Future High-Energy Collider Projects

Part 1

Roderik Bruce

FCC

SPS

LHC

Introductory remarks

- This lecture is based on a collection of materials from many colleagues that I would like to acknowledge:
 - W. Bartmann, M. Benedict, M. Boscolo, H. Burkhardt, R. Corsini, B. Dalena, O. Etisken, F. Gianotti, M. Giovannozzi, B. Harer, B. Holzer, J. Jowett, R. Kersevan, A. Lechner, M. Lamont, J. Pfingstner, T. Pieloni, M. Rakic, S. Redaelli, D. Schulte, L. Rossi, R. Ruber, M. Schaumann, J. Wenninger, F. Zimmermann
 - In particular, a lot of material comes from D. Schulte thanks! who in turn used material from S. Stapnes, L. Rossi, Ralph Assmann, J-P. Delahaye, L. Linssen, S. Doebert, A. Grudiev, F. Tecker, W. Wuensch, S. Poss, J. Strube, J. Wenninger, M. Benedikt, F. Zimmermann, B. Holzer, R. Kersevan, Ph. Lebrun
- This is an accelerator lecture. For particle physics, e.g., physics goals etc., please see physics lectures
- I will use concepts introduced in other lectures:
 - Foteini Asvesta: Accelerators and Beam Dynamics
 - Susana Izquierdo Bermudez: Magnet Superconductivity
- Focus on machines studied at CERN

Outline

Introduction

First lecture

Second lecture

- Considerations for collider design: particle type, energy, circular/linear...
- Limitations for future colliders
- European strategy for particle physics
- ILC (International Linear Collider)
- CLIC (Compact Linear Collider)
- **HL-LHC** (High-Luminosity Large Hadron Collider)
 - FCC-hh (Future Circular collider, hadrons)
 - FCC-ee (Future Circular collider, e+e-)
- CEPC/SppC (Chinese Electron-Positron Collider / Super proton-proton Collider)
- Muon collider

Linear

Circular

Particle colliders

- Particle colliders have been instrumental for scientific discoveries in high energy physics for more than half a century
 - Key for establishing the standard model in particle physics
- Technological innovation made it possible to increase energy at a much faster pace than the costs
- LHC has the highest energy among colliders built so far
 - Circular collider, designed to collide
 7 TeV protons and heavy ions

"Livingstone plot" of collider energy vs time (source)

LHC timeline

- Present LHC will operate for a few more years
- High-Luminosity LHC (HL-LHC) upgrades foreseen for next long shutdown
- HL-LHC planned to operate into early 2040's
- What happens next?
 - Nobody knows, but there are many ideas on the table
- It took ~25 years to design and build the LHC, so need to start thinking now about future options

Tentative schedule, could well change

(source https://edms.cern.ch/document/2311633/4.0)

Long Term Schedule for CERN Accelerator complex

3 main <u>complementary</u> ways to search for (and study) new physics at accelerators

 e^+

Ζ

e.g.: Higgs production at future e^+e^- linear/circular colliders at $\int s \sim 250$ GeV through the HZ process \rightarrow need high E and high L

Indirect

precise measurements of known processes

- → look for (tiny) deviations from SM expectation from quantum effects (loops, virtual particles)
- → sensitivities to E-scales $\land \gg \int s \rightarrow need$ high E and high L

E.g. top mass predicted by LEP1 and SLC in 1993: m_{top} = 177 \pm 10 GeV; first direct evidence at Tevatron in 1994: m_{top} = 174 \pm 16 GeV

Rare processes

suppressed in SM \rightarrow could be enhanced by New Physics

e.g. neutrino interactions, rare decay modes → need intense beams and/or ultra-sensitive (massive) detectors ("intensity frontier")

E.g. $K^+ \rightarrow \pi^+ vv$ decay (NA62 experiment) Proceeds via loops \rightarrow suppressed in the SM : BR~ 10⁻¹⁰ Can be enhanced by new particles running in the loop. Theoretically very clean.

