

In general, we can decompose the color structure of ūidj according

to

3 ⌦ 3̄ = 1x?
singlet
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octet?y
8 (6.9)

Among the 9 color combinations of uid̄j , we find 8 with color and

1 color neutral2 all of which will be left invariant under gluon ex- 2 See Eq. (6.10) for the definition.

change. We already saw that color-octet states (like red anti-green

above in example 1) will be left invariant in the amplitude. The final state in example 1 is also
red anti-green.

For the color singlet states, which can go to any color-anticolor

combination, the invariant, normalized combination is

|1ci =
1

p
3
(|rr̄i + |bb̄i + |gḡi) (6.10)

QED V(r) = − e2

4πr

electron-proton potential is attractive
ph

ot
on

quark-quark potential is only attractive for color  
neutral combinations * 

72 andreas weiler, tum

⇢; c

µ; a
⌫; b

�; d

= � ig2[fabef cde(⌘µ⇢⌘⌫�
� ⌘µ�⌘⌫⇢)

+ facef bde(⌘µ⌫⌘⇢�
� ⌘µ�⌘⌫⇢)

+ fadef bce(⌘µ⌫⌘⇢�
� ⌘µ⇢⌘⌫�)]

(four gluon)

p
c̄acc

µ; b

= � gfabcpµ (ghost-vertex)

ij

µ; a

= ig�µT a

ij
(fermion-vertex)

6.2 A tree-level QCD amplitude

Let us first calculate a tree-level amplitude to examine how QCD

di↵ers from QED. Consider the process

ud̄ ! ud̄. (6.3)

Analogously to t-channel scattering in QED we can extract the

QCD potential (at small g-coupling). The tree-level diagram for this

elastic scattering is:

p1 p2

k

p4p3

i j

lk

a

b

u
<latexit sha1_base64="u1kByp6PrTHwdpixIkIg3RtPYGY=">AAAB6HicdVDLSsNAFJ3UV62vqks3g0VwFZIY2roriOCyBfuANpTJ9KYdO3kwMxFK6Be4caGIWz/JnX/jpK2gogcuHM65l3vv8RPOpLKsD6Owtr6xuVXcLu3s7u0flA+POjJOBYU2jXksej6RwFkEbcUUh14igIQ+h64/vcr97j0IyeLoVs0S8EIyjljAKFFaaqXDcsUyL+tVx61iy7Ssmu3YOXFq7oWLba3kqKAVmsPy+2AU0zSESFFOpOzbVqK8jAjFKId5aZBKSAidkjH0NY1ICNLLFofO8ZlWRjiIha5I4YX6fSIjoZSz0NedIVET+dvLxb+8fqqCupexKEkVRHS5KEg5VjHOv8YjJoAqPtOEUMH0rZhOiCBU6WxKOoSvT/H/pOOY9oXptNxK43oVRxGdoFN0jmxUQw10g5qojSgC9ICe0LNxZzwaL8brsrVgrGaO0Q8Yb59EAI1C</latexit>

u
<latexit sha1_base64="u1kByp6PrTHwdpixIkIg3RtPYGY=">AAAB6HicdVDLSsNAFJ3UV62vqks3g0VwFZIY2roriOCyBfuANpTJ9KYdO3kwMxFK6Be4caGIWz/JnX/jpK2gogcuHM65l3vv8RPOpLKsD6Owtr6xuVXcLu3s7u0flA+POjJOBYU2jXksej6RwFkEbcUUh14igIQ+h64/vcr97j0IyeLoVs0S8EIyjljAKFFaaqXDcsUyL+tVx61iy7Ssmu3YOXFq7oWLba3kqKAVmsPy+2AU0zSESFFOpOzbVqK8jAjFKId5aZBKSAidkjH0NY1ICNLLFofO8ZlWRjiIha5I4YX6fSIjoZSz0NedIVET+dvLxb+8fqqCupexKEkVRHS5KEg5VjHOv8YjJoAqPtOEUMH0rZhOiCBU6WxKOoSvT/H/pOOY9oXptNxK43oVRxGdoFN0jmxUQw10g5qojSgC9ICe0LNxZzwaL8brsrVgrGaO0Q8Yb59EAI1C</latexit>

