Standard Model 3/4

Andreas Weiler (TU Munich)

CERN, 7/2024

The weak interactions

We want to explain these processes

- muon decay (lifetime: $\tau \approx 10^{-6}s$)
- neutron decay (lifetime: $\tau \approx 877 s$)
- charged pion decay (lifetime: $\tau \approx 10^{-8} s$)

How can one interaction be responsible for such different life-times?

Muon decay

We observe a muon decaying into an electron:

X is something undetected.

On the right you see the electron spectrum Can X be just one particle?

No, because in two-body decays pe would be fixed!

47.4.2. Two-body decays :

Figure 47.1: Definitions of variables for two-body decays.

In the rest frame of a particle of mass M, decaying into 2 particles labeled 1 and 2,

$$E_1 = \frac{M^2 - m_2^2 + m_1^2}{2M} ,$$

$$|\mathbf{p}_1| = |\mathbf{p}_2| = \frac{\left[\left(M^2 - (m_1 + m_2)^2 \right) \left(M^2 - (m_1 - m_2)^2 \right) \right]^{1/2}}{2M} ,$$

Muon decay (1st draft)

Muon decay (1st draft)*

0-

 $\mu^- \rightarrow e^- + \nu_\mu + \nu_e$

 W^{-}

 ν_e

 u_{μ}

 μ^{-}

* chiral structure will come later.

Plan: replace colors (r, g, b) with (ν_{μ}, μ)

$$\mathscr{L} = \overline{\psi}_i(x) \,\gamma^{\mu}(i\partial_{\mu} - g_s A^a_{\mu}(x)T^a_{ij} - m) \,\psi_j(x)$$

Muon decay (1st draft)*

0-

 $\mu^- \rightarrow e^- + \nu_\mu + \nu_e$

 ν_e

 u_{μ}

* chiral structure will come later.

Use non-abelian gauge theory template to describe this:

Plan: replace colors (r, g, b) with (ν_{μ}, μ)

$$\mathscr{L} = \overline{\psi}_{i}(x) \gamma^{\mu} (i\partial_{\mu} - g_{s} A^{a}_{\mu}(x) T^{a}_{ij} - m) \psi_{j}(x)$$

$$\Psi^{-}$$

$$\mathscr{L} = \begin{pmatrix} \overline{\nu}_{\mu} \\ \overline{\mu} \end{pmatrix} \gamma^{\lambda}_{L} \begin{pmatrix} i\partial_{\lambda} - g \begin{pmatrix} 0 & W^{+}_{\lambda} \\ W^{-}_{\lambda} & 0 \end{pmatrix} + \dots \end{pmatrix} \begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix} = g \overline{\nu}_{\mu} \gamma^{\lambda}_{L} W^{+}_{\lambda} \mu + \dots$$

Muon decay (1st draft)

"Charged current" (the W boson carries electric charge) interactions for the muon and electron

$$\mathscr{L} = \begin{pmatrix} \bar{\nu}_{\mu} \\ \bar{\mu} \end{pmatrix} \gamma_{L}^{\lambda} (i\partial_{\lambda} - g \begin{pmatrix} 0 & W_{\lambda}^{+} \\ W_{\lambda}^{-} & 0 \end{pmatrix}) \begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix} = g \bar{\nu}_{\mu} \gamma_{L}^{\lambda} W_{\lambda}^{+} \mu + \dots$$

Since this is an non-abelian theory, this is universal!

Muon decay (1st draft)

"Charged current" (the W boson carries electric charge) interactions for the muon and electron

 ν_u

 W^{-}

$$\mathscr{L} = \begin{pmatrix} \bar{\nu}_{\mu} \\ \bar{\mu} \end{pmatrix} \gamma_{L}^{\lambda} (i\partial_{\lambda} - g\begin{pmatrix} 0 & W_{\lambda}^{+} \\ W_{\lambda}^{-} & 0 \end{pmatrix}) \begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix} = g\bar{\nu}_{\mu}\gamma_{L}^{\lambda}W_{\lambda}^{+}\mu + \dots$$

