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How to accelerate charged par5cles

1V
+e

Kinetic energy of a charge +e (1.6×10!"#C) accelerated by 1 V
𝐸 = 1 eV

Modern science ≫ MeV (Neutrons>1GeV, hard X-rays>10GeV, Higgs boson>125+90 GeV)
4

Electron’s rest mass 
in the natural unit
𝑚 𝑐$ = 511 keV



DC cannot provide high accelerating gradient (𝑬𝒂𝒄𝒄)

10 MV
breakdown

We can generate high DC voltage but is limited to O(10MV)

à For GeV science RadioFrequency (RF) is one option

Cockcroft-Walton @ CERN
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Particle acceleration with RF resonant cavities
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LHC
𝛻 ⋅ 𝑬 = 0

𝛻×𝑬 = −
𝜕𝑩
𝜕𝑡

𝛻 ⋅ 𝑩 = 0

𝛻×𝑩 =
1
𝑐$
𝜕𝑬
𝜕𝑡

3𝒏×𝑬 = 0
𝒏 ⋅ 𝑩 = 0

Boundary condition

Maxwell equation

Courtesy: F. Bouly
𝒏



Our interest: (unloaded) quality factor
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𝑄! =
𝜔𝑈
𝑃"

=
𝜅𝐸#""$

𝑃"

Higher Q à higher field 𝐸%&& with smaller 
power dissipaKon 𝑃&

http://lossenderosstudio.com/glossary.php?index=q

𝑄! =
𝐺
𝑅%

G is a geometrical factor
• Elliptical cavity 𝐺~250 Ω
• Spoke cavity 𝐺~133 Ω
• Quarter-wave resonator 𝐺~30 Ω

Smaller surface resistance 𝑅/
à high Q & low Pc

Experimental 
observable From 

material

𝑃" =
𝜅𝑅%
𝐺
𝐸#""$

Geometrical

Geome
trical

Experimental 
observable



High-Q (𝑄!) and high-gradient (𝐸"##) is the keyword
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𝐸!""

𝑄#

Constant 

𝑃" ∝
𝐸!""$

High-gradient: 𝐸!""

One of our goals in SRF is to go

with lower power consumption 𝑃&

High-Q: 𝑄# =
$
%!

We first consider lower 𝑹𝒔



cavity

https://www.123rf.com/stock-photo/old_radio.html?sti=mbqiuc5egnu4ynov6q|&mediapopup=41753240
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cryogenics

Cryolab
@CERN



Superconducting cavity for 𝑅% → 0?

Heike Kamerlingh Onnes

DC Current 𝑱

DC resistivity 𝜌

𝜌 ≡
𝐸
𝐽

DC conductivity 𝜎

𝜎 =
1
𝜌
≡
𝐽
𝐸

Cool down the resistor…

Nobel prize in 1913
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Ohm’s law

𝝆 = 𝟎 below transition temperature 𝑇&

𝜌



RF resistance 𝑅% is non zero

z

x
surface

y

vacuum

Cu 300K

Nb 4.2K

Nb 2K

Cu 10K

Local surface resistance

𝑅% ≡ Re
𝐸&(𝑧 = 0)
∫#
' 𝐽&(𝑧)𝑑𝑧

𝑅! =
𝜋𝑓𝜇"
𝜎 ∝ 𝑓 ⁄$ %Normal conducting (Cu)

𝑅! =
𝐴𝑓%

𝑇
exp −

Δ
𝑘&𝑇

∝ 𝑓%Super- conducting (Nb)

Superconducting 𝑹𝒔 is small but non zero

𝐸!(𝑧 = 0)

𝐽!(𝑧)

Materials provide boundary condiIons with finite power dissipaIon

SRF cavity wins
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After this lecture, you will be able to answer…

1. What is the superconductivity? Keyword: Higgs mechanism
2. What are the intrinsic origins of finite 𝑅& in SRF cavities?
3. What is the fundamental limitation of the field 𝐸!"" inside 

SRF cavities?