d̄
<latexit sha1_base64="GLz8ZzzGG2bJ8W/qf4XvUWhanL0=">AAAB7nicdVDLSsNAFL3xWeur6tLNYBFchSQNbd0VRHBZwT6gDWUymbRDJw9mJkIJ/Qg3LhRx6/e482+ctBVU9MCFwzn3cu89fsqZVJb1Yaytb2xubZd2yrt7+weHlaPjrkwyQWiHJDwRfR9LyllMO4opTvupoDjyOe3506vC791TIVkS36lZSr0Ij2MWMoKVlnpDH4s8mI8qVcu8bNYdt44s07IatmMXxGm4NRfZWilQhRXao8r7MEhIFtFYEY6lHNhWqrwcC8UIp/PyMJM0xWSKx3SgaYwjKr18ce4cnWslQGEidMUKLdTvEzmOpJxFvu6MsJrI314h/uUNMhU2vZzFaaZoTJaLwowjlaDidxQwQYniM00wEUzfisgEC0yUTqisQ/j6FP1Puo5p10zn1q22rldxlOAUzuACbGhAC26gDR0gMIUHeIJnIzUejRfjddm6ZqxmTuAHjLdP59iP9g==</latexit>

d̄
<latexit sha1_base64="GLz8ZzzGG2bJ8W/qf4XvUWhanL0=">AAAB7nicdVDLSsNAFL3xWeur6tLNYBFchSQNbd0VRHBZwT6gDWUymbRDJw9mJkIJ/Qg3LhRx6/e482+ctBVU9MCFwzn3cu89fsqZVJb1Yaytb2xubZd2yrt7+weHlaPjrkwyQWiHJDwRfR9LyllMO4opTvupoDjyOe3506vC791TIVkS36lZSr0Ij2MWMoKVlnpDH4s8mI8qVcu8bNYdt44s07IatmMXxGm4NRfZWilQhRXao8r7MEhIFtFYEY6lHNhWqrwcC8UIp/PyMJM0xWSKx3SgaYwjKr18ce4cnWslQGEidMUKLdTvEzmOpJxFvu6MsJrI314h/uUNMhU2vZzFaaZoTJaLwowjlaDidxQwQYniM00wEUzfisgEC0yUTqisQ/j6FP1Puo5p10zn1q22rldxlOAUzuACbGhAC26gDR0gMIUHeIJnIzUejRfjddm6ZqxmTuAHjLdP59iP9g==</latexit>

= (igs)
2T a

ji
�abT

b

kl
⇥ ūj(p2)�

µui(p1)
�i

k2


⌘µ⌫ � (1 � ⇠)

kµk⌫

k2

�
v̄k(p3)�

⌫vl(p4)

With on-shell spinors, the ⇠-dependence drops out. With k = p2 � p1

and using the EOM,

ū(p2)/ku(p1) = ū(p2)(/p
2

� /p
1
)u(p1)

= ū(p2)(m � m)u(p1) = 0 (like in QED)

We find the amplitude identical to QED with e ! �gs up to the

color factor:

T a

ji
T a

kl
(6.4)

Each u(d̄) can have red, green, or blue (or anti-red, anti-green, and

anti-blue, respectively). Let us examine their impact.

QCD

76 andreas weiler, tum
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= (igs)
2T a

ji�abT
b
kl ⇥ ūj(p2)�

µui(p1)
�i

k2


⌘µ⌫ � (1 � ⇠)

kµk⌫

k2

�
v̄k(p3)�

⌫vl(p4)

With on-shell spinors, the ⇠-dependence drops out. With k = p2 � p1

and using the EOM,

ū(p2)/ku(p1) = ū(p2)(/p
2

� /p
1
)u(p1)

= ū(p2)(m � m)u(p1) = 0 (like in QED)

and therefore

= (igs)
2T a

jiT
a
kl ⇥ ūj�

µui
�i⌘µ⌫

k2
v̄k�⌫vl

We find the amplitude identical to QED with e ! �gs up to a color

factor:

T a
jiT

a
kl (6.4)

gl
uo

n

* QCD is strongly coupled at 
low energies, perturbative 
calculations are not reliable
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served.

