From (Particle) Physics to Healthcare

Manuela Cirilli Medical Applications Adviser CERN Knowledge Transfer group

Disclaimer(s) & Acknowledgments

Of course, I had to select the material to be included. And of course, Physics \neq HEP and HEP is not just CERN (but a lot of HEP in this talk, and many CERN examples).

The CERN medical applications-related projects presented in this talk are realized by the CERN scientists and engineers: most names are acknowledged on the respective slides, but there are many more.

The KT group and myself are privileged to have the opportunity to support these projects in a tailored way, and to help bridge the gap between CERN technologies and society.

Many thanks to all the colleagues from CERN, CNAO, CHUV, GSI, MedAustron, INFN, TERA who have shared their material and wisdom with me; special thanks to Ugo Amaldi and Manjit Dosanjh.

I am neither a doctor, nor a medical physicist, nor a technical expert in most of the technologies I present, so let's see how many of your questions I'm able to answer! ③

By Original: Penubag Vector: Victor Blacus - Own work based on: Electromagnetic-Spectrum.png, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=22428451

X-Rays

1895

1896: accidental discovery of natural radioactivity Mme. Curie thesis – 1904 α , β , γ in magnetic field

1898: by studying the strange uranium rays, they soon discovered polonium, thorium, radium

CERN

Par Cinémagazine, 14 février 1935 https://gallica.bnf.fr/ark:/12148/bpt6k2000628h, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=97956453

Radiam Beauty H ERE are the first toilet preparations to embedy Actual Radium na natonishing new force for betterment, applied as an addit Beauty. Learn how the amazing Energy of Radium has proved boon to the human skin. Learn what Radium setually means to how its power is employed in "Radior" P. tes. Then turn to "Radi Radio S Fath Ave., New York RADIOR TOILET REQUISITES **Toilet Requisites** Leading Department Stores of New York, Brooklyn and Newark Radior Co., Ltd., of London 235 Fifth Avenue, New York Liggett's Drug Stores Par Radior cosmetics — sitead New York Tribune Magazine, page 12, Domaine public, https://commons.wikimedia.org/w/index.php?curid=35047170

November 10, 1918

CUSTOMERS

https://www.smh.com.au/national/nsw/from-the-archives-1956-ban-urged-of-x-ray-machines-at-shoe-shops-20210318-p57c1m.html

12 New York Tribun

Knowledge Transfer Accelerating Innovation EXPECT

IT!

Friedrich Giesel 1852-1927

Burning of Pierre Curie's arm

Pierre Curie 1859-1906

Photo of Pierre Curie's arm, burned by radium salt applied for 10 hours. In 1900, the German dentist Walkhoff noted that radium rays act energetically on the skin in a manner analogous to that of X-rays. This observation was confirmed a few weeks later by the German chemist F. Giesel, with whom Pierre and Marie maintained regular correspondence.

© CNRS Audiovisuel ©

X-ray apparatus used for treatment of epithelioma of the face, 1915.

Small tubes containing radium salts are strapped to a woman's face to treat what was either lupus or rodent ulcer, 1905.

The Nobel Prize in Physics 1944

Photo from the Nobel Foundation archive. Isidor Isaac Rabi Prize share: 1/1

The Nobel Prize in Physics 1944 was awarded to Isidor Isaac Rabi "for his resonance method for recording the magnetic properties of atomic nuclei."

The Nobel Prize in Physics 1952

Photo from the Nobel Foundation archive. Felix Bloch Prize share: 1/2 Photo from the Nobel Foundation archive. Edward Mills Purcell Prize share: 1/2

The Nobel Prize in Physics 1952 was awarded jointly to Felix Bloch and Edward Mills Purcell "for their development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith."

The Nobel Prize in Physiology or Medicine 2003

Photo from the Nobel Foundation archive. Paul C. Lauterbur Prize share: 1/2 Photo from the Nobel Foundation archive. Sir Peter Mansfield Prize share: 1/2

The Nobel Prize in Physiology or Medicine 2003 was awarded jointly to Paul C. Lauterbur and Sir Peter Mansfield "for their discoveries concerning magnetic resonance imaging."

The technologies

Over 70 companies and institutes produce accelerators for industrial applications; these organizations sell more than 1,100 industrial systems per year — almost twice the number produced for research or medical therapy — at a market value of \$2.2B.

Over **\$1B** of this amount is generated by the sales of accelerators for **ion implantation** into materials primarily semiconductor devices whose worldwide value of production is about \$300B.

Hamm,R.andHamm,M.(2012).Industrial accelerators and their applications. World Scientific Publishing Co.

As of 2014 there were **42,200** accelerators worldwide: **27,000 (64%)** in industry, **14,000 (33%)** for medical purposes **1,200 (3%)** for basic research.

These figures exclude electron microscopes and x-ray tubes, and the security and defense industries.

Chernyaev, A. P. and Varzar, S. M. (2014). Particle accelerators in modern world. Physics of Atomic Nuclei, 77(10):1203–1215.

Area	Application	Beam	Accelerator	Beam ener- gy/MeV	Beam current/ mA	Number
Medical	Cancer therapy	е	linac	4-20	102	>14000
		р	cyclotron, synchrotron	250	10-6	60
		С	synchrotron	4800	10-7	10
	Radioisotope production	р	cyclotron	8-100	1	1600
Industrial	lon implantation	B, As, P	electrostatic	< 1	2	>11000
	lon beam analysis	p, He	electrostatic	<5	10-4	300
	Material processing	е	electrostatic, linac, Rhodatron	≤10	150	7500
	Sterilisation	е	electrostatic, linac, Rhodatron	≤10	10	3000
Security	X-ray screening of cargo	е	linac	4-10	?	100?
	Hydrodynamic testing	е	linear induction	10-20	1000	5
Synchrotron light sources	Biology, medicine, materials science	e	synchrotron, linac	500-10000		70
Neutron scattering	Materials science	р	cyclotron, synchrotron, linac	600-1000	2	4
Energy - fusion	Neutral ion beam heating	d	electrostatic	1	50	10
	Heavy ion inertial fusion	Pb, Cs	Induction linac	8	1000	Under development
	Materials studies	d	linac	40	125	Under development
Energy - fission	Waste burner	р	linac	600-1000	10	Under development
	Thorium fuel amplifier	р	linac	600-1000	10	Under development
Energy - bio-fuel	Bio-fuel production	е	electrostatic	5	10	Under development
Environmental	Water treatment	е	electrostatic	5	10	5
	Flue gas treatment	е	electrostatic	0.7	50	Under development

anuela Cirilli Summer Student Lecture July 2024 14

Knowledge Transfer Accelerating Innovation

(CERN)

CÈRN

1956: The first patient to receive radiation therapy from the medical linear accelerator at Stanford was a 2-year-old boy.

Fig. 1. The 8 MeV linear accelerator (Metropolitan-Vickers) at Hammersmith Hospital with the angle of the roentgen head adjusted to give a beam directed vertically downwards.

