Standard Model 2/4

Andreas Weiler (TU Munich)
CERN, 7/2024

Recap

- Can you show why the photon (or the gluon) turns out to be massless in a gauge invariant theory?
- How many polarizations does a photon or a gluon have? (Hint: it has spin 1 and travels with the speed of light). How many entries are in the photon field $\quad A^{\mu}(x), \quad \mu=0,1,2,3$?

Example: Coulomb potential

Example: Coulomb potential

Example: Coulomb potential

Example: Coulomb potential

quark-quark potential is only attractive for color neutral combinations *

Kinetic term for $\mathbf{S U (N)}$ gauge boson

We can cannot recycle the Maxwell action. The Lagrangian would not be invariant under a local SU(N) transformation

$$
A_{\mu}(x) \rightarrow U(x) A_{\mu}(x) U(x)^{\dagger}-\frac{i}{g}\left(\partial_{\mu} U(x)\right) U(x)^{\dagger}
$$

Field strength now contains a non-abelian contribution

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+i g\left[A_{\mu}, A_{\nu}\right]
$$

It transforms homogeneously

$$
F_{\mu \nu} \rightarrow U(x) F_{\mu \nu} U^{-1}(x)
$$

and we can build an invariant Lagrangian

$$
\mathscr{L}=-\frac{1}{4} \operatorname{Tr}\left(\mathrm{~F}_{\mu \nu} \mathrm{F}^{\mu \nu}\right)=\ldots+\mathrm{gAAA}+\mathrm{g}^{2} \mathrm{AAAA}
$$

Note: Gluons carry colour charge and do interact with themselves.

Kinetic term for $\operatorname{SU}(\mathbf{N})$ gauge boson

We can cannot recycle the Maxwell action. The Lagrangian would not be invariant under a local SU(N) transformation

$$
A_{\mu}(x) \rightarrow U(x) A_{\mu}(x) U(x)^{\dagger}-\frac{i}{g}\left(\partial_{\mu} U(x)\right) U(x)^{\dagger}
$$

Field strength now contains a non-abelian contribution

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+i g\left[A_{\mu}, A_{\nu}\right]
$$

It transforms homogeneously

$$
F_{\mu \nu} \rightarrow U(x) F_{\mu \nu} U^{-1}(x)
$$

and we can build an invariant Lagrangian

Note: Gluons carry colour charge and do interact with themselves.

Which theory is realized in nature? $\mathbf{S U}(\mathbb{N})$? $\mathbf{U}(1)$? Which particles?

How can we discover the Lagrangian of the universe?
We need experiments!

The strong and the electromagnetic interactions

$$
\mathrm{U}(1)_{\mathrm{em}} \quad \mathrm{SU}(3) \mathrm{c}
$$

- Why was evidence of electromagnetic interactions discovered before evidence of strong interactions?
- Why have we never seen a free quark, unlike electrons or protons?
- How can we test predictions about quarks if we don't observe them as free particles?

QED binds electrons and nuclei inside atoms and molecules

This is a hydrogen atom.
But quarks are fundamental objects, not the composite nuclei

$$
p=(u u d), \quad n=(u d d), \ldots
$$

Charges:

$$
\begin{array}{ll}
\text { up-quark: } & +2 / 3 \\
\text { down-quark: } & -1 / 3
\end{array}
$$

electron:-1

$$
u(x) \rightarrow e^{i \frac{2}{3} e \alpha(x)} u(x), \quad d(x) \rightarrow e^{-i \frac{1}{3} e \alpha(x)} d(x), \quad e(x) \rightarrow e^{-i e \alpha(x)} e(x)
$$

QCD binds quarks into hadrons

$$
p=(u u d), n=(u d d), \pi^{+}=(\bar{d} u), \ldots \quad \text { and hundreds more } .
$$

Coupling "constants" : QED

Classical physics:
Quantum field theory:
forces depend on distances
charges also depend on distances

Coupling "constants" : QED

Classical physics: forces depend on distances
Quantum field theory: charges also depend on distances

Coupling "constants" : QED

Classical physics:
Quantum field theory: charges also depend on distances
intuitive picture

The vacuum screens the electric charge -> infrared free
charge weaker at lower E at larger r

Coupling "constants" : QED

Classical physics:
Quantum field theory: charges also depend on distances
forces depend on distances

The development of quantum electrodynamics. 1937 (colourised).