12

I also list up questions à report assignment J



Outline

• IntroducEon: why superconducEng RF for accelerators?
• Superconductors in thermal equilibrium
• Bardeen-Cooper-Schrieffer theory
• Superconductors and Higgs mechanism

• Response against Radio Frequency
• Linear response theory
• Residual resistance

• Field limitaEons
• Physics of phase transiKon
• Fundamental challenges

• Conclusion
13



A lot of models…all failed L
Development of quantum field theory in many body problems was necessary…14

Challengers for microscopic theory of superconductors
J. Schmalian, arxiv:1008.0447



Feynman tried to get superconductivity by perturbation theory including 
attraction forces between electrons caused by lattice vibration à failed L
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Challengers for microscopic theory of superconductors
J. Schmalian, arxiv:1008.0447



Challengers for microscopic theory of superconductors
J. Schmalian, arxiv:1008.0447

Bardeen and Fröhlich had a good idea but needed young talents 
• Many body problem (Quantum field theory)
• Application of techniques developed in particle physics 16



Theory of superconductor in equilibrium 

John Bardeen Leon Cooper John Robert 
Schrieffer

ℋ&'(| ⟩Φ! = 𝐸| ⟩Φ!

Cooper pair: Composite boson
Two electrons are bounded by something (phonon) à effective Hamiltonian ℋ@AB

Mean field approximation + Variational method (+other approximations…)

Non-perturbative!
17



Solution: superconducting gap

• The Cooper pair needs certain amount of 
energy to be broken

• The cause of Ohmic loss, stochasac 
scabering of one single electron by phonon 
or impurity cannot break the pair

àNo DC loss

The Equilibrium state of conventional superconductor was understood !

Quasi-particles

18

Scaler 
wavefunction

Self-consistent gap equation

𝜟 = 𝑁 𝐸" 𝑉 &
#

ℏ%!
𝜟

𝜉& + 𝛥&
tanh

1
2

𝜉& + 𝛥&

𝑘'𝑇
𝑑𝜉

à In this lecture, we try to obtain qualitative insight of the phenomenon



Electrons in a perfect metal are free (or independent)

+ ++ + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

e

e
e

e

Perfectly periodic potential by ions does 
NOT scatter electrons (Bloch’s theorem)

These electrons are NOT our favorite 
elementary particle of

𝑚 = 511 keV

These electrons are dressed by complicated 
electromagneac property of metals to have an 
effecave mass 𝑚∗given by a band structure

à Quasi-par.cles

In reality, imperfection causes quasi-particle scattering 19

Q1

Q2 Electron-electron scattering?
àPauli’s exclusion principle
Cf. Fermi-liquid theory by Landau

Check this



Electrons in real metals show Ohmic loss

+ ++ + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

e

e
e

e

𝒋 = 𝜎𝑬

Imperfections causes local scattering
1. Impurity, defects (scattering time 𝜏456)
2. Lattice vibration, phonon (𝜏78)

Macroscopic phenomenology (Drude model)
An electron accelerated by an electric field

𝑚∗ 𝑑𝑣
𝑑𝑡

= −𝑒𝐸
is scattered by imperfections per 𝜏, and its 
velocity relaxes to a mean velocity

𝑣 = −
𝑒
𝑚∗ 𝐸𝜏

Electric current is a collective flow of 𝑛 electrons

𝑗 = −𝑒𝑛 𝑣 =
𝑒9𝑛𝜏
𝑚∗ 𝐸

1
𝜏
=

1
𝜏'()

+
1
𝜏*+

Total scattering time

Ohm’s law

Electrical conductivity 𝜎 20



Paired electrons can avoid Ohmic loss

+ ++ + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

e

e
e

e

If electrons in a distance (>39 nm) are bounded, 
local (< 0.5 nm) scattering can be avoided

Any small attractive interaction 𝑉 between 
electrons can lead to a Cooper pair coupled with 
an energy 2𝛥, below critical temperature 𝑇!