1953

P. Howard-Flanders (1954) The Development of the Linear Accelerator as a Clinical Instrument, Acta Radiologica, 41:sup116, 649-655, DOI: 10.3109/00016925409177244

Approx. date of intro- duction	Model and location	Manufacturer	Beam e an mode	energy d dity			
1953	Hammersmith Hospital, London	Metropolitan- Vickers	8 MV X-ray	8			
1954	St. Bartholo- mew's Hospital, London	Mullard	15 MeV X-ray electro	s and ons			Table 1 (cont.)
1954	Christie Hospital, Manchester	Metropolitan- Vickers AEI	4 MV X-raj	Approx. date of intro- duction	Model and location	Manufacturer	Beam energy and modality
1954	Newcastle	Mullard	4 MV X-ray	1967	Sagittaire, Paris	CSF	16 MV X-rays 12-32 MeV electrons
1955	Stanford	Stanford	5 MV X-ray	1968	Clinac 4	Varian	4 MV X-rays
1955	Argonne Cancer Hospital, Chicago	Stanford, HVE and Argonne	5-50 M electr	1969	Mevatron VI & XII	Applied Radiation	6 or 8 MV X-rays 3–11 MeV electrons
1955	Michael Reese Hospital, Chicago	Stanford. M. Reese and Helene Curtis	45 Me ¹ electr	1969	LMR-13	Toshiba	8 and 10 MV X-rays 8–13 MeV electrons
1962	Newcastle	Vickers Research	4 MV X-ray	1970	Therapi 4	SHM	4 MV X-rays
1962	Clinac 6	Varian	6 MV X-ray	1970	Clinac 35 Hiroshima	Varian	8 and 25 MV X-rays 7-28 MeV
1965	Mevatron 8	Applied Radiation	6-8 MV X-rays 3-10 MeV electrons				
1965	SL-75	Mullard	6-8 MV X-ray 8-10 M electro	s eV ons			

C J Karzmark and N C Pering 1973 Phys. Med. Biol. 18 321

Status of Radiation Therapy Equipment

Status of Radiation Therapy Equipment

156 7687

STELLA (Smart Technologies to Extend Lives with a Linear Accelerator) formed to address the lack of radiotherapy in challenging environments. Supported by ICEC, UK STFC, Lancaster, Oxford, Daresbury lab, CERN, users in LMICs

> Equipment per income groups (Updated on : 09/03/2023 13:55:27)

High income (H) 9,449 Upper middle income (UM) 4,023 Lower middle income (LM) 1,615 Low income (L) 40

MV Therapy

Protons, ions: hadron therapy, particle therapy, (light, heavy) ion therapy

Beam profiles

Kraft, G. History of heavy-ion therapy at GSI

depth https://link.springer.com/article/10.1186/1878-5085-4-9

Knowledge Transfer Accelerating Innovation

Carbon ion beams

depth

Risk of subsequent primary cancers after carbon ion radiotherapy, photon radiotherapy, or surgery for localised prostate cancer: a propensity score-weighted, retrospective, cohort study

Osama Mohamad, MD; Takahiro Tabuchi, MD; Yuki Nitta, MD; Akihiro Nomoto, MD; Akira Sato, MD; Goro Kasuya, MD et al. The Lancet Oncology, VOLUME 20, ISSUE 5, P674-685, MAY 2019

Status of Radiation Therapy Equipment

20 104

107

Countries RT (

RT Centres

Light Ion Therapy

MV Therapy	1
Brachytherapy	3,336
Light Ion Therapy	107

Equipment per income groups (Updated on : 09/03/2023 13:55:27)

- High income (H)
 Upper middle income (UM)
 10
- Lower middle income (LM) \mid 1

IAEA DIRAC Directory of RAdiotherapy Centres

Berkeley

1931 Invention of cyclotron (Ernest Lawrence)

1946 RR Wilson published his seminal paper on particle therapy **1952** First biological investigation with accelerated nuclei (C Tobias and JH Lawrence)

1954 First therapeutic exposure of humans to protons and alphas (Tobias and JH Lawrence)

1975 Clinical trials with accelerated light ions at LBL (Castro)

Gustav Werner Institute and Theodor Svedberg Laboratory

1949 Synchrocyclotron at the Gustav Werner Institute (Uppsala) **1950s** Pre-therapeutic physical experiments with high energy protons (B. Larsson)

1957 First patient treated with proton beam

π^- beam therapy

1935 Yukawa theory on pi meson

1947 Discovery of pions

1951 Possibility of using negative pions for cancer therapy (Tobias and Richman)

1961 Clinical use of π^- advocated (Fowler and Perkins, Nature 1961)

'70-'80s Clinical trials of negative pions at LAMPF, TRIUMF, PSI and Stanford

William T. Chu EO Lawrence Berkeley National Laboratory PTCOG From 1985 to Present and Future

In a pilot experimental program at LAMPF's Biomedical Facility, about 250 patients were treated with negative pions for a variety of advanced deep-seated tumors. Compared to conventional x-ray therapy, pion therapy is expected to provide improved dose localization and biological effectiveness. Shown positioning a patient under the pion radiotherapy beam are (left to right) Dr. Morton Kligerman, former Director of the University of New Mexico's Cancer Research and Treatment Center, a visiting radiotherapist from Japan, and Dr. Steven Bush, formerly of the University of New Mexico. The hardware at the upper right includes a beam collimator, a dose monitor, and a device for changing the penetration depth of the pions.

LAMPF: a dream and a gamble

From physics labs...

1932 - E. Lawrence First cyclotron 1946 – proton therapy proposed by R. Wilson

1954 – Berkeley treats the first patient

...to clinics

1989 Clatterbridge UK 1990 Loma Linda USA 1994 HIMAC Japan

Pioneers in scanned beam delivery

Building Gantry 1 back in the 1990s (Photo: Paul Scherrer Institute)

1998 Pilot project at GSI Germany and proposal for HIT facility

Protons: the LINAC way

Fig. 4. TOP-IMPLART SCDTL structure: (left) schematic (right) 18-24 MeV booster built for the SPARKLE Company.

TOP IMPLART

ENEN

C. Ronsivalle, M. Carpanese, C. Marino, G. Messina, L. Picardi, S. Sandri, E. Basile, B. Caccia, D.M. Castelluccio, E. Cisbani, S. Frullani, F. Ghio, V. Macellari, M. Benassi, M. D'Andrea, L. Strigari, The TOP-IMPLART project, Eur. Phys. J. Plus 126: 68 (2011) 1–15, http://dx.doi.org/10.1140/epjp/i2011-11068-x.

Compact High-Frequency Radio Frequency Quadrupole (RFQ)

M. Vretenar, A. Dallocchio, V. A. Dimov, M. Garlasche, A. Grudiev, A. M. Lombardi, S. Mathot, E. Montesinos, M. Timmins, "A Compact High-Frequency RFQ for Medical Applications", in Proc. LINAC2014, Geneva, Switzerland, September 2014

Accelerating Innovation

LInac BOoster (LIBO)

U. Amaldi et al., "LIBO-a linac booster for protontherapy: construction and test of a prototype," Nucl. Instrum. Meth- ods Phys. Res. A, vol. 521, pp. 512-529, 2004.

