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• muon decay               ( lifetime:  )   


• neutron decay            ( lifetime:  )   


• charged pion decay    ( lifetime:  )   

τ ≈ 10−6s

τ ≈ 877 s

τ ≈ 10−8 s

We want to explain these processes

The weak interactions

How can one interaction be responsible  
for such different life-times?
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Muon decay

X is something undetected. 

On the right you see the electron spectrum 
Can X be just one particle?  

                         pe  
(electron momentum)

No, because in two-body decays 
pe would be fixed!

We observe a muon decaying into an electron:         μ− → e− + X
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Muon decay (1st draft)

μ− → e− + νμ + νe

( μ
νμ)

†
γ0(i∂μ − g ( 0

νμ))( μ
νμ)μ γλ W+

λ νμ
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Muon decay (1st draft)*
μ− → e− + νμ + νe

Use non-abelian gauge theory template to 
describe this: 
 
Plan: replace colors  with (r, g, b) (νμ, μ)

ℒ = ψi(x) γμ(i∂μ − gs Aa
μ(x)Ta

ij−m) ψj(x)

* chiral structure will  
    come later.
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W−
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LW+
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* chiral structure will  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Muon decay (1st draft)

“Charged current” (the W boson carries electric charge)  
  interactions for the muon and electron

ℒ = (ν̄μ

μ̄ ) γλ
L(i∂λ − g( 0 W+

λ
W−

λ 0 )) (νμ
μ ) = gν̄μ γλ

LW+
λ μ + …

Since this is an non-abelian theory, this is universal!
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ℒ = (ν̄μ

μ̄ ) γλ
L(i∂λ − g( 0 W+

λ
W−

λ 0 )) (νμ
μ ) = gν̄μ γλ

LW+
λ μ + …

ℒ = (ν̄e
ē ) γλ

L(i∂λ − g( 0 W+
λ

W−
λ 0 )) (νe

e ) = gν̄e γλ
LW+

λ e + …

Since this is an non-abelian theory, this is universal!
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= g2 (ν̄μ γλ
Lμ) −i

k2 − m2
W

(ν̄eγLλe) ≈ i
g2

m2
W

(ν̄μ γλ
Lμ)(ν̄eγLλe)

Muon decay “calculation”
k ≪ m2

W

Four-fermi interaction is an effective field theory for weak decays.

We can now use dimensional analysis to estimate the decay width   .  Γ

(Fermi theory)

Fermi

82



Dimensional analysis estimate of muon life-time
Γ = 1/τlifetime has dimensions of Energy

Γ ∝
2

≈ g4

m4
W
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Dimensional analysis estimate of muon life-time
Γ = 1/τlifetime has dimensions of Energy

Γ ∝
2

Γ ∼ g4

m4
W

m5
μ

Γ(μ) = ( g4

32m4
W )

m5
μ

192π3 = G2
F

m5
μ

192π3Full calculation:

Γ ∼ 10−19GeV or        τ = 1/Γ ∼ 10−6sMuon lifetime:

= G2
F

≈ g4

m4
W
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Muon decay vs. neutron decay

Γ(μ) = ( g4

32m4
W )

m5
μ

192π3 = G2
F

m5
μ

192π3

Γ ∼ 10−19 GeV or        τ = 1/Γ ∼ 10−6s

Muon lifetime:

What replaces  ?     The energy released in neutron decay!mμneutron lifetime:
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32m4
W )

m5
μ
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192π3
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• muon decay               ( lifetime:  )   


• neutron decay            ( lifetime:  )   


• charged pion decay    ( lifetime:  )   

τ ≈ 10−6s

τ ≈ 877 s

τ ≈ 10−8 s

We want to explain these processes

The weak interactions

?
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Charged pion decay

ℒ = (ū
d̄) γλ

L(i∂λ − g( 0 W+
λ

W−
λ 0 )) (u

d) = gū γλ
LW+

λ d + …
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We measure a lifetime:  τ ≈ 10−8 s

The paradox: charged pion decay

Two contributions:

How important do we expect each one to be? 

Using dimensional analysis, we predict  
Γ(π− → e−ν̄e)
Γ(π− → μ−ν̄e)

= (mπ − me)5

(mπ − mμ)5 ∼ 103
Γ(π− → e−ν̄e)
Γ(π− → μ−ν̄e)

|EXP ≈ 10−4vs. experiment
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Why is pion decay different than to muon & neutron decays?

Chirality of weak interactions

Pion is a scalar!   Muon and neutron are spin 1/2 fermions.
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Chirality and Dirac equation

ℒ = ψ(x) γμ(i∂μ − m) ψ(x)

L and R chirality do not talk to each other if fermion is massless (m=0)! 
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massive right-handed  
spinor 

 
(velocity < c)

momentum

spin

picture curtesy Gian Giudice
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momentum
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right-handed massive  
spinor 
 

momentum

spinboost to 
new frame

massive right-handed  
spinor 

 
(velocity < c)

momentum

spin

picture curtesy Gian Giudice

Conclusion: If our theory is able to distinguish  
left-handed and right-handed fermions, then we 
must have me = 0 (or give up on theory?).
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Clever idea by Lederman/Garwin (57)
Muons are polarized

Decay pion to muon and investigate the muon decay products

The angular distribution of the electrons reveals the chirality of the interaction.
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Chirality and handedness

The weak interactions only talk to left-handed particles! 

Historically found this in decay of Cobalt (C.S. Wu ’56)
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W3 is charge neutral
Weak interactions: neutral boson

ℒ = (ū
d̄) γλ

L(i∂λ − g (W3
λ W+

λ

W−
λ −W3

λ )) (u
d)

Let’s extend this to SU(2)

Could the W3 be the photon?

σ± = σ1 ± iσ2
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W3 is charge neutral
Weak interactions: neutral boson

ℒ = (ū
d̄) γλ

L(i∂λ − g (W3
λ W+

λ

W−
λ −W3

λ )) (u
d)

Let’s extend this to SU(2)

Could the W3 be the photon?

σ± = σ1 ± iσ2

No. Would e.g. predict +1 charge for up, -1 charge for down.

New massive neutral gauge boson: this will turn into the Z-boson!
This was also called “a new neutral current process”, discovered at CERN.
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You have already seen the Z boson!

Z

91.2 GeV
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You have already seen the Z boson!

Z

91.2 GeV
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Discovered at CERN: Gargamelle bubble chamber

In front of  
the CERN 
theory 
group.
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Weak interactions paradoxes
We need non-abelian gauge theory, but gauge bosons need to be massive!  
Not SU(2) gauge invariant?

Since the weak interactions are chiral (only the left-handed particles are charged), 
the left-handed and right-handed particles are fundamentally different.  
How can they have a mass term?

(u
d)L

M2
W W+

μ Wμ− + 1
2 M2

Z ZμZμ

dR

vs. m(ūLuR + ūRuL) not SU(2) invariant !

uRSU(2)
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Next lecture
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