Since this is an non-abelian theory, this is universal!

$$\mathscr{L} = \begin{pmatrix} \bar{\nu}_e \\ \bar{e} \end{pmatrix} \gamma_L^{\lambda} (i\partial_{\lambda} - g \begin{pmatrix} 0 & W_{\lambda}^+ \\ W_{\lambda}^- & 0 \end{pmatrix}) \begin{pmatrix} \nu_e \\ e \end{pmatrix} = g\bar{\nu}_e \gamma_L^{\lambda} W_{\lambda}^+ e + \dots \underbrace{\downarrow}_{W^-}^{\bar{\nu}_e} e^{-i\omega_e} e^{-$$

We can now use *dimensional analysis* to estimate the decay width Γ .

Dimensional analysis estimate of muon life-time

 $\Gamma=1/\tau_{lifetime}~$ has dimensions of Energy

Dimensional analysis estimate of muon life-time

Dimensional analysis estimate of muon life-time

 $\Gamma \sim 10^{-19} GeV$ or $\tau = 1/\Gamma \sim 10^{-6} s$

Muon decay vs. neutron decay

Muon lifetime:
$$\Gamma(\mu) = \left(\frac{g^4}{32m_W^4}\right) \frac{m_\mu^5}{192\pi^3} = G_F^2 \frac{m_\mu^5}{192\pi^3}$$

 $\Gamma \sim 10^{-19} \,\text{GeV} \quad \text{or} \quad \tau = 1/\Gamma \sim 10^{-6} s$

neutron lifetime:

What replaces m_{μ} ? The energy released in neutron decay!

Muon decay vs. neutron decay

Muon lifetime:

$$\Gamma(\mu) = \left(\frac{g^4}{32m_W^4}\right) \frac{m_\mu^5}{192\pi^3} = G_F^2 \frac{m_\mu^5}{192\pi^3}$$

$$\Gamma \sim 10^{-19} \,\text{GeV} \qquad \text{or} \qquad \tau = 1/\Gamma \sim 10^{-6} s$$

neutron lifetime: What replaces m_{μ} ? The energy released in neutron decay!

p udu $\tilde{\nu}_e$ $W^$ udd

$$\mathcal{L} = \begin{pmatrix} \bar{u} \\ \bar{d} \end{pmatrix} \gamma_L^{\lambda} (i\partial_{\lambda} - g \begin{pmatrix} 0 & W_{\lambda}^+ \\ W_{\lambda}^- & 0 \end{pmatrix}) \begin{pmatrix} u \\ d \end{pmatrix} = g \bar{u} \gamma_L^{\lambda} W_{\lambda}^+ d + \dots$$
$$\Gamma(n) \approx \xi G_F^2 \frac{(m_n - m_p)^5}{\pi^3} \approx 10^{-28} \,\text{GeV} \qquad \tau = 1/\Gamma \sim 10^3 s$$

Muon decay vs. neutron decay

 $\Gamma(\mu) = \left(\frac{g^4}{32m_W^4}\right) \frac{m_\mu^3}{192\pi^3} = G_F^2 \frac{m_\mu^3}{192\pi^3}$ Muon lifetime: $\Gamma \sim 10^{-19} \,\text{GeV}$ or $\tau = 1/\Gamma \sim 10^{-6} s$ What replaces m_{μ} ? The energy released in neutron decay! neutron lifetime: $\mathscr{L} = \begin{pmatrix} \bar{u} \\ \bar{d} \end{pmatrix} \gamma_L^{\lambda} (i\partial_{\lambda} - g \begin{pmatrix} 0 & W_{\lambda}^+ \\ W_{\lambda}^- & 0 \end{pmatrix}) \begin{pmatrix} u \\ d \end{pmatrix} = g\bar{u}\gamma_L^{\lambda}W_{\lambda}^+ d + \dots$ $\int_{W^{-}} \Gamma(n) \approx \xi \, G_F^2 \frac{(m_n - m_p)^5}{\pi^3} \approx 10^{-28} \, \text{GeV} \qquad \tau = 1/\Gamma \sim 10^3 s$