The development of quantum electrodynamics. 1937 (colourised).

\longrightarrow

Modern view: "Ignorance is no shame".
We can't trust our QFT up to infinite energy, so we should not include virtual particles up to infinite energy. We introduce a maximum energy (a cut-off) to regularize the theory. We compare with the measurement to determine the value of classical + regularized virtual (= renormalize).

This is a good thing: for example, Feynman, Schwinger, Tomonaga, and others who developed quantum electrodynamics did not have to know about the top quark.

The development of quantum electrodynamics. 1937 (colourised).

0

Modern view: "Ignorance is no shame".
We can't trust our QFT up to infinite energy, so we should not include virtual particles up to infinite energy. We introduce a maximum energy (a cut-off) to regularize the theory. We compare with the measurement to determine the value of classical + regularized virtual (= renormalize).

This is a good thing: for example, Feynman, Schwinger, Tomonaga, and others who developed quantum electrodynamics did not have to know about the top quark.

Coupling "constants" : QED

Classical physics:
 forces depend on distances

Quantum field theory: charges also depend on distances

Fine structure constant: $\quad \alpha_{Q E D}=\frac{e^{2}}{4 \pi}$

Coupling "constants" : QED

Quantum field theory: charges also depend on distances

Classical physics:
 forces depend on distances

Fine structure constant: $\quad \alpha_{Q E D}=\frac{e^{2}}{4 \pi}$

$$
\begin{aligned}
\frac{1}{\alpha(0)} & =137.035999074(44) \\
\frac{1}{\alpha(90 G e V)} & =127.950(17)
\end{aligned}
$$

Coupling "constants" : QED

Classical physics:
Quantum field theory:
forces depend on distances
charges also depend on distances

Fine structure constant: $\quad \alpha_{Q E D}=\frac{e^{2}}{4 \pi}$

$$
\begin{aligned}
\frac{1}{\alpha(0)} & =137.035999074(44) \\
\frac{1}{\alpha(90 G e V)} & =127.950(17)
\end{aligned}
$$

Coupling "constants" : QCD

Q: Should we expect the virtual particle contribution to be the same as in QED?

Coupling "constants" : QCD

Q: Should we expect the virtual particle contribution to be the same as in QED? No! Gluons are charged under color, they self-interact

Coupling "constants" : QCD

Q: Should we expect the virtual particle contribution to be the same as in QED? No! Gluons are charged under color, they self-interact

QED like
gluons interact with themselves

Coupling "constants" : QCD

Q: Should we expect the virtual particle contribution to be the same as in QED? No! Gluons are charged under color, they self-interact

QED like
gluons interact with themselves

Coupling "constants" : QCD

Q: Should we expect the virtual particle contribution to be the same as in QED? No! Gluons are charged under color, they self-interact

QED like

gluons interact with themselves

Coupling "constants"

Q: Should we expect the virtual particle contrik as in QED? No! Gluons are charged unde

QED like

gluons interact with themselves

Coupling "constants" : QCD

Q: Should we expect the virtual particle contribution to be the same as in QED? No! Gluons are charged under color, they self-interact

gluons interact with themselves

Evolution of coupling constants

QED: virtual particles screen charge, weaker longer distances = "infrared freedom"
infinite range

Evolution of coupling constants

QED: virtual particles screen charge, weaker longer distances = "infrared freedom"
infinite range $q_{1} \bullet \sim \sim \sim \sim q^{\gamma} V=\frac{q_{1} q_{2}}{r}$
QCD: virtual particles anti-screen charge, stronger longer distances = "asymptotic* freedom"
(* asymptotic means at high energies)

Cannot separate color charges!
The range of the strong interactions determined by the exchange of the lightest colorless hadron (= pion)

$$
V=\frac{g_{1} g_{2}}{r} e^{-m_{\pi} r} \quad m_{\pi}=125 \mathrm{MeV}, \quad \frac{1}{m_{\pi}} \approx 1 \mathrm{Fermi}=10^{-13} \mathrm{~cm}
$$

Measuring the quark charge

Can we measure the electric charge of the quarks?
Can we test that there are $N_{C}=3$ colors?