From pioneering rasterscanning & **F S S S S**

440 patiens 1998-2008

Dose (%)

50

The image shows an optimized plan with two opposite fields for a chordoma patient using protons (left) or 12C ions (right).

Image from the GSI patient project archive, distributed under <u>Creative Commons CC BY 4.0.</u>

Knowledge Transfer Accelerating Innovation Since 2009*: 2841 patients wit

2841 patients with p 3793 patients with C-ion

* Until Dec 2020, source ptcog.ch

CERN/PS 2000-007 (DR)

PROTON-ION MEDICAL MACHINE STUDY (PIMMS) PART II

Accelerator Complex Study Group* supported by the Med-AUSTRON, Onkologie-2000 and the TERA Foundation and hosted by CERN

ABSTRACT

The Proton-Ion Medical Machine Study (PIMMS) group was formed following an agreement between the Med-AUSTRON (Austria) and the TERA Foundation (Italy) to combine their efforts in the design of a cancer therapy synchrotron capable of accelerating either light ions or protons. CERN agreed to support and host this study in its PS Division. A close collaboration was also set up with GSI (Germany). The study group was later joined by Onkologie-2000 (Czech Republic). Effort was first focused on the theoretical understanding of slow extraction and the techniques required to produce a smooth beam spill for the conformal treatment of complexshaped tumours with a sub-millimetre accuracy by active scanning with proton and carbon ion beams. Considerations for passive beam spreading were also included for protons. The study has been written in two parts. The more general and theoretical aspects are recorded in Part I and the specific technical design considerations are presented in the present volume, Part II. An accompanying CD-ROM contains supporting publications made by the team and data files for calculations. The PIMMS team started its work in January 1996 in the PS Division and continued for a period of four years.

*Full-time members: L. Badano¹⁾, M. Benedikt²⁾, P.J. Bryant²⁾ (Study Leader), M. Crescenti¹⁾, P. Holy³⁾, A. Maier²⁾⁺⁶⁾, M. Pullia¹⁾, S. Reimoser²⁾⁺⁶⁾, S. Rossi¹⁾, Part-time members: G. Borri¹⁾, P. Knaus¹⁾⁺²⁾ Contributors: F. Gramatica¹⁾, M. Pavlovic⁶⁾, L. Weisser³⁾
Cherkin and C. S. Borri¹⁾, P. Kalovic⁶⁾, L. Weisser³⁾
TERA Foundation, via Puccini. 11, I-28100 Novara.
CERN, CH 1211 Geneva-23.
Oncology-2000 Foundation, Na Morani 4, CZ-12808 Prague 2.
Med-AUSTRON, c/o RIZ, Prof. Dr. Stephan Korenstr.10, A-2700 Wr. Neustadt.
Sommer & Partner Architects Berlin (SPB), Hardenbergplatz 2, D-10623 Berlin.

> Geneva, Switzerland May 2000

PIMMS

August 2000

Patient treatment at MedAustron

28% CNS **Head & Neck** 20% 15% **Pediatrics** 15% **Re-Irradiation** 9% Sarcoma 7% **Skull Base** 3% **Prostate** 2% **Gastrointestinal (upper)** <1% **Gastrointestinal (lower)** <1% **Gynecological Tumors** <1% **Urogenital Tumors** <1% **Breast/Mamma-Ca**

Values October 2021 • values rounded

Since 2016: 1174 Patients 30600 Single Fractions

Patient treatment at CNAO

Patients per year

Since 2011: 3700 Patients 55% C-ions 45% Protons

Non oncological application: ventricular arrhythmia (Collaboration with San Matteo Hospital, Pavia) Published: European Journal of Heart Failure

SCIENTIFIC REPORTS

OPEN Feasibility Study on Cardiac Arrhythmia Ablation Using High-Energy Heavy Ion Beams

Received: 08 August 2016 Accepted: 09 November 2016 Published: 20 December 2016

H. Immo Lehmann^{1,*}, Christian Graeff^{2,*}, Palma Simoniello², Anna Constantinescu², Mitsuru Takami¹, Patrick Lugenbiel³, Daniel Richter^{2,4}, Anna Eichhorn², Matthias Prall², Robert Kaderka², Fine Fiedler⁵, Stephan Helmbrecht⁵, Claudia Fournier², Nadine Erbeldinger², Ann-Kathrin Rahm³, Rasmus Rivinius³, Dierk Thomas³, Hugo A. Katus³, Susan B. Johnson², Kay D. Parker², Jürgen Debus⁶, Samuel J. Asirvatham¹, Christoph Bert^{2,4}, Marco Durante^{2,7} & Douglas L. Packer¹ > Eur J Heart Fail. 2020 Nov 12. doi: 10.1002/ejhf.2056. Online ahead of print.

The First-in-Man Case of Non-invasive Proton Radiotherapy to Treat Refractory Ventricular Tachycardia in Advanced Heart Failure

Veronica Dusi ^{1 2}, Viviana Vitolo ³, Laura Frigerio ^{1 4}, Rossana Totaro ^{1 4}, Adele Valentini ⁵, Amelia Barcellini ³, Alfredo Mirandola ³, Giovanni Battista Perego ⁶, Michela Coccia ², Alessandra Greco ⁴, Stefano Ghio ⁴, Francesca Valvo ³, Gaetano Maria De Ferrari ⁷, Massimiliano Gnecchi ^{1 2}, Luigi Oltrona Visconti ⁴, Roberto Rordorf ^{1 4}

Affiliations + expand PMID: 33179329 DOI: 10.1002/ejhf.2056

Challenges for next-generation particle-therapy machines

Cost-effective technologies

Reduced footprint

New treatment regimes (e.g. FLASH, microbeams) and fractionation schedules

Multi-ions

Radiobiology research integrated in the facility

Many challenges in common with those for future particle physics facilities. Various initiatives starting/on-going.

KT Seminars

The CERN Next Ion Medical Machine Study: towards a new generation of accelerators for cancer therapy

by Maurizio Vretenar (CERN)

https://indico.cern.ch/event/956260/

Ideas and technologies for a next-generation facility for medical research and therapy with ions

▶ NEW TECHNOLOGIES ► DESIGN PARAMETERS ▶ TECHNICAL OPTIONS

■ Monday 19 Oct 2020, 14:00 → 16:30 Europe/Z

Knowledge Transfer Accelerating Innovation FAIR

Three alternative accelerator designs

Improved synchrotron (warm)

Equipped with several innovative features: multi-turn injection for higher beam intensity, new injector at higher gradient and energy, multiple extraction schemes, multi-ion.

Circumference ~ 75 m

Improved synchrotron (superconducting)

Equipped with the same innovative features as warm, but additionally 90⁰ superconducting magnets.