The weak interactions

We want to explain these processes

- muon decay
- neutron decay
- charged pion decay (lifetime: $au pprox 10^{-8} \, s$)

(lifetime: $\tau \approx 10^{-6}$ s)

(lifetime: $\tau \approx 877 \, \text{s}$

Charged pion decay

$$\mathscr{L} = \begin{pmatrix} \bar{u} \\ \bar{d} \end{pmatrix} \gamma_L^{\lambda} (i\partial_{\lambda} - g \begin{pmatrix} 0 & W_{\lambda}^+ \\ W_{\lambda}^- & 0 \end{pmatrix}) \begin{pmatrix} u \\ d \end{pmatrix} = g \bar{u} \gamma_L^{\lambda} W_{\lambda}^+ d + \dots$$

The paradox: charged pion decay

We measure a lifetime: $\tau \approx 10^{-8} s$

Two contributions:

How important do we expect each one to be?

Using dimensional analysis, we predict

$$\frac{\Gamma(\pi^- \to e^- \bar{\nu}_e)}{\Gamma(\pi^- \to \mu^- \bar{\nu}_e)} = \frac{(m_\pi - m_e)^5}{(m_\pi - m_\mu)^5} \sim 10^3 \quad \text{vs. experiment} \quad \frac{\Gamma(\pi^- \to e^- \bar{\nu}_e)}{\Gamma(\pi^- \to \mu^- \bar{\nu}_e)} |_{EXP} \approx 10^{-4}$$

Why is pion decay different than to muon & neutron decays? Pion is a scalar! Muon and neutron are spin 1/2 fermions.

Why is pion decay different than to muon & neutron decays? Pion is a scalar! Muon and neutron are spin 1/2 fermions.

Conservation of momentum and spin imposes to have a **right-handed** e^- .

Why is pion decay different than to muon & neutron decays? Pion is a scalar! Muon and neutron are spin 1/2 fermions.

Conservation of momentum and spin imposes to have a **right-handed** e^- .

Why is pion decay different than to muon & neutron decays? Pion is a scalar! Muon and neutron are spin 1/2 fermions.

Conservation of momentum and spin imposes to have a **right-handed** e^- .

Why is pion decay different than to muon & neutron decays? Pion is a scalar! Muon and neutron are spin 1/2 fermions.

Conservation of momentum and spin imposes to have a **right-handed** e^- .

Why is pion decay different than to muon & neutron decays? Pion is a scalar! Muon and neutron are spin 1/2 fermions.

Why is pion decay different than to muon & neutron decays? Pion is a scalar! Muon and neutron are spin 1/2 fermions.

Chirality and Dirac equation

$$\mathscr{L} = \overline{\psi}(x) \gamma^{\mu} (i\partial_{\mu} - m) \psi(x) \qquad \Psi(x) = \Psi_L(x) + \Psi_R(x)$$
$$\mathcal{L}_{\text{Dirac}} = \overline{\psi}_L \gamma^{\mu} \partial_{\mu} \psi_L + \overline{\psi}_R \gamma^{\mu} \partial_{\mu} \psi_R + \frac{m}{\psi} (\overline{\psi}_L \psi_R + \overline{\psi}_R \psi_L)$$

L and R chirality do **not** talk to each other if fermion is **massless (m=0)**!

$\mathcal{L}_{ ext{Dirac}} \,= ar{\psi}_L \gamma^\mu \partial_\mu \psi_L + ar{\psi}_R \gamma^\mu \partial_\mu \psi_R + ar{m}ig(ar{\psi}_L \psi_R + ar{\psi}_R \psi_Lig)$

massive right-handed spinor

(velocity < c)

picture curtesy Gian Giudice

$\mathcal{L}_{ ext{Dirac}} = ar{\psi}_L \gamma^\mu \partial_\mu \psi_L + ar{\psi}_R \gamma^\mu \partial_\mu \psi_R + rac{mig(ar{\psi}_L \psi_R + ar{\psi}_R \psi_Lig)}{mig(ar{\psi}_L \psi_R + ar{\psi}_R \psi_Lig)}$

massive right-handed spinor

(velocity < c)

right-handed massive spinor

picture curtesy Gian Giudice

$\mathcal{L}_{ ext{Dirac}} = ar{\psi}_L \gamma^\mu \partial_\mu \psi_L + ar{\psi}_R \gamma^\mu \partial_\mu \psi_R + rac{mig(ar{\psi}_L \psi_R + ar{\psi}_R \psi_Lig)}{mig(ar{\psi}_L \psi_R + ar{\psi}_R \psi_Lig)}$

massive right-handed spinor

right-handed massive spinor

(velocity < c)