𝜟 = 𝑛 𝐸, 𝑉 I
-

ℏ/!
𝜟

𝜉% + 𝛥%
tanh

1
2

𝜉% + 𝛥%

𝑘&𝑇
𝑑𝜉

Classical superconductors’ attractive potential is 
from longitudinal mode of lattice vibration

Non-perturbative!

𝑒( 𝑒(

phonon

𝑘

𝑘 + 𝑞 −𝑘) − 𝑞

−𝑘)

If energy transfer |𝜖012 − 𝜖0| is 
smaller than phonon energy the 
interaction is attractive (Flöhlich)
à Eliashberg’s strong coupling 
superconductor (1960) 21

BCS gap equaaon (1957)

0.330 nm (Nb)

39 nm
(Nb)



Implication of no scattering?
No scattering

𝑚∗ 𝜕 𝑣
𝜕𝑡

= −𝑒𝐸
generates	super-current

𝑗( = −𝑒𝑛) 𝑣

→
𝜕𝑗(
𝜕𝑡 −

𝑛)𝑒*

𝑚∗ 𝐸 = 0
Apply 𝛻× from the left

𝜕
𝜕𝑡
(𝛻×𝑗() −

𝑛)𝑒*

𝑚∗ 𝛻×𝐸 = 0
leads to

𝜕
𝜕𝑡

𝛻*𝑩 −
1
𝜆+*
𝑩 = 0

Electric field 𝑬

−
𝜕𝑩
𝜕𝑡

Constant of time
à Initial condition before phase transition 𝑇 > 𝑇! must be preserved

~ ⁄𝛻×𝑩 𝜇*
𝜆3% ≡

𝑚∗

𝑛!𝑒%𝜇"

22

+ ++ + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

e

e
e

e



Superconductor ≠ Perfect electric conductor
Meissner effect differentiates them

𝛻*𝑩 −
1
𝜆+*
𝑩 = 0

𝛻*
𝜕𝑩
𝜕𝑡

−
1
𝜆+*

𝜕𝑩
𝜕𝑡

= 0

Superconductivity is a thermodynamical state which expels magnetic fields and 
cannot be explained by classical electrodynamics à quantum field theory!

Additional constraint 
(broken Gauge symmetry)

Apply 𝑩

Cooling 
down

𝑇 > 𝑇!

Switch off 𝑩

Perfect Electric Conductor

Superconductor𝑇 < 𝑇!

London 
equation

23

Preserve initial condition!

Zero field!

𝑇 < 𝑇!



Cross-over of particle physics and condensed matter physics

Yoichiro Nambu

Superconductivity Particle physics

The vacuum is similar to the superconducting state
Particle mass = superconducting gap (gauge symmetry is broken in the ground state)

àChiral symmetry breaking, Higgs mechanism, Electroweak theory
àOrigin of mass 24

𝐸& = 𝑘& + Δ& 𝐸& = 𝑝& +m&



Spontaneous gauge symmetry breaking

25

R. Matsunaga et al PRL 111 057002 (2013)

𝐹 = 𝛻×𝐴 & +
ℏ&

4𝑚+
𝛻 + 𝑖𝑒𝐴 Ψ & +

𝑔
4

Ψ & − 𝑣& &

EM energy Scaler Kinetic energy Scaler potenIal

Ginzburg-Landau theory (𝑇 → 𝑇! of BCS theory, Ψ = Δ)

~𝜙, theory

Excitation around potential minimum 𝑣 at fixed gauge (Unitary gauge)
Ψ x → 𝑣 + 𝜙(𝑥)

Kinetic term
𝛻 + 𝑖𝑒𝐴 Ψ % = 𝛻𝜙 % + 𝑒%𝑣% 𝐴 % +⋯

Gauge field gains mass: Nambu-Goldston mode is absorbed by photon
𝑒%𝑣% 𝐴 % ≡ 𝑚5 𝐴 %

𝛻% −𝑚5
% 𝐴 = 0

à Massive photon à finite interaction length: penetration depth 

𝜆3 =
1
𝑚5

Higgs mode 𝜙 has a mass 𝑚6 = 𝑣 𝑔 : coherence length

𝜉" =
1
𝑚!