Compare to e�p+-scattering:
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Eq. (6.6) shows that this color amplitude has the opposite sign: This

color combination leads to a repulsive interaction/potential.

Example 2:

u: red and d̄: anti-red:1 1 Or one of the other two combina-
tions: green and anti-green, or blue
and anti-blue.

i = k = 1

T a

j1
T a

1l

N=3?y
=

0

B@
1/3

1/2

1/2

1

CA

jl

(6.8)

Final state can be: (red, anti-red), (blue, anti-blue), (green, anti-

green). The color factor is now > 0, which implies an attractive

potential.

In general, we can decompose the color structure of ūidj according

to

3 ⌦ 3̄ = 1x?
singlet

�

octet?y
8 (6.9)

Among the 9 color combinations of uid̄j , we find 8 with color and

1 color neutral2 all of which will be left invariant under gluon ex- 2 See Eq. (6.10) for the definition.

change. We already saw that color-octet states (like red anti-green

above in example 1) will be left invariant in the amplitude. The final state in example 1 is also
red anti-green.

For the color singlet states, which can go to any color-anticolor

combination, the invariant, normalized combination is

|1ci =
1

p
3
(|rr̄i + |bb̄i + |gḡi) (6.10)

QED V(r) = − e2

4πr

electron-proton potential is attractive
ph

ot
on

quark-quark potential is only attractive for color  
neutral combinations * 
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⇢; c

µ; a
⌫; b

�; d

= � ig2[fabef cde(⌘µ⇢⌘⌫�
� ⌘µ�⌘⌫⇢)

+ facef bde(⌘µ⌫⌘⇢�
� ⌘µ�⌘⌫⇢)

+ fadef bce(⌘µ⌫⌘⇢�
� ⌘µ⇢⌘⌫�)]

(four gluon)

p
c̄acc

µ; b

= � gfabcpµ (ghost-vertex)

ij

µ; a

= ig�µT a

ij
(fermion-vertex)

6.2 A tree-level QCD amplitude

Let us first calculate a tree-level amplitude to examine how QCD

di↵ers from QED. Consider the process

ud̄ ! ud̄. (6.3)

Analogously to t-channel scattering in QED we can extract the

QCD potential (at small g-coupling). The tree-level diagram for this

elastic scattering is:

p1 p2

k

p4p3

i j

lk

a

b

u
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= (igs)
2T a

ji
�abT

b

kl
⇥ ūj(p2)�

µui(p1)
�i

k2


⌘µ⌫ � (1 � ⇠)

kµk⌫

k2

�
v̄k(p3)�

⌫vl(p4)

With on-shell spinors, the ⇠-dependence drops out. With k = p2 � p1

and using the EOM,

ū(p2)/ku(p1) = ū(p2)(/p
2

� /p
1
)u(p1)

= ū(p2)(m � m)u(p1) = 0 (like in QED)

We find the amplitude identical to QED with e ! �gs up to the

color factor:

T a

ji
T a

kl
(6.4)

Each u(d̄) can have red, green, or blue (or anti-red, anti-green, and

anti-blue, respectively). Let us examine their impact.