🔚 Courtesy: TERA

uperconducting

Circumference ~ 27 m

Orbit correctors Sextupoles:

Linear accelerator

Linear sequence of accelerating cells, high pulse frequency. Length ~ 53 m

Other options considered as less interesting because of cost and/or required R&D: RC synchrotron, FFAG, SC cyclotron, PWFA

New linac (10 MeV/u)

Knowledge Transfer Accelerating Innovation

Maurizio Vretenar (CERN)

The RFQ for C⁶⁺ LINAC option

Collaboration CERN-CIEMAT-CDTI-Spanish industry 2.0 m long 750 MHz Will deliver Carbon (or Helium) at 5 MeV (total energy) Designed at CERN built in Spanish Industry

Knowledge Transfer Accelerating Innovation

💋 Egile

Alessandra Lombardi (CERN)

R&D on gantries

GaToroid: A Novel Concept for a Superconducting Compact and Lightweight Gantry for Hadron Therapy

Collaboration CNAO-INFN-CERN-MedAustron

Developing enabling technologies for a nextgeneration compact and lightweight rotating gantry

Protons stop...but where?

(Range uncertainty)

Courtesy Marco Durante

Range monitoring

Dosimetry

Combining Heavy-Ion Therapy with Immunotherapy: An Update on Recent Developments 👌

Alexander Helm; Daniel K. Ebner; Walter Tinganelli; Palma Simoniello; Alessandra Bisio; Valentina Marchesano; Marco Durante; Shigeru Yamada; Takashi Shimokawa

Int J Part Ther (2018) 5 (1): 84-93.

https://doi.org/10.14338/IJPT-18-00024.1

Moving organs

Clinical Trials

Impact of proton therapy on antitumor immune response

<u>Céline Mirjolet</u> , <u>Anaïs Nicol</u>, <u>Emeric Limagne</u>, <u>Carole Mura</u>, <u>Corentin Richard</u>, <u>Véronique Morgand</u>, <u>Marc Rousseau</u>, <u>Romain Boidot</u>, <u>François Ghiringhelli</u>, <u>Georges Noel</u> & <u>Hélène Burckel</u>

Scientific Reports 11, Article number: 13444 (2021) Cite this article

FLASH therapy – a growing clinical interest

NATURE

May 23, 1959 VOL. 183

Modification of the Oxygen Effect when Bacteria are given Large Pulses of Radiation

D. L. DEWEY J. W. BOAG

Research Unit in Radiobiology, British Empire Cancer Campaign, Mount Vernon Hospital, Northwood. > Sci Transl Med. 2014 Jul 16;6(245):245ra93. doi: 10.1126/scitranslmed.3008973.

Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice

Vincent Favaudon ¹, Laura Caplier ², Virginie Monceau ³, Frédéric Pouzoulet ⁴, Mano Sayarath ⁴, Charles Fouillade ⁴, Marie-France Poupon ⁴, Isabel Brito ⁵, Philippe Hupé ⁶, Jean Bourhis ⁷, Janet Hall ⁴, Jean-Jacques Fontaine ², Marie-Catherine Vozenin ⁸

Affiliations + expand PMID: 25031268 DOI: 10.1126/scitranslmed.3008973

In vitro studies suggested that sub-millisecond pulses of radiation elicit less genomic instability than continuous, protracted irradiation at the same total dose. To determine the potential of ultrahigh dose-rate irradiation in radiotherapy, we investigated lung fibrogenesis in C57BL/6J mice exposed either to short pulses (\leq 500 ms) of radiation delivered at ultrahigh dose rate (\geq 40 Gy/s, FLASH) or to conventional dose-rate irradiation (\leq 0.03 Gy/s, CONV) in single doses. The growth of human HBCx-12A and HEp-2 tumor xenografts in nude mice and syngeneic TC-1 Luc(+) orthotopic lung tumors in C57BL/6J mice was monitored under similar radiation conditions. CONV (15 Gy) triggered lung fibrosis associated with activation of the TGF- β (transforming growth factor- β) cascade, whereas no complications developed after doses of FLASH below 20 Gy for more than 36 weeks after irradiation. FLASH irradiation also spared normal smooth muscle and epithelial cells from acute radiation-induced apoptosis, which could be reinduced by administration of systemic TNF- α (tumor necrosis factor- α) before irradiation. In contrast, FLASH was as efficient as CONV in the repression of tumor growth. Together, these results suggest that FLASH radiotherapy might allow complete eradication of lung tumors and reduce the occurrence and severity of early and late complications affecting normal tissue.

FLASH therapy – a growing clinical interest

Vozenin et al Clin Cancer Res 2018

Contents lists available at ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com

Original Article

Treatment of a first patient with FLASH-radiotherapy

Jean Bourhis ^{a,b,*}, Wendy Jeanneret Sozzi ^a, Patrik Gonçalves Jorge ^{a,b,c}, Olivier Gaide ^d, Claude Bailat ^c, Fréderic Duclos ^a, David Patin ^a, Mahmut Ozsahin ^a, François Bochud ^c, Jean-François Germond ^c, Raphaël Moeckli ^{c,1}, Marie-Catherine Vozenin ^{a,b,1}

^a Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne; ^bRadiation Oncology Laboratory, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne; ^c Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne; and ^d Department of Dermatology, Lausanne University Hospital and University of Lausanne, Switzerland

Fig. 1. Temporal evolution of the treated lesion: (a) before treatment; the limits of th PTV are delineated in black; (b) at 3 weeks, at the peak of skin reactions (grade 1 epithelitis NCI-CTCAE v 5.0); (c) at 5 months.

First human patient – skin cancer treated with 10 MeV-range electrons

Knowledge Transfer Accelerating Innovation

Jean Bourhis (CHUV)

(CÉRN

TOPAS-based Monte Carlo simulations of the integrated normalised dose deposited in the plane parallel to the direction of an incident Gaussian beam (σ =4mm). All beams are in the absence of focusing

https://www.nature.com/articles/s41598-021-93276-8#Fig1

VHEE'17

Very High Energy Electron Radiotherapy: Medical & Accelerator Physics Aspects Towards Machine Realisation

JULY 24 – 26, 2017 COCKCROFT INSTITUTE

Scientific Programme Committee: Roger M. Jones University of Manchester/Cockcroft Institute, UK- Chair Colleen DesRosiers Angeles Faus-Golfe Indiana University, USA IFIC, Spain, and CNRS/LAL, France University of Strathclyde, UK University of Manchester, UK Dino Jaroszynski Karen Kirkby Ranald Mackay Peter McIntosh The Christie, UK STFC Daresbury Laboratory, UK Hywel Owen University of Manchester/Cockcroft Institute, UK Tsinghua University, China SLAC National Accelerator Lab, USA Jiaru Shi Sami Tantawi The Christie/Manchester University, UK STFC Daresbury Laboratory, UK Marcel Van Herk Alan Wheelhouse

Local Organizing Committee: Deepa Angal-Kalinin Roger M. Jones Nirav Joshi Virav Joshi Peter McIntosh Hywel Owen Sue Waller Sue Waller Cockcroft Institute Peter McIntosh Sue Waller Sue Waller Cockcroft Institute Sue Waller Sue Waller This workshop will explore fundamental issues associated with the development of a radiotherapy machine capable of delivering 250 MeV electrons at a high dose. We will explore both the dose delivery aspects, and the potential to realise a radiotherapy machine suitable for patient treatment.

www.cockcroft.ac.uk/events/VHEE17

<u>clear</u>

The CERN Linear Electron Accelerator for Research (CLEAR)

CLEAR is a versatile 200 MeV electron linac + a 20m experimental beamline, operated at CERN as a multipurpose user facility.