Slide from F. Gianotti

OCUS

Considerations for new colliders

- So, we want high energy and high luminosity
 - When we say high luminosity, we implicitly mean high event rate
 - Reminder: The luminosity directly determines the event rate
- How do we get there? Several choices to be made:
 - What to collide: lepton vs hadron
 - How to collide:
 - fixed target or colliding beams
 - linear vs circular collider
 - Acceleration technology
 - DC, RF, wakefield...
 - Magnet technology
 - Superconducting (what conductor?), normal conducting
 - Acceptable cost of construction, power consumption, site
- Think about various limitations to energy and luminosity and how to overcome them

Leptons vs hadrons

Hadrons (protons or ions)

- Mix of quarks, anti-quarks and gluons:
 - variety of processes
 - not all nucleon energy available in collision
 - Energy spread between partons spread in collision energy
 - huge QCD background
- Can typically achieve highest collision energy
- Good for discoveries at the frontier of new physics

Leptons (electrons, positrons, maybe muons)

- Elementary particles colliding very well defined centre-of-mass energy
- Low background
- Good for high-precision measurements
- Higher energy loss from synchrotron radiation influences accelerator design → see next slides

Synchrotron radiation

- Classical electrodynamics: an accelerating charge radiates
 - Radiation carries off energy, which is taken away from the kinetic energy
 - Radiated energy needs to be replenished by accelerating RF cavities => could lead to very high power consumption
 - Radiated photons impact on vacuum chamber => causes heating, maybe even damage for high power loads
- For a relativistic charged particle, radiation is forward – it sweeps around like a locomotive's headlight as the particle moves

Radiated power

- For full derivation, see e.g. Jackson, Classical electrodynamics, chapter 14
- Very short summary
 - Write down electric and magnetic fields of moving point charge (at relativistic speed)
 - Power radiated is given by integral of Poynting vector over closed surface around charge, let R→∞ (only 1/R terms in fields contribute)
 - Integrate don't be in a hurry
- Result:
 - Energy loss is negligible for longitudinal acceleration, except for extreme (unphysical) gradients
 - For transverse acceleration (as in circular colliders), energy loss could be significant 4th power dependence on energy and mass
 - Effect is much more limiting for light particles, such as electrons/positrons
 - Electrons are 2000 times lighter than protons!

$$\mathbf{B} = [\mathbf{n} \times \mathbf{E}]_{\text{ret}}$$
$$\mathbf{E}(\mathbf{x}, t) = e \left[\frac{\mathbf{n} - \mathbf{\beta}}{\gamma^2 (1 - \mathbf{\beta} \cdot \mathbf{n})^3 R^2} \right]_{\text{ret}} + \frac{e}{c} \left[\frac{\mathbf{n} \times \{(\mathbf{n} - \mathbf{\beta}) \times \dot{\mathbf{\beta}}\}}{(1 - \mathbf{\beta} \cdot \mathbf{n})^3 R} \right]_{\text{ret}}$$

$$P(r) = \oint \mathbf{S} \cdot d\mathbf{a} = \frac{1}{\mu_0} \oint (\mathbf{E} \times \mathbf{B}) \cdot d\mathbf{a}$$

Radiation damping

٠

٠

FIG. 40--Effect of an energy change on the vertical betatron oscillations: (a) for radiation loss, (b) for rf acceleration.

M. Sands, <u>SLAC-121 UC-28</u>

- Emitted photons along betatron trajectory particle loses both longitudinal and transverse momentum
- Energy losses compensated by RF, giving purely longitudinal momentum kick
- Increases longitudinal momentum and not transverse => decrease in angle
 - Smaller betatron amplitudes => smaller emittance, "radiation damping"
 - Remember: emittance determines phase space area occupied by beam
 - On the other hand: photon emission gives small random energy (and very small angle) change => blowup, "quantum excitation"
 - Equilibrium between radiation damping and quantum excitation exists: equilibrium emittance
 - Time needed for the beam to reach the equilibrium emittance:
 "Damping time"
 - Equilibrium emittance is typically smaller in vertical than horizontal plane => "flat" lepton beams