QCD

76 andreas weiler, tum

⇢; c

µ; a
⌫; b

�; d

= � ig2[fabef cde(⌘µ⇢⌘⌫�
� ⌘µ�⌘⌫⇢)

+ facef bde(⌘µ⌫⌘⇢�
� ⌘µ�⌘⌫⇢)

+ fadef bce(⌘µ⌫⌘⇢�
� ⌘µ⇢⌘⌫�)]

(four gluon)

p
c̄acc

µ; b

= � gfabcpµ (ghost-vertex)

ij

µ; a

= ig�µT a
ij (fermion-vertex)

6.2 A tree-level QCD amplitude

Let us first calculate a tree-level amplitude to examine how QCD

di↵ers from QED. Consider the process

ud̄ ! ud̄. (6.3)

Analogously to t-channel scattering in QED we can extract the

QCD potential (at small g-coupling). The tree-level diagram for this

elastic scattering is:

p1 p2

k

p4p3

i j

lk

a

b

u
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= (igs)
2T a

ji�abT
b
kl ⇥ ūj(p2)�

µui(p1)
�i

k2


⌘µ⌫ � (1 � ⇠)

kµk⌫

k2

�
v̄k(p3)�

⌫vl(p4)

With on-shell spinors, the ⇠-dependence drops out. With k = p2 � p1

and using the EOM,

ū(p2)/ku(p1) = ū(p2)(/p
2

� /p
1
)u(p1)

= ū(p2)(m � m)u(p1) = 0 (like in QED)

and therefore

= (igs)
2T a

jiT
a
kl ⇥ ūj�

µui
�i⌘µ⌫

k2
v̄k�⌫vl

We find the amplitude identical to QED with e ! �gs up to a color

factor:

T a
jiT

a
kl (6.4)

gl
uo

n

* QCD is strongly coupled at 
low energies, perturbative 
calculations are not reliable
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Example 1:

ux?
i=1

red and d̄x?
k=2

anti-green:

T a

ji
T a

kl
=

1

2
(�jl�ik �

1

N
�ij�kl). (6.5)

So we get

T a

j1
T a

2l
= �

1

2N
�1j�2l. (6.6)

So the final state has red quark and anti-green also: color is con-

served.

Compare to e�p+-scattering:

e�

p+

= (�ie)2(ū�µu)
�i⌘µ⌫

k2
(v̄�⌫v). (6.7)

Eq. (6.6) shows that this color amplitude has the opposite sign: This

color combination leads to a repulsive interaction/potential.

Example 2:

u: red and d̄: anti-red:1 1 Or one of the other two combina-
tions: green and anti-green, or blue
and anti-blue.

i = k = 1

T a

j1
T a

1l

N=3?y
=

0

B@
1/3

1/2

1/2

1

CA

jl

(6.8)

Final state can be: (red, anti-red), (blue, anti-blue), (green, anti-

green). The color factor is now > 0, which implies an attractive

potential.

In general, we can decompose the color structure of ūidj according

to

3 ⌦ 3̄ = 1x?
singlet

�

octet?y
8 (6.9)

Among the 9 color combinations of uid̄j , we find 8 with color and

1 color neutral2 all of which will be left invariant under gluon ex- 2 See Eq. (6.10) for the definition.

change. We already saw that color-octet states (like red anti-green

above in example 1) will be left invariant in the amplitude. The final state in example 1 is also
red anti-green.

For the color singlet states, which can go to any color-anticolor

combination, the invariant, normalized combination is

|1ci =
1

p
3
(|rr̄i + |bb̄i + |gḡi) (6.10)

QED V(r) = − e2

4πr

electron-proton potential is attractive74 andreas weiler, tum

e.g. for |rr̄i ! |rr̄i the color factor is Tr(T a

j1
T a

1l
) = 4

3
.

Combining all the pre-factors and the multiplicity Nc of the final

state, we get relative to the QED amplitude:

|1ci ! anything ) pre-factor = (
1

p
3
)2

4

3

3?y
Nc. (6.11)

The tree-level potentials are

V (r) =
1

6

g2
s

4⇡r
(color octet)

V (r) = �
4

3

g2
s

4⇡r
. (color singlet)

Only the color singlet state is attractive.

This is consistent with the observation that we do not find colored

mesons3, but only color-neutral bound states! 3 e.g. a quark-antiquark color octet
bound state,! hadrons:

mesons: q̄iqi

baryons: ✏ijkqiqjqk

This tree-level potential is not very useful quantitatively because

QCD at E ⇠ mhadron ⇠ GeV is strongly coupled gs � 1, see

Sec. 6.7.2. For a quantitative calculation of meson and hadron

properties, one needs a numerical, non-perturbative lattice approach.