Knowledge Transfer Accelerating Innovation

Roberto Corsini (CERN)

VHEE activities in CLEAR

Calibration of operational medical dosimeters – nonlinear effects with high-dose short pulses

Verification of FLASH effect using biological dosimeters

Experimental verification of dose deposition profiles in water phantoms

Demonstration of "Bragg-like peak" deposition with focused beams

Strathclyde and Manchester

Films set-up for profile depth dose, CHUV Lausanne (M.C. Vozenin, C. Bailat, R. Moeckli et al.)

Calorimeter and ROOS chamber, Nat. Phys. Lab. UK (A. Subiel et al.)

Advance Markus chambers and SRS Array, Oldenburg University and PTW (B. Poppe, D. Poppinga et al.)

A. Lagdza, R. Jones et al., Influence of heterogeneous media on Very High Energy Electron (VHEE) dose penetration and a Monte Carlo-based comparison with existing radiotherapy modalities, Nuclear Inst. and Meth. in Physics Research, B, 482 (2020) 70-81.

M. McManus, A. Subiel et al., The challenge of ionisation chamber dosimetry in ultra-short pulsed high dose-rate Very High Energy Electron beams, Nature Scientific Reports (2020) 10-9089.

Small, K.L., Henthorn, et al., Evaluating very high energy electron RBE from nanodosimetric pBR322 plasmid DNA damage, Nature Sci. Rep. 11, 3341 (2021).

D. Poppinga et al., VHEE beam dosimetry at CERN Linear Electron Accelerator for Research under ultrahigh dose rate conditions, 2021 Biomed. Phys. Eng. Express 7 015012.

Kokurewicz, K., Brunetti, E., Curcio, A. et al. An experimental study of focused very high energy electron beams for radiotherapy, Nature Commun. Phys. 4, 33 (2021).

Knowledge Transfer Accelerating Innovation

Roberto Corsini (CERN)

Beam Parameters	CLEAR	SPARC	NLCTA
Energy (MeV)	50–220	170	50–120
Bunch charge (pC/shot)	150	60	30
Bunch length rms (ps)	0.1–10	0.87	1
Repetition rate (Hz)	0.8–10	0.1–10	0.1–10
Beam size at water phantom surface (σ mm)	1.2	3.4	2

Table 2. List of facilities or accelerators under development for VHEE production.

Beam Parameters	PHASER	CLARA	PITZ	Argonne	Tsinghua University
Energy (MeV)	100–200	50 (-250)	20 (-250)	6–63	45 (-350)
Bunch charge (pC/shot)	-	20–100	0.1–5000	100–10 ⁵	200
Bunch length rms (ps)	3.10 ⁵	0.3-5	30	0.3	<2
Repetition rate (Hz)	10	10 (-100)	10	0.5–10	5–50

https://www.mdpi.com/2072-6694/13/19/4942/htm

X

FLASH VHEE therapy

CLIC technology for a FLASH VHEE facility designed by CERN in collaboration with CHUV that will be realized by THERYQ

Close-up of the Compact Linear Collider prototype, on which the electron FLASH design is based (Image: CERN)

An intense beam of electrons is produced in a photoinjector, accelerated to around 100 MeV and then is expanded, shaped and guided to the patient.

The design of this facility is the result of an intense dialogue between groups at CHUV and CERN.

Jean Bourhis from CHUV:

"The clinical need that we have really converges with the technological answer that CERN has."

Knowledge Transfer Accelerating Innovation

Walter Wuensch (CERN)

The remarkable connection between CLIC technology and FLASH electron therapy

Very intense electron beams

CLIC – to provide brightness needed for delicate physics experiments FLASH – to provide dose fast for biological FLASH effect

Very precisely controlled electron beams

CLIC – to reduce the power consumption of the facility FLASH – to provide reliable treatment in a clinical setting

High accelerating gradient (that is high beam energy gain per length)

CLIC – fit facility in Lac Leman region and limit cost FLASH – fit facility on typical hospital campuses and limit cost of treatment

Knowledge Transfer Accelerating Innovation

Walter Wuensch (CERN)

Look even further

Quantum Scalpel

Creation of Harmonious Diversity

National Institutes for Quantum Science and Technology

Laser-hybrid Accelerator for Radiobiological Applications

5th generation facility:

Superconducting synchrotron

Multi-ion irradiation system

Injector with laser acceleration technology

Rotating gantry with HTS magnets

Microsurgery system Lecture July 2024

KRAYS

Georges Charpak's MWPC

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH	/////-
File: Charpek charbers	Atuc
THE USE OF MULTIWIRE PROPORTIONAL COUNTERS	
TO SELECT AND LOCALIZE CHARGED PARTICLES	TE I
	EF-1
G. Charpak, R. Bouclier, T. Bressani, J. Favier	
and Č. Zupančič	

CERN, Geneva, Switzerland.

ABSTRACT

Properties of chambers made of planes of independent wires placed between two plane electroides have been investigated. A direct voltage is applied to the wires. It has been checked that each wire works as an independent proportional counter down to separation of 0.1 cm between wires.

- Counting rates of 10⁵/wire are easily reached.
- Time resolutions of the order of 100 nsec have been obtained in some gases.
- It is possible to measure the position of the tracks between the wires using the time delay of the pulses.
- Knergy resolution comparable to the one obtained with the best cylindrical chambers is observed.
- The chambers can be operated in strong magnetic fields.

Geneva - 23 February, 1968 (Submitted to Nucl. Instrum. and Methods)

SIS/kw/sb

David Townsend, Alan Jeavons

Knowledge Transfer Accelerating Innovation

ÊRN

David Townsend, Alan Jeavons

Phys. Med. Biol., 1983, Vol. 28, No. 9, 1009–1019. Printed in Great Britain A general method for three-dimensional filter computation

B Schorr[†], D Townsend[‡] and R Clack[‡] [†] DD Division, CERN, Geneva, Switzerland [‡] Department of Nuclear Medicine, Cantonal Hospital, Geneva, Switzerland

Received 24 September 1982, in final form 7 February 1983

Abstract. Application of the Fourier space deconvolution algorithm to three-dimensional (3D) reconstruction problems necessitates the computation of a frequency space filter; which requires taking the 3D Fourier transform of the system response function. In this paper, it is shown that for system response functions of the specific form $d(\theta, \varphi)/r^2$, with $d(\theta, \varphi)$ an angular function describing the imaging system, the filter computation can always be reduced to a single integration which, in many cases, may be performed analytically. Complete expressions are derived for the general 3D filter, and two examples are given to illustrate the use of such expressions.

