

So far, we have described the evolution of fluctuations in the hot Big Bang and the formation of the large-scale structure of the Universe:

We now want to ask:

What created the primordial fluctuations?

An important clue is the fact that the CMB fluctuations are **correlated over the whole sky**:

In the standard hot Big Bang theory, this is impossible:

The correlations must have been created before the hot Big Bang:

Inflation solves the problem by invoking a period of superluminal expansion:

In less than 10^{-32} seconds, the Universe doubled in size at least 80 times:

The entire observable Universe then originated from a microscopic, causally connected region of space.

To achieve inflation requires a substance with a nearly **constant energy density** (like **dark energy**):

To end inflation, this substance must **decay** (like a radioactive material):

The product of this decay is the **hot Big Bang**.

One of these bubbles is our Universe.

In quantum mechanics, the end of inflation is **probabilistic** and varies throughout space:

This creates the primordial density fluctuations.

Quantum Fluctuations

In quantum mechanics, empty space is full of violent fluctuations:

$$\Delta x \Delta p \ge \hbar$$

Quantum Fluctuations

These quantum fluctuations are real, but usually have small effects:

Quantum Fluctuations

During inflation, these quantum fluctuations get amplified and stretched:

After inflation, these fluctuations become the large-scale density fluctuations.

Primordial Correlations

The nearly constant inflationary vacuum energy leads to an approximately scale-invariant power spectrum:

The slow decay of the inflationary energy predicts slightly more power on large scales: $n_{\rm s} < 1$

CMB Anisotropies

The well-understood physics of the photon-baryon fluid turns these primordial correlations into correlations of the CMB anisotropies:

CMB Anisotropies

The predicted correlations are in remarkable agreement with the data:

"Extraordinary claims require extraordinary evidence"

Carl Sagan

How can inflation become part of the standard history of the Universe with the same level of confidence as BBN?

Primordial Gravitational Waves

Besides density fluctuations, inflation predicts gravitational waves:

The strength of the signal depends on the energy scale of inflation, which may be as high as 10^{16} GeV.

B-modes

These gravitational waves would produce a characteristic swirl pattern (called **B-modes**) in the polarization of the CMB:

Detecting these B-modes is a central goal of observational cosmology.

Ongoing Experiments

CMB Stage III

Planned Experiments

CMB Stage III.5

(2023-2030)

Planned Experiments

CMB Stage IV

(2028-2035)

Planned Experiments

LiteBIRD

(2028-2032)

A B-mode detection would be a milestone towards a complete understanding of the origin of all structure in the Universe:

Conclusions

We have a remarkably consistent picture of the history of the Universe from fractions of a second after the Big Bang until today:

We also have tantalizing evidence that the primordial seed fluctuations for the formation of structure were created during a period of inflation:

Observations of the CMB have revolutionized cosmology:

Yet, many fundamental questions remain:

- What is dark matter and dark energy?
- Did inflation really occur? And what was driving it?
- What is the origin of the matter-antimatter asymmetry?

We hope that future observations will shed light on these questions.

Thank you for your attention!

Appendix

Fluctuations during Inflation

Each Fourier mode of the inflaton fluctuations satisfies:

This is the equation of a time-dependent harmonic oscillator.

Quantum Harmonic Oscillators

$$\ddot{x} + \omega^2 x = 0$$

Zero-point fluctuations

Quantum Fluctuations during Inflation

This holds as long as the mode evolves adiabatically (inside the horizon):

$$\left| \langle (\delta \phi)^2 \rangle = \frac{1}{2} \frac{1}{k^3} \left(\frac{k}{a(t)} \right)^2 \right|$$

At horizon crossing, $k/a(t_*) = H(t_*)$, the fluctuations freeze and we get

$$P_{\delta\phi}(k) \equiv \frac{k^3}{2\pi^2} \langle (\delta\phi)^2 \rangle_* = \left(\frac{H}{2\pi}\right)^2 \approx \text{const}$$

After inflation, these become nearly scale-invariant density fluctuations.

Summary