Collider vs fixed target experiments

• Fixed Target

• Collider

To achieve the highest possible centre-of-mass energy, need a collider

Circular vs linear collider

Circular Collider

- multi-pass => Accelerate beam in many turns, let beam collide many times
- many magnets, few accelerating cavities
- Bending of beam trajectory => synchrotron radiation losses important for light particles

$$\Delta E \propto \left(\frac{E}{m}\right)^4 \frac{1}{R}$$
 accelerating cavities

Linear Collider

- single pass => need to be very efficient
- few magnets, many accelerating cavities
- Not limited by synchrotron radiation promising choice for reaching highest lepton energies

Increasing beam energy

Circular Collider

- Hadron beams: energy limited by ability of to keep particle on circular orbit
 - Maximum achievable dipole field (superconductor technology)
 - Radius of ring (cost, site)
- Lepton beams: radiation losses
 - RF power consumption
 - Disposal of radiated power
 - Radius of ring (cost, site)

$$\Delta E \propto \left(rac{E}{m}
ight)^4 rac{1}{R}$$

 $\frac{p}{-} = B \rho$ a $B \rho =$ Beam rigidity (see lecture F. Asvesta) straight sections

Linear Collider

- Energy depends on
 - Accelerating gradient (RF technology)
 - Plasma wakefield acceleration promises large advancement, but not yet mature to produce required beam quality
 - Length (cost, site)

 $E_{cm} \approx L_{linac} G_{acc}$

To push energy boundary: improve technology (B-fields, RF gradient) or build a larger machine

 $E_{heam}[TeV] \approx 0.3 \times B[T] \times R[km]$

For protons:

Increasing luminosity

Reminder: luminosity depends on beams and optics (see lecture F. Asvesta) Expression for round beams:

Higher intensity

15

In addition:

Potential limitations

on luminosity from

losses and showers

from the collisions

Some limitations on intensity and beam size

• Intensity

- Limitations in beam production scheme
- Collective effects and instabilities, e.g. space charge, impedance effects, electron cloud, beam-beam effects (detrimental non-linear electromagnetic field acting on opposing beam)

(not exhaustive list)

- In circular lepton machines, limitations on RF power (compensate synchrotron radiation losses)
- Detrimental effects of beam losses

β-function around collision point: $\beta(s) = \beta^* + rac{s^2}{\beta^*}$

- β* (β-function around collision point) limited by magnet focusing strength and aperture in final focus quadrupoles
- Emittance: limitations in beam production, larger risk for instabilities, blowup (intra-beam scattering); not easy to reduce emittance of existing beam, need dedicated cooling
 - Lepton machines: equilibrium emittance determined by accelerator lattice
 - Can use damping rings to shrink emittance
- Beam-beam effects

Geometric reduction factor

- Bunches typically collide with an angle, "crossing angle" otherwise we get unwanted collisions outside interaction point if they arrive closely in time
 - Crossing angle need to be large enough so that bunches are not perturbed by electromagnetic field at parasitic encounters (long-range beam-beam effect)
- Fewer collisions when overlap is not perfect geometric reduction factor
 - Depends on crossing angle, bunch length, and transverse size

Considerations for future collider choices

	D. Schulte
Physics potential	The collider energy
	The collider luminosity
	Particle type
Feasibility	The technical maturity
,	, The risk
	The schedule
Affordability	The collider cost
	The collider power consumption
	Availability of site

European strategy for particle physics

- Common strategy worked out in Europe to guide future decision-making in field: "European strategy for particle physics"
 - endorsed by the CERN council
- Based on bottom-up approach:
- physics community is invited to submit proposals for near-term, mid-term and longer-term projects → community discussion in open symposium, <u>Physics</u> <u>briefing book</u>
 - Based on this input, the European Strategy Group formulates the strategy
 - consists of scientific delegates from CERN Member States, Associate Member States, directors of major European laboratories, representatives of various European organizations, some invitees from outside the European Community
- Initiated in 2006, updated in 2013 and 2020, next update foreseen around 2027