CERN

Projectional radiography

Knowledge Transfer Accelerating Innovation -ray_detector#/media/File:Projectional_radiography_components.jpg Annotations by Mikael Häggström - By Blausen Medical. s://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by.

https://en.wikipedia.org/wiki/X-ray_detector#/media/File:Projectic Blausen Medical Annotations by Mikael Häggström

Fast forward to 2018

First 3D colour X-ray of human extremities using the Medipix3 technology developed at CERN

Medipix

A family of pixel detector read-out chips for particle imaging and detection developed by the Medipix Collaborations

Medipix1 Collaboration.

The Medipix1 collaboration was formed in the 1990's when the potential of the new technology to provide noise-free single-photon counting was demonstrated.

Medipix2 Collaboration

The Medipix2 Collaboration was formed in 1999 with the aim of developing a single photon counting pixel detector readout chip using a 0.25 μ m CMOS process.

MEDIPIX PROBE

Medipix3 Collaboration

The Medipix3 Collaboration was formed in 2005 to develop the Medipix3 chip and the Timepix3 chip: now permitting colour imaging and dead time free operation.

Medipix4 Collaboration

The Medipix4 Collaboration was launched in 2017. The aim is designing pixel readout chips fully prepared for TSV processing that may be tiled on all four sides.

Knowledge Transfer Accelerating Innovation

Michael Campbell (CERN)

Hybrid Silicon Pixel Detectors

Noise-hit free particle detection Standard CMOS can be used allowing on-pixel signal processing Sensor material can be changed (Si, GaAs, CdTe..)

Michael Campbell (CERN)

p-substrate

Hybrid Silicon Pixel Detectors: counting electronics

\rightarrow Noise hit free imaging

Knowledge Transfer Accelerating Innovation

Michael Campbell (CERN)

Colour x-ray of a lighter

GB

UNI FREIBURG

Spectral imaging of Joints

Titanium implant in sheep bone

Enables better understanding of - process of bone ingrowth - bone / implant interface

Knowledge Transfer Accelerating Innovation Slide courtesy of A. Butler, University of Otago, New Zealandanuela Cirilli Summer Student Lecture July 2024 68 and MARS Bio-Imaging

Spectroscopic information permits material separation

The water has been partly cut away to reveal the bone, gold, gadolinium and iodine

Images presented and the European Congress of Radiology, Vienna, March 2017.

Knowledge Transfer Accelerating Innovation

A. Butler, University of Canterbury

Spectral CT image showing wrist implant

Hafnia accumulation at bone microcracks

Molecular imaging using metal nanoparticles - spectral CT

Colour 3D X-ray image of a fatty deposit on an artery (carotid plaque) taken using a Medipix3 detector

> Image by Mars Bio-Imaging Feature article link: <u>https://rdcu.be/bOFuR</u>

Ethanol-preserved mouse heart scanned using the WidePIX_{10x5} detector 60 kVp tungsten spectrum 720 projections, 5 seconds per projection (one hours total) Spatial resolution ca. 7 µm Reconstructed using Volex, visualized using CTVox and Amide software

Knowledge Transfer Accelerating Innovation

Slide courtesy of J. Dudak, IEAP, Czech Technical University Manuela Cirilli Summer Student Lecture July 2024 73

MiniPIX TPX3

Miniaturized spectral camera supporting Si and CdTe sensors

It's really small...

Knowledge Transfer Accelerating Innovation

100 – 150 keV

Knowledge Transfer Accelerating Innovation

150 – 200 keV

Knowledge Transfer Accelerating Innovation

200 – 250 keV

Knowledge Transfer Accelerating Innovation

250 – 300 keV

Knowledge Transfer Accelerating Innovation

300 – 350 keV

Knowledge Transfer Accelerating Innovation

350 – 400 keV

Knowledge Transfer Accelerating Innovation

400 – 450 keV

Knowledge Transfer Accelerating Innovation

Slide courtesy of D. Turecek, ADVACAM s.r.o.

Manuela Cirilli Summer Student Lecture July 2024

450 – 500 keV

Knowledge Transfer Accelerating Innovation

500 – 550 keV

Knowledge Transfer Accelerating Innovation

550 – 600 keV

Knowledge Transfer Accelerating Innovation

600 – 650 keV

Knowledge Transfer Accelerating Innovation

Slide courtesy of D. Turecek, ADVACAM s.r.o.

Manuela Cirilli Summer Student Lecture July 2024

650 – 700 keV

Knowledge Transfer Accelerating Innovation

700 – 750 keV

Knowledge Transfer Accelerating Innovation

Knowledge Transfer Accelerating Innovation

CÈRN

Gamma camera applications: Thyroid diagnostic

Thyroid cancer diagnostics and treatment monitoring:

The second most frequent cancer for women (after breast cancer)

Current imaging methods offer resolution of about 12 mm in 2D

This technology allows

5 times better resolution and 3D (2.5 mm)

4 times lower dose

Knowledge Transfer Accelerating Innovation

In-line images of a hadron therapy beam

Protons 48 MeV

Only protons and their scattering, no secondaries.

Protons 221 MeV

Many secondaries, (delta electrons fragments).

Carbons 89 MeV/u

Carbons and protons and their scattering, no secondaries.

Carbons 430 MeV/u

Carbons and many secondaries.

Timepix chip combined with Si detector

Knowledge Transfer Accelerating Innovation

Slide courtesy Jan Jakůbek (IEAP, Prague)

Timepix on the ISS

Knowledge Transfer Accelerating Innovation

GEMPix for QA in Hadron Therapy

Water phantom donated from Luzern hospital equipped with GEMPIx, reference PTW ion chamber + readout

Ion chamber, GEMPix and movement in water phantom integrated in one system (HW/SW)

Measurements at CNAO – Italian National Centre for Oncological Hadron therapy

J. Leidner, M. Ciocca, S. P. George, A. Mirandola, F. Murtas, A. Rimoldi, M. Silari and A. Tamborini. 3D Energy deposition measurements with the GEMPix detector in a water phantom for hadron therapy. Journal of Instrumentation 13, P08009 (2018)

J. Leidner, M. Ciocca, A. Mairani, F. Murtas and M. Silari. A GEMPix-based integrated system for measurements of 3D dose distributions in water for carbon ion scanning beam radiotherapy. Medical Physics 47, 2516-2525 (2020)

Knowledge Transfer Accelerating Innovation

Marco Silari (CERN)

GEMPix: measurements with a ¹²C beam at CNAO

2D images with much better spatial resolution than with an ion chamber

TimePIX 3 photon fluence measurement in hospital theatres

Reference person: 1.76 m

Eye lens - 170 cm

Chest - 135 cm

Belt - 96 cm

Knee - 53 cm

Colour maps of the photon fluence measured with a Timepix III in an hospital theatre at four horizontal eights.