Figure 6.1: The masses of

“gold-plated” mesons compar-

ing the lattice QCD (HPQCD

collaboration) results to exper-

iment (an update of a figure

that appeared in arxiv:hep-

lat/1207.5149)

u(r)d(g) → u(r)d(g)

u(r)d(r) → u(b)d(b)

ph
ot

on

quark-quark potential is only attractive for color  
neutral combinations * 

72 andreas weiler, tum

⇢; c

µ; a
⌫; b

�; d

= � ig2[fabef cde(⌘µ⇢⌘⌫�
� ⌘µ�⌘⌫⇢)

+ facef bde(⌘µ⌫⌘⇢�
� ⌘µ�⌘⌫⇢)

+ fadef bce(⌘µ⌫⌘⇢�
� ⌘µ⇢⌘⌫�)]

(four gluon)

p
c̄acc

µ; b

= � gfabcpµ (ghost-vertex)

ij

µ; a

= ig�µT a

ij
(fermion-vertex)

6.2 A tree-level QCD amplitude

Let us first calculate a tree-level amplitude to examine how QCD

di↵ers from QED. Consider the process

ud̄ ! ud̄. (6.3)

Analogously to t-channel scattering in QED we can extract the

QCD potential (at small g-coupling). The tree-level diagram for this

elastic scattering is:

p1 p2

k

p4p3

i j

lk

a

b

u
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= (igs)
2T a

ji
�abT

b

kl
⇥ ūj(p2)�

µui(p1)
�i

k2


⌘µ⌫ � (1 � ⇠)

kµk⌫

k2

�
v̄k(p3)�

⌫vl(p4)

With on-shell spinors, the ⇠-dependence drops out. With k = p2 � p1

and using the EOM,

ū(p2)/ku(p1) = ū(p2)(/p
2

� /p
1
)u(p1)

= ū(p2)(m � m)u(p1) = 0 (like in QED)

We find the amplitude identical to QED with e ! �gs up to the

color factor:

T a

ji
T a

kl
(6.4)

Each u(d̄) can have red, green, or blue (or anti-red, anti-green, and

anti-blue, respectively). Let us examine their impact.

QCD
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⇢; c

µ; a
⌫; b

�; d

= � ig2[fabef cde(⌘µ⇢⌘⌫�
� ⌘µ�⌘⌫⇢)

+ facef bde(⌘µ⌫⌘⇢�
� ⌘µ�⌘⌫⇢)

+ fadef bce(⌘µ⌫⌘⇢�
� ⌘µ⇢⌘⌫�)]

(four gluon)

p
c̄acc

µ; b

= � gfabcpµ (ghost-vertex)

ij

µ; a

= ig�µT a
ij (fermion-vertex)

6.2 A tree-level QCD amplitude

Let us first calculate a tree-level amplitude to examine how QCD

di↵ers from QED. Consider the process

ud̄ ! ud̄. (6.3)

Analogously to t-channel scattering in QED we can extract the

QCD potential (at small g-coupling). The tree-level diagram for this

elastic scattering is:

p1 p2

k

p4p3

i j

lk

a

b

u
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With on-shell spinors, the ⇠-dependence drops out. With k = p2 � p1

and using the EOM,

ū(p2)/ku(p1) = ū(p2)(/p
2

� /p
1
)u(p1)

= ū(p2)(m � m)u(p1) = 0 (like in QED)

and therefore
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We find the amplitude identical to QED with e ! �gs up to a color

factor:

T a
jiT

a
kl (6.4)
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uo

n

* QCD is strongly coupled at 
low energies, perturbative 
calculations are not reliable



Kinetic term for SU(N) gauge boson
We can cannot recycle the Maxwell action. The Lagrangian would not be 
invariant under a local SU(N) transformation

Aμ(x) → U(x)Aμ(x)U(x)† − i
g

(∂μU(x))U(x)† =

Fμν = ∂μAν − ∂νAμ+ig[Aμ, Aν]
Field strength now contains a non-abelian contribution