2020 update: Key takeaway messages

Some recommendations in European strategy

Some points relevant to future high-energy colliders - see full document here

- [about LHC] "The successful completion of the high-luminosity upgrade should remain the focal point of European particle physics, together with continued innovation in experimental techniques. The full physics potential of the LHC and the HL-LHC should be exploited. "
- "An electron-positron Higgs factory is the highest-priority next collider"
- "Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage. "
- "The particle physics community should ramp up its R&D effort focused on advanced accelerator technologies, in particular that for high-field superconducting magnets, including high-temperature superconductors"

High-energy colliders studied at CERN

- **HL-LHC**: luminosity upgrade of the LHC.
 - Approved and financed production and installation of upgrades already in full swing
 - pp collisions with 14 TeV energy in centre-of-mass system (CMS) and heavy ions as in LHC, 27 km ring
- Future Circular Collider (FCC) in different stages
 - Conceptual design report released
 - Circular e+e- collider in ~100 km tunnel, up to 365 GeV CMS: FCC-ee
 - Re-use tunnel for 100 km hadron collider, ~100 TeV pp CMS: FCC-hh
 - 2-step approach inspired by successful LEP LHC programs at CERN
- Compact Linear Collider (CLIC)
 - Linear e+e- collider, conceptual design report released
 - Up to ~50 km and 3 TeV CMS energy
- Other projects that are being studied
 - Muon collider
 - LHeC (hadron-electron collisions at the LHC)

Initiatives in the rest of the world

• International Linear Collider (ILC)

- Linear e+e- collider, technical design report released – mature design
- up to 500 GeV CMS, 31 km
- Potentially hosted by Japan waiting for political decisions
- Chinese initiative for circular collider
 - First: e+e- collider (CEPC), up to 240 GeV CMS energy, 100 km ring
 - followed by a 100 km hadron collider (SppC), 75 TeV CMS energy (proposals for extensions to ~150 TeV)
- Electron-Ion Collider (EIC) to be built at Brookhaven, US
 - Circular, up to 140 GeV CMS energy, ~3.4 km
 - Range of ions: p-U
 - Use existing RHIC with some upgrades for ions
 - New electron storage ring and injector
 - Project approved, announced timeline to completion of ~10-15 years

ILC

ILC basics

- International Linear Collider: e+ecollider, aiming at 100-250 GeV beam energy (up to 500 GeV centre of mass)
 - Extendable to 1 TeV (requires doubling the length)
- Foreseen length at 500 GeV CMS energy of 31 km

 Possibly to be built in Japan – waiting for political decisions and agreements on funding

ILC layout and concept

- First, create e- (photocathode DC gun)
- Accelerate, send to circulate in 3.2 km damping ring
 - Shrinking emittance under radiation damping
- e- sent to main linac, accelerate
- To create e+: Electrons pass undulator
 magnets with many periodic bends
 - Radiated photons impact on Ti-alloy target, creating e+e- pairs.
 - Capture e+, accelerate, send to damping ring
- Send e+ to main linac, accelerate
- Collide e+e- inside detector