Courtesy of M. Nowak

Knowledge Transfer Accelerating Innovation Pierre Carbonez (CERN) Marie Nowak CERN PhD. Student 2017-2020

TimePIX 3 photon fluence measurement in hospital theatres

Energy spectra for each height for a given person

Courtesy of M. Nowak

Shift in energy from head to toes = non homogenous exposure

Knowledge Transfer

Accelerating Innovation

Pierre Carbonez (CERN) Marie Nowak CERN PhD. Student 2017-2020

Knowledge Transfer Accelerating Innovation

Positron Emission Tomography

Knowledge Transfer Accelerating Innovation

EndoTOFPET

Ultrasound endoscopic PET for diagnosis of pancreas & prostate cancer

ClearPET PET for small anymals

ClearPEM Dedicated scanner for breast imaging

© DESY / Stuhrman

Knowledge Transfer Accelerating Innovation

Etiennette Auffray (CERN)

Current status commercial TOF-PET

TOF PET SIEMENS: BIOGRAPH VISION

3.2mm section crystals CTR 215ps

Webpage SIEMENS: https://static.healthcare.siemens.com/siemens_hwem-hwem_ssxa_websites-contextroot/wcm/idc/groups/public/@global/@imaging/@molecular/documents/download/mda4/ mzmy/~edisp/biograph_vision_technical_flyer-05440720.pdf

See presentation KT/EP seminar 6 September 2021 from Maurizio Conti

Knowledge Transfer Accelerating Innovation

Etiennette Auffray (CERN)

Manuela Cirilli Summer Student Lecture July 2024

In the CERN Crystal Clear group: <160 ps with DOI

Type of array	Crystals dim. [mm³]	DOI resolution FWHM [mm]	En. Res. FWHM @ 511 keV [%]	CTR FWHM [ps], central pixels	
				No correction	With DOI correction
DOI	3.1 x 3.1 x 15	3.0 ± 0.1	8.9 ± 0.2	234 ± 2	157 ± 2

DOI information extracted without degradation of timing properties

M. Pizzichemi et al, Phys. Med. Biol. 61 (2016) 4679

Knowledge Transfer Accelerating Innovation

Etiennette Auffray (CERN)

Manuela Cirilli Summer Student Lecture July 2024

Radioisotopes

1 alt TEDRIS

NATURE | NEWS FEATURE

<

Radioisotopes: The medical testing crisis

With a serious shortage of medical isotopes looming, innovative companies are exploring ways to make them without nuclear reactors.

Richard Van Noorden

11 December 2013

🖄 PDF 🛛 🔍 Rights & Permissions

Radioisotopes & Nuclear Medicine

Classification of isotopes for Medicine:

Courtesy U. Koester

Knowledge Transfer Accelerating Innovation

Theranostics

Tb	149	Tb	152
4.2 m	4.1 h	4.2 m	17.5 h
ε	ε	lγ 283;	ε
β*	α 3.97	160	β* 2.8
α 3.99	β* 1.8	ε; β*	γ 344;
γ 796;	γ 352;	γ 344;	586;
165	165	411	271
Tb	155	Tb	161
5.3	32 d	6.9	0 d
ε γ 87; 105; 180, 262		β· 0.5; 0.6 γ 26; 49; e ⁻	6 75

A Unique Matched Quadruplet of Terbium Radioisotopes for PET and SPECT and for α- and β-Radionuclide Therapy: An In Vivo Proof-of-Concept Study with a New Receptor-Targeted Folate Derivative

Cristina Müller, Konstantin Zhernosekov, Ulli Köster, Karl Johnston, Holger Dorrer, Alexander Hohn, Nico T. van der Walt, Andreas Türler and Roger Schibli Journal of Nuclear Medicine December 2012, 53 (12) 1951-1959; DOI: https://doi.org/10.2967/jnumed.112.107540

Knowledge Transfer Accelerating Innovation

ISOLDE has been running **@CERN** for > 50 years

Knowledge Transfer Accelerating Innovation

CERN-MEDICIS

Non-conventional isotopes collected by mass separation for new medical applications

Knowledge Transfer Accelerating Innovation

Thierry Stora (CERN)

113

Manuela Cirilli Summer Student Lecture July 2024

Principle of isotope production

Knowledge Transfer Accelerating Innovation

SPES -Selective Production of Exotic (nuclear) **Species** @ LNL

SPES-*y***:** innovative radioisotopes for medical applications

116

Gamma-MRI project

Development of a new medical diagnostic modality

Combine high spatial resolution (MRI) and high sensitivity (radiotracer)

Proof-of-principle by U Virginia: Y. Zheng, et al., Nature 537, 652 (2016)

Polarised gamma-emitting tracer => anisotropic decay

	Detection efficiency	Spatial resolution
PET and SPECT	high	Low (e.g. >5mm for 82Rb)
MRI	low	High

Digital Technologies

mirror_mod.use_y = True mirror_mod.use_z = False elif_operation == "MIRROR_Z": mirror_mod.use_x = False mirror_mod.use_y = False mirror_mod.use_z = True

#selection at the end -add back the deselected mirror modifier object
mirror_ob.select= 1
modifier_ob.select=1
bpy.context.scene.objects.active = modifier_ob
print("Selected" + str(modifier_ob)) # modifier ob is the active ob
mirror_ob_select

fore = byv.context.selected Disinite (0

Knowledge Transfer Accelerating Innovation

 $\bigcirc \bigcirc \bigcirc \bigcirc$

Geant4 – a simulation toolkit

Open source

CERN strongly contributes to its core development

Other Geant4 collaboration members developed specific capabilities and applied them in G4 medical applications

Medical Applications

G4DNAC Geant4-DNA project

ocanti protproject

G4MEDI (in Japanese) Geant4 Medical Physics in Japan

Geant4 North American Medical User Organization

GAMOS 🗗

Geant4-based Architecture for Medicine-Oriented Simulations

GATE

Geant4 Application for Tomographic Emission

GHOST

Geant4 Human Oncology Simulation Tool

TOPAS

Geant4 Monte Carlo Platform for Medical Applications

Knowledge Transfer Accelerating Innovation

John Apostolakis (CERN)

Human phantoms

Image of Polygon-Surface Reference Korean Male Phantom (PSRK-Man), implemented in Geant4. Courtesy of C.-H. Kim & C. Choi, Hanyang Univ.

Radiation Environment – model of space station

Courtesy T. Ersmark, KTH Stockholm

Geant4-DNA applications

Simulation using Geant4-DNA of irradiation of a pBR322 plasmid, including radiolysis

- movie courtesy of V. Stepan (NPI-ASCR/CENBG/CNRS/IN2P3/ESA

Model of nucleosome created using DnaFabric*, imported into Geant4 to model irradiation, repair mechanisms.