Conclusion: If our theory is able to distinguish left-handed and right-handed fermions, then we must have $m_e = 0$ (or give up on theory?).

picture curtesy Gian Giudice

Muons are polarized

Clever idea by Lederman/Garwin (57)

Decay pion to muon and investigate the muon decay products

The angular distribution of the electrons reveals the chirality of the interaction.

Chirality and handedness

The weak interactions only talk to left-handed particles!

 $^{60}_{27}\text{Co} \rightarrow ^{60}_{28}\text{Ni} + e^- + \bar{\nu}_e$ only left-handed (LH) e-produced

Weak interactions: neutral boson

W₃ is charge neutral

Let's extend this to SU(2)
$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

 $\sigma^{\pm} = \sigma^1 \pm i\sigma^2$

$$\mathscr{L} = \begin{pmatrix} \bar{u} \\ \bar{d} \end{pmatrix} \gamma_{\underline{L}}^{\lambda} (i\partial_{\lambda} - g \begin{pmatrix} W_{\lambda}^{3} & W_{\lambda}^{+} \\ W_{\lambda}^{-} & -W_{\lambda}^{3} \end{pmatrix}) \begin{pmatrix} u \\ d \end{pmatrix}$$

Could the W_3 be the photon?

Weak interactions: neutral boson

W₃ is charge neutral

Let's extend this to SU(2)
$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$\sigma^{\pm} = \sigma^1 \pm i\sigma^2$$

$$\mathscr{L} = \begin{pmatrix} \bar{u} \\ \bar{d} \end{pmatrix} \gamma_{\underline{L}}^{\lambda} (i\partial_{\lambda} - g \begin{pmatrix} W_{\lambda}^{3} & W_{\lambda}^{+} \\ W_{\lambda}^{-} & -W_{\lambda}^{3} \end{pmatrix}) \begin{pmatrix} u \\ d \end{pmatrix}$$

Could the W_3 be the photon?

L

Weak interactions: neutral boson

W₃ is charge neutral

Let's extend this to SU(2)
$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$\sigma^{\pm} = \sigma^1 \pm i\sigma^2$$

$$\mathscr{L} = \begin{pmatrix} \bar{u} \\ \bar{d} \end{pmatrix} \gamma_{L}^{\lambda} (i\partial_{\lambda} - g \begin{pmatrix} W_{\lambda}^{3} & W_{\lambda}^{+} \\ W_{\lambda}^{-} & -W_{\lambda}^{3} \end{pmatrix}) \begin{pmatrix} u \\ d \end{pmatrix}$$

Could the W_3 be the photon?

No. Would e.g. predict +1 charge for up, -1 charge for down.

New massive neutral gauge boson: this will turn into the Z-boson!

This was also called "a new neutral current process", discovered at CERN.

You have already seen the Z boson!

You have already seen the Z boson! 91.2 GeV

In front of the CERN theory group.

Weak interactions paradoxes

We need non-abelian gauge theory, but gauge bosons need to be massive! Not SU(2) gauge invariant?

$$M_W^2 W_\mu^+ W^{\mu-} + \frac{1}{2} M_Z^2 Z_\mu Z^\mu$$

Since the weak interactions are chiral (only the **left-handed** particles are charged), the **left-handed** and **right-handed** particles are fundamentally different. How can they have a mass term?

SU(2)
$$\binom{u}{d}_L \quad u_R \quad d_R$$

VS.

 $m(\bar{u}_L u_R + \bar{u}_R u_L)$ **not** SU(2) invariant !

Next lecture