From ILC design report

ILC main parameters

From ILC design report			Baseline 500 GeV Machine			1st Stage	L Upgrade	E_{CM} Upgrade	
								A	В
Centre-of-mass energy	$E_{\rm CM}$	GeV	250	350	500	250	500	1000	1000
Collision rate	$f_{\rm rep}$	Hz	5	5	5	5	5	4	4
Electron linac rate	f_{linac}	Hz	10	5	5	10	5	4	4
Number of bunches	$n_{\rm b}$		1312	1312	1312	1312	2625	2450	2450
Bunch population	N	$\times 10^{10}$	2.0	2.0	2.0	2.0	2.0	1.74	1.74
Bunch separation	$\Delta t_{\rm b}$	ns	554	554	554	554	366	366	366
Pulse current	$I_{\rm beam}$	mA	5.8	5.8	5.8	5.8	8.8	7.6	7.6
Main linac average gradient	$G_{\mathbf{a}}$	$MV m^{-1}$	14.7	21.4	31.5	31.5	31.5	38.2	39.2
Average total beam power	P_{beam}	MW	5.9	7.3	10.5	5.9	21.0	27.2	27.2
Estimated AC power	$P_{\rm AC}$	MW	122	121	163	129	204	300	300
RMS bunch length	$\sigma_{\rm z}$	mm	0.3	0.3	0.3	0.3	0.3	0.250	0.225
Electron RMS energy spread	$\Delta p/p$	%	0.190	0.158	0.124	0.190	0.124	0.083	0.085
Positron RMS energy spread	$\Delta p/p$	%	0.152	0.100	0.070	0.152	0.070	0.043	0.047
Electron polarisation	P_{-}	%	80	80	80	80	80	80	80
Positron polarisation	P_+	%	30	30	30	30	30	20	20
Horizontal emittance	$\gamma \epsilon_x$	μm	10	10	10	10	10	10	10
Vertical emittance	$\gamma \epsilon_y$	nm	35	35	35	35	35	30	30
IP horizontal beta function	β_{r}^{*}	mm	13.0	16.0	11.0	13.0	11.0	22.6	11.0
IP vertical beta function	β_{y}^{*}	mm	0.41	0.34	0.48	0.41	0.48	0.25	0.23
IP RMS horizontal beam size	σ_r^*	nm	729.0	683.5	474	729	474	481	335
IP RMS veritcal beam size	σ_{y}^{*}	nm	7.7	5.9	5.9	7.7	5.9	2.8	2.7
Luminosity	L	$ imes 10^{34}\mathrm{cm}^{-2}\mathrm{s}^{-1}$	0.75	1.0	1.8	0.75	3.6	3.6	4.9
Fraction of luminosity in top 1%	$L_{0.01}/L$		87.1%	77.4%	58.3%	87.1%	58.3%	59.2%	44.5%
Average energy loss	δ_{BS}		0.97%	1.9%	4.5%	0.97%	4.5%	5.6%	10.5%
Number of pairs per bunch crossing	Npairs	$\times 10^3$	62.4	93.6	139.0	62.4	139.0	200.5	382.6
Total pair energy per bunch crossing	E_{pairs}	TeV	46.5	115.0	344.1	46.5	344.1	1338.0	3441.0

Luminosity comparison

- Comparing luminosity between different future lepton colliders
 - Circular and linear
- At high energies, linear lepton colliders can achieve higher luminosity than circular ones
 - Intensity in circular colliders limited by synchrotron radiation

ILC Cavities

- Superconducting cavity (Ni at 2 K)
- RF frequency is 1.3 GHz, 23 cm wavelength
- Length is 9 cells = 4.5 wavelengths = 1 m

- Standing wave structure, achieving gradients of 31.5 MV/m
- Theoretical field limit around 50-60 MV/m
 - In reality, reaching about 30-40 MV/m with imperfections
- Need about 8000 cavities

Further documentation

• ILC technical design report

CLIC

CLIC basics

- Linear e+e- collider, to be built in stages of increasing centre-of-mass energy:
 - 380 GeV 3 TeV
 - Length between ~11 km and ~50 km
- Aiming at highest lepton energies
- 30 MW of beam power at 3TeV

CLIC Staged Scenario

CLIC parameters

Parameter	Symbol [unit]	ILC 250	CLIC	CLIC
Centre of mass energy	E _{cm} [GeV]	250	380	3000
Luminosity	L [10 ³⁴ cm ⁻² s ⁻¹]	1.35	1.5	6
Luminosity in peak	L _{0.01} [10 ³⁴ cm ⁻² s ⁻¹]	1	0.9	2
Gradient	G [MV/m]	31.5	72	100
Particles per bunch	N [10 ⁹]	20	5.2	3.72
Bunch length	σ _z [μm]	300	70	44
Collision beam size	σ _{x,y} [nm/nm]	516/ <mark>7.7</mark>	149/ <mark>2.9</mark>	40/ <mark>1</mark>
Vertical emittance	ε _{x,y} [nm]	35	30	20*
Bunches per pulse	n _b	1312	352	312
Bunch distance	Δz [mm]	554	0.5	0.5
Repetition rate	f _r [Hz]	5	50	50