Measuring the quark charge

Can we measure the electric charge of the quarks?
Can we test that there are $N_{C}=3$ colors?
If we perform the experiment at high enough energy, the strong coupling should be small enough to calculate using almost free quarks!

Measuring the quark charge

Can we measure the electric charge of the quarks?
Can we test that there are $N_{C}=3$ colors?
If we perform the experiment at high enough energy, the strong coupling should be small enough to calculate using almost free quarks!
p appears pointlike

$\lambda \gg r_{p}$
p has geometric features
we see quarks!

$\lambda \sim r_{p}$

$\lambda<r_{p}$
r_{p} : proton radius
E

Measuring the quark charge

Can we measure the electric charge of the quarks?
Can we test that there are $N_{C}=3$ colors?
If we perform the experiment at high enough energy, the strong coupling should be small enough to calculate the result using free quarks!

Let's collide an electron and a positron

Measuring the quark charge

Can we measure the electric charge of the quarks?
Can we test that there are $N_{C}=3$ colors?
If we perform the experiment at high enough energy, the strong coupling should be small enough to calculate the result using free quarks!

Let's collide an electron and a positron

Measuring the quark charge

Can we measure the electric charge of the quarks?
Can we test that there are $N_{C}=3$ colors?
If we perform the experiment at high enough energy, the strong coupling should be small enough to calculate the result using free quarks!

Let's collide an electron and a positron
up, charm, top: $+2 / 3$

down, strange, bottom: $-1 / 3$

Testing the quark charges and N_{c}

Testing the quark charges and N_{c}

because there are 3 colors
$S U(3)$ c

$$
\begin{gathered}
R(E=1 \mathrm{GeV})=3 \times\left(\left(\frac{2}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}\right)=2 \\
R(1.2<E<4.6)=3 \times\left(\left(\frac{2}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}\right)=10 / 3 \approx 3.33 \\
\mathbf{q}_{\mathbf{c}}
\end{gathered}
$$

Modern version of the measurement

Modern version of the measurement

QCD strongly coupled

More on QCD at colliders:

Making Predictions at Hadron Colliders 1/2
Speaker: Alexander Yohei Huss (CERN)

SM without weak interactions

Summary

- Particles: $u=3_{2 / 3}, d=3_{1 / 3}, e=\mathbf{1}_{-1} \quad$ (per generation)

$$
\mathcal{L}_{Q C D+Q E D}\left(g_{S}, e, m_{u_{i}}, m_{d_{i}}, m_{e_{i}}\right)
$$

SM without weak interactions

Summary

- Symmetry: $\quad S U(3) \times U(1)_{e m}$

- Particles: $u=3_{2 / 3}, d=3_{1 / 3}, e=\mathbf{1}_{-1} \quad$ (per generation)

$$
\mathcal{L}_{Q C D+Q E D}\left(g_{S}, e, m_{u_{i}}, m_{d_{i}}, m_{e_{i}}\right)
$$

- One tiny problem: no way to violate individual quark or lepton number!

But: the muon decays!

CERN 2 metre hydrogen bubble chamber, exposed to a $10 \mathrm{GeV} / \mathrm{c} \mathrm{K}+$ beam (from top of the picture).

Example of a pion stopping and then decaying into a muon. This a 'twobody decay' - the muon is accompanied by a neutrino moving in the opposite direction with equal and opposite momentum. Energy and momentum conservation force this momentum to be about $30 \mathrm{MeV} / \mathrm{c}$. The range of a muon with this momentum in hydrogen is about a centimetre.

At the end of its short range, the muon itself decays into a positron which spirals characteristically.

CERN 2 metre hydrogen bubble chamber, exposed to a $10 \mathrm{GeV} / \mathrm{c} \mathrm{K}+$ beam (from top of the picture).

Example of a pion stopping and then decaying into a muon. This a 'twobody decay' - the muon is accompanied by a neutrino moving in the opposite direction with equal and opposite momentum. Energy and momentum conservation force this momentum to be about $30 \mathrm{MeV} / \mathrm{c}$. The range of a muon with this momentum in hydrogen is about a centimetre.

At the end of its short range, the muon itself decays into a positron which spirals characteristically.

We are missing an interaction: the weak force!