Fμν → U(x) Fμν U−1(x)
It transforms homogeneously

ℒ = − 1
4 Tr(FμνFμν) = … + gAAA + g2AAAA

and we can build an invariant Lagrangian

Note: Gluons carry colour charge and do interact with themselves.
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6

Perturbative calculations in non-abelian gauge theo-

ries

We will now discuss the renormalization of non-abelian gauge theo-

ries, such as QCD. In QCD the gauge group is G = SU(3) and the

matter fields are nf Dirac fermions in the fundamental representa-

tion of G

6.1 Feynman Rules

The kinetic terms are

Lkin = �
1

4
(@µAa

⌫ � @⌫Aa
µ)2 �

1

2⇠
(@µAaµ)2 +  i(i/@ � m) i � c̄a⇤ca.

(6.1)

and give the propagators

⌫; b µ; a = i
�⌘µ⌫ + (1 � ⇠)pµp⌫

p2

p2 + i"
�ab (gauge)

b a =
i�ab

p2 + i"
(ghost)

j i =
i�ij

/p � m + i"
(fermion)

where we will usually employ the Feynman-gauge ⇠ = 1.

The interactions are

Lint = � gfabc(@µA⌫)aAb
µAc

⌫ �
1

4
g2(fgabAa

µAb
⌫)(fgcdAc

µAd
⌫)

+ gfabc(@µc̄a)Ab
µcc + g i�

µT a
ij jA

a
µ. (6.2)

k

qp

µ; a

⇢; c

⌫; b = gfabc[⌘µ⌫(k � p)⇢ + ⌘⌫⇢(p � q)µ + ⌘⇢µ(q � k)⌫ ]

(triple gluon)
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⇢; c

µ; a
⌫; b

�; d

= � ig2[fabef cde(⌘µ⇢⌘⌫�
� ⌘µ�⌘⌫⇢)

+ facef bde(⌘µ⌫⌘⇢�
� ⌘µ�⌘⌫⇢)

+ fadef bce(⌘µ⌫⌘⇢�
� ⌘µ⇢⌘⌫�)]

(four gluon)

p
c̄acc

µ; b

= � gfabcpµ (ghost-vertex)

ij

µ; a

= ig�µT a
ij (fermion-vertex)

6.2 A tree-level QCD amplitude

Let us first calculate a tree-level amplitude to examine how QCD

di↵ers from QED. Consider the process

ud̄ ! ud̄. (6.3)

Analogously to t-channel scattering in QED we can extract the

QCD potential (at small g-coupling). The tree-level diagram for this

elastic scattering is:
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lk

a

b

u
<latexit sha1_base64="u1kByp6PrTHwdpixIkIg3RtPYGY=">AAAB6HicdVDLSsNAFJ3UV62vqks3g0VwFZIY2roriOCyBfuANpTJ9KYdO3kwMxFK6Be4caGIWz/JnX/jpK2gogcuHM65l3vv8RPOpLKsD6Owtr6xuVXcLu3s7u0flA+POjJOBYU2jXksej6RwFkEbcUUh14igIQ+h64/vcr97j0IyeLoVs0S8EIyjljAKFFaaqXDcsUyL+tVx61iy7Ssmu3YOXFq7oWLba3kqKAVmsPy+2AU0zSESFFOpOzbVqK8jAjFKId5aZBKSAidkjH0NY1ICNLLFofO8ZlWRjiIha5I4YX6fSIjoZSz0NedIVET+dvLxb+8fqqCupexKEkVRHS5KEg5VjHOv8YjJoAqPtOEUMH0rZhOiCBU6WxKOoSvT/H/pOOY9oXptNxK43oVRxGdoFN0jmxUQw10g5qojSgC9ICe0LNxZzwaL8brsrVgrGaO0Q8Yb59EAI1C</latexit>