D. Schulte

Flat beams in lepton colliders

- Naturally smaller vertical beam size from radiation damping
 - Often true also for linear colliders due to horizontal bending in damping rings, transfer lines etc.
- Beam-beam effect
 - Focusing of e+e- beams due to each others' fields => higher luminosity
 - Bending of particles => synchrotron radiation, "beamstrahlung" => unwanted energy spread in collisions
- To avoid energy spread and keep luminosity high: collide "flat" beams, with much smaller beam size in one plane

Luminosity depends on product of beam sizes:

average number of photons per collision depends on sum of beam sizes:

$$n_{\gamma} \approx \frac{12}{\pi^{3/2}} \frac{\alpha r_e N_b}{\sigma_x^* + \sigma_y^*} \approx \frac{12}{\pi^{3/2}} \frac{\alpha r_e N_b}{\sigma_x^*}$$

M.A. Valdivia García et al., doi:10.18429/JACoW-IPAC2019-MOPMP035

CLIC layout

- Concept: beam generation → pre-acceleration → damping rings → booster linac → main linacs → collisions
- CLIC aims at gradients of 100 MV/m, 20 times higher than the LHC
 - Compare 30 MV/m at ILC
- Different acceleration concept in main LINAC from ILC :
 - drive-beam acceleration, with RF power taken from another e- beam

CLIC cavities

- To reach 100 MV/m: different type of cavity from ILC
- 12 GHz, 23 cm long, normal conducting
 - ⇒ Much worse conductor than SC, but allows reaching higher fields
 - \Rightarrow Problem: power is very rapidly lost in the walls
 - ⇒ Need to put in very intense and short RF pulses timed to the passage of the beam

Power flow

- 1/3 lost in cavity walls
- 1/3 in filling the structure and into load
- 1/3 into the beam

Average RF power about 3 kW/m About 1 kW/m into beam D. Schulte

Drive beam acceleration

- To produce very rapid pulses: use two-beam acceleration scheme
- A very long beam pulse at 4A, 140 us produced in LINAC
- Use combiner rings to decrease bunch spacing of drive beam => produce very short and intense 100 A pulse
- Send to decelerating structure

Two-beam acceleration scheme

- The high-current drive beam is decelerated in special power extraction structures (PETS)
- Generated EM field can be transferred in RF waveguides to the other beam => power is used to accelerate the main beam

CLIC Test Facility (CTF3)

- Experimental tests carried out in test facility at CERN to demonstrate drive beam concept
- Accelerating gradient of >100 MV/m achieved

CLIC power consumption

- Power and energy consumption at 380 GeV is well within the existing parameters and installations at CERN
- At 1.5 TeV: power will surpass the current CERN usage (2017) by ~30%
- At 3 TeV the energy consumption will be a factor two of the current CERN usage (2017)
- Development work ongoing to further improve energy efficiency

Estimated power consumption of CLIC in MW at 380 GeV (total: 252 MW)

CLIC reference documents

- More information:
 - <u>Conceptual design report</u> (2012)
 - <u>Updated CLIC baseline</u>
 <u>document (2016)</u>

Outline

Introduction

First lecture

Second lecture

- Considerations for collider design: particle type, energy, circular/linear...
- Limitations for future colliders
- European strategy for particle physics
- ILC (International Linear Collider)
- CLIC (Compact Linear Collider)
- HL-LHC (High-Luminosity Large Hadron Collider)
 - FCC-hh (Future Circular collider, hadrons)
- FCC-ee (Future Circular collider, e+e-)
- CEPC/SppC (Chinese Electron-Positron Collider / Super proton-proton Collider)
- Muon collider

Linear

Circular

Coffee break – some fruit?

WHEN TWO APPLES COLLIDE, THEY CAN BRIEFLY FORM EXOTIC NEW FRUIT. PINEAPPLES WITH APPLE SKIN. POMEGRANATES FULL OF GRAPES. WATERMELON-SIZED PEACHES. THESE NORMALLY DECAY INTO A SHOWER OF FRUIT SALAD, BUT BY STUDYING THE DEBRIS, WE CAN LEARN WHAT WAS PRODUCED. THEN, THE HUNT IS ON FOR A STABLE FORM. ඵ ante හ

Source: https://xkcd.com/1949/