* S. Meylan et al, Comp. Phys. Comm. 204 (2016) p159

Knowledge Transfer Accelerating Innovation

Tools for specific applications

based on Geant4

- Tools provide specific capabilities for creating setups, measuring
 - create setup, steer simulation via 'text commands'
 - output adapted for application-area
- GATE (FR, DE, GR, PL, AT) PET/SPECT,
- TOPAS (US) protontherapy
- GAMOS (ES) for nuclear medicine applications
- Developed by external parties using capabilities of G4 toolkit

Flair – fluka advanced

interface

Improvements for medical simulations

Process DICOM standard files for radiotherapy purposes

Provides easy-to use tool for **treatment plan re-simulation** and quantitative comparison

Enables precise description of patient model and beam delivery system

is more than a graphical Interface

 \rightarrow is a complete integrated working environment for FLUKA

Greatly enhanced productivity

ightarrow users focus on their problem rather than on technicalities

In this presentation: a selection of results obtained by the CERN group

FLUKA

Knowledge Transfer Accelerating Innovation

Vasilis Vlachoudis (CERN)

3D spatial dose distribution simulated with FLUKA

Importing the RT DOSE with the activity mapping of ⁶⁸Ga

Simulation of the ⁶⁸Ga decays

Very fast setup time less than a few minutes with a few clicks from the user

Run FLUKA simulations with no programming skills or file editing requirements!

Knowledge Transfer Accelerating Innovation

Vasilis Vlachoudis (CERN)

Sensitivity studies of Monte Carlo TP recalculations

Proton prostate patient case (MedAustron) W.Kozlowska PhD

Knowledge Transfer Accelerating Innovation

Vasilis Vlachoudis (CERN) <u>Wioleta K</u>ozlowska, CERN PhD student

Head and Neck case

Head and Neck case (CNAO) W.Kozlowska PhD

Knowledge Transfer Accelerating Innovation Vasilis Vlachoudis (CERN) Wioleta Kozlowska, CERN PhD student

BioDynaMo: An open-source software framework

BioDynaMo is a software platform to easily create, run, and visualise 3D agent-based biological simulations.

An open-source software platform to easily create, run, and visualise 3D agent-based simulations, built up around CERN-developed technologies

www.biodynamo.org

İmmunoBrain

Checkpoint

Knowledge Transfer Accelerating Innovation

Fons Rademakers (CERN)

Manuela Cirilli Summer Student Lecture July 2024 128

Netherlands

From De Montigny et al., Methods, 2020

Knowledge Transfer Accelerating Innovation

Fons Rademakers (CERN)

Courtesy Jean de Montigny and Roman Bauer

CERN CERN UNIVERSITÉ DE GENÈVE

Knowledge Transfer Accelerating Innovation

Roman Bauer (Univ. of Surrey), Fons Rademakers (CERManuela Cirilli Summer Student Lecture July 2024 130

COVID Airborne Risk Assessment

some some name.	Office	Event data:			
Room number:	57/2-002	Total number of 3			
		occupants:			
Virus data:		people:			
Variant:	SARS-CoV-2 (Delta VOC)	*			
		Activity type: Office	~		
Coom data:	100.0	Exposed person(s) presence:	0		
Elect would be	100.0	infected personis) presence:	0		
Calling height:	room noor area (m.)	Start: 08:30 () Finish: 17:30	Start: 08:30 0 Finish: 17:30 0		
	Loosed exerting randflor from	Land Access	internet .		
Central heating syster	m in use: No Yes				
Location:	Melbourne, Victoria, AUS	which month is the eventry Decembe			
	deres and a second second				
- 11 Mar		Activity breaks: 🔘			
Ventilation data:	Charles Charlester Relation	Input separate breaks for infected	and exposed person(s)		
Ventration type. N	o ventración 🕐 mechanica: 💌 matura:	Lunch break: No (Yes			
Number of window		Start: 12:30 0 Finish: 13:30	0		
Height of window:	LS	Coffee Breaks: No breaks	2 . 4		
willoow type: () s	name / side-mung	Duration (minutes): 10 -			
widen of window.	meters				
Windows open:	1.0	Coffee breaks are seread evenly three	whout the day		
Permanently		contention are spicare treny on o	denotes and made		
Periodically	[10.0 / [120.0	_			
		Generate	report		
HEPS filtration: No.	No. Income a pression				

Developed by CERN personnel to assess the COVID airborne risk in indoor spaces with a risk-based approach.

Includes hourly fluctuations in outdoor temp (GVA data) and detail window modelling for natural ventilation, complex occupancy and ventilation profiles.

Andre Henriquez (CERN)

Data size

overcome barriers related to data governance and storage defining **common principles**

Data heterogeneity

overcome barriers of data access defining a global coordination of open data from multi-domain fields Data analysis

overcome barriers of analysis diversity defining common pipelines and approaches

Data overload

overcome barriers of excess of information by complying with results reproducibility and multi-disciplinary expertise's exchange

ASSEMBLÉE

SCIENCE AND TECHNOLOGY BRIEFINGS PARLIAMENTARY OFFICE FOR SCIENTIFIC AND TECHNOLOGICAL ASSESSMENT

February 2019

Briefing n° 12—

Ring segment of a particle accelerator © fotonat67 / Adobe Stock

Large particle accelerators

Summary

- Particle accelerators, like other kinds of "very large research infrastructure" (VLRI), make it possible to manage cutting-edge projects and respond to strategic issues: acquiring knowledge, enhancing scientific attractiveness, preparing for technological breakthroughs, scientific diplomacy, etc.
- CERN, the European particle physics laboratory, currently operates the biggest circular particle accelerator in the world, the LHC, which achieves
- the highest energies produced to date.
- A decision by the Japanese government is exp accelerator project, the ILC, proposed since scientific community.
- Thinking on the future European strategy for 2018 and should be presented in spring 2020. I confirms its interest in ILC, this European stra this fact: a possible contribution from Europe must be assessed in terms of scientific return, o

CERN has also had a very strong societal impact via **the creation of the World Wide Web (WWW)** in 1989⁽²¹⁾ under the leadership of Tim Berners-Lee and his collaborator Roger Cailliau. It was originally a response to researchers' need to exchange a high volume of data simply and instantaneously for

Mr. Cédric Villani, MP (National Assembly), First Vice-Chairman

From HEP to society: a long and winding road...

Knowledge Transfer Accelerating Innovation

Courtesy Luca Bottura (CERN)

On the unreasonable request of high $\rm J_{\rm C}$

Cea The ISEULT whole body 11.7 T MRI magnet

The ISEULT whole body 11.7 T MRI magnet

The ISEULT magnet a French-German initiative

Full field of 11.72 teslas achieved on July 18, 2019

First images released Oct. 7, 2021

https://www.cea.fr/presse/Pages/actualites-communiques/sante-sciencesdu-vivant/premieres-images-irm-iseult-2021.aspx

The Usefulness of Useless Knowledge

ABRAHAM FLEXNER

With a companion essay by ROBBERT DIJKGRAAF

1939!

In the end, utility resulted, but it was never a criterion to which his (*Faraday's, ndr*) ceaseless experimentation could be subjected.

I am not for a moment suggesting that everything that goes on in laboratories will ultimately turn to some unexpected practical use or that an ultimate practical use is its actual justification.

Knowledge Transfer Accelerating Innovation