u
<latexit sha1_base64="u1kByp6PrTHwdpixIkIg3RtPYGY=">AAAB6HicdVDLSsNAFJ3UV62vqks3g0VwFZIY2roriOCyBfuANpTJ9KYdO3kwMxFK6Be4caGIWz/JnX/jpK2gogcuHM65l3vv8RPOpLKsD6Owtr6xuVXcLu3s7u0flA+POjJOBYU2jXksej6RwFkEbcUUh14igIQ+h64/vcr97j0IyeLoVs0S8EIyjljAKFFaaqXDcsUyL+tVx61iy7Ssmu3YOXFq7oWLba3kqKAVmsPy+2AU0zSESFFOpOzbVqK8jAjFKId5aZBKSAidkjH0NY1ICNLLFofO8ZlWRjiIha5I4YX6fSIjoZSz0NedIVET+dvLxb+8fqqCupexKEkVRHS5KEg5VjHOv8YjJoAqPtOEUMH0rZhOiCBU6WxKOoSvT/H/pOOY9oXptNxK43oVRxGdoFN0jmxUQw10g5qojSgC9ICe0LNxZzwaL8brsrVgrGaO0Q8Yb59EAI1C</latexit>

d̄
<latexit sha1_base64="GLz8ZzzGG2bJ8W/qf4XvUWhanL0=">AAAB7nicdVDLSsNAFL3xWeur6tLNYBFchSQNbd0VRHBZwT6gDWUymbRDJw9mJkIJ/Qg3LhRx6/e482+ctBVU9MCFwzn3cu89fsqZVJb1Yaytb2xubZd2yrt7+weHlaPjrkwyQWiHJDwRfR9LyllMO4opTvupoDjyOe3506vC791TIVkS36lZSr0Ij2MWMoKVlnpDH4s8mI8qVcu8bNYdt44s07IatmMXxGm4NRfZWilQhRXao8r7MEhIFtFYEY6lHNhWqrwcC8UIp/PyMJM0xWSKx3SgaYwjKr18ce4cnWslQGEidMUKLdTvEzmOpJxFvu6MsJrI314h/uUNMhU2vZzFaaZoTJaLwowjlaDidxQwQYniM00wEUzfisgEC0yUTqisQ/j6FP1Puo5p10zn1q22rldxlOAUzuACbGhAC26gDR0gMIUHeIJnIzUejRfjddm6ZqxmTuAHjLdP59iP9g==</latexit>

d̄
<latexit sha1_base64="GLz8ZzzGG2bJ8W/qf4XvUWhanL0=">AAAB7nicdVDLSsNAFL3xWeur6tLNYBFchSQNbd0VRHBZwT6gDWUymbRDJw9mJkIJ/Qg3LhRx6/e482+ctBVU9MCFwzn3cu89fsqZVJb1Yaytb2xubZd2yrt7+weHlaPjrkwyQWiHJDwRfR9LyllMO4opTvupoDjyOe3506vC791TIVkS36lZSr0Ij2MWMoKVlnpDH4s8mI8qVcu8bNYdt44s07IatmMXxGm4NRfZWilQhRXao8r7MEhIFtFYEY6lHNhWqrwcC8UIp/PyMJM0xWSKx3SgaYwjKr18ce4cnWslQGEidMUKLdTvEzmOpJxFvu6MsJrI314h/uUNMhU2vZzFaaZoTJaLwowjlaDidxQwQYniM00wEUzfisgEC0yUTqisQ/j6FP1Puo5p10zn1q22rldxlOAUzuACbGhAC26gDR0gMIUHeIJnIzUejRfjddm6ZqxmTuAHjLdP59iP9g==</latexit>

= (igs)
2T a

ji�abT
b
kl ⇥ ūj(p2)�
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With on-shell spinors, the ⇠-dependence drops out. With k = p2 � p1

and using the EOM,
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We find the amplitude identical to QED with e ! �gs up to a color

factor:
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jiT

a
kl (6.4)

Note: Gluons carry colour charge and do interact with themselves.



How can we discover the Lagrangian of 
the universe?  

We need experiments! -> next lecture