Massive vector boson eq. 
↔London eq. 

Meissner effect = 
photon gains mass due 
to broken Gauge 
symmetry



Spontaneous gauge symmetry breaking

26

R. Matsunaga et al PRL 111 057002 (2013)

𝐹 = 𝛻×𝐴 & +
ℏ&

4𝑚+
𝛻 + 𝑖𝑒𝐴 Ψ & +

𝑔
4

Ψ & − 𝑣& &

EM energy Scaler Kinetic energy Scaler potential

Ginzburg-Landau theory (𝑇 → 𝑇! of BCS theory, Ψ = Δ)

~𝜙, theory

ExcitaIon around potenIal minimum 𝑣 at fixed gauge (Unitary gauge)
Ψ x → 𝑣 + 𝜙(𝑥)

KineIc term
𝛻 + 𝑖𝑒𝐴 Ψ % = 𝛻𝜙 % + 𝑒%𝑣% 𝐴 % +⋯

Gauge field gains mass: Nambu-Goldston mode is absorbed by photon
𝑒%𝑣% 𝐴 % ≡ 𝑚5 𝐴 %

𝛻% −𝑚5
% 𝐴 = 0

à Massive photon à finite interaction length: penetration depth 

𝜆3 =
1
𝑚5

Higgs mode 𝜙 has a mass 𝑚6 = 𝑣 𝑔 : coherence length

𝜉" =
1
𝑚!

Massive vector boson eq. 
↔London eq. 

Meissner effect = 
photon gains mass due 
to broken Gauge 
symmetry

Q3
Read it!
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Superconducting gap

e

e

e

e

irradiate with a photon 
with energy 2𝛥~meV
(typically THz)

Tear apart
Two 
quasi-par.clesA Cooper pair

At finite temperature 0 < 𝑇 < 𝑇!, these two 
states are in thermal equilibrium
# of quasiparticles: 𝑛D~exp − 𝚫

F!G
# of electrons in Cooper pairs: 𝑛)~𝑛 − 𝑛D

Heuristic interpolation

⁄Δ(𝑇) Δ(0) = cos
𝜋
2

𝑇
𝑇-

& ⁄/ &

𝒏𝑵/𝒏

𝒏𝑺/𝒏

Quasi-particles (~normal conducting electrons) still exist if 𝑇 > 0 28



Why normal and super electrons at a 5me?

29

Water at 300 K niobium at 2 K

Liquid 
phase

gas 
phase

Hi
gh

t i
n 

re
al

 sp
ac

e

Hi
gh

t i
n 

m
om

en
tu

m
sp

ac
e

Super 
electrons 
(Cooper 
pairs)

Normal 
electrons 
(quasipart
icles)



Linear response to RFà BCS resistance 𝑅&'(
Quamtum mechanical derivation of 𝑅/ requires quantum many body theory

If the RF field is “small”

= + + …

First order 
perturbaaon

Higher order 
terms ignored 

equilibrium equilibrium

The responding current is given by the equilibrium state

ℋ = ℋ@AB +ℋfg(𝑡)

Quantum derivation of Ohm’s law 
is equally complicated…

𝜎 = −
1
𝑖𝜔 Φ0 𝜔 −Φ0 0

Φ0 =
𝑖
ℏ𝑉

𝜃(𝑡) W𝐽 𝑡 W𝐽 0 − W𝐽(0) W𝐽(𝑡)
→ 𝜎 =

𝑛𝑒&𝜏𝒌
𝑚

\𝜌*
𝜌*

30

𝐽 𝑞 = −
1
𝑐
𝐾 𝑞 𝐴(𝑞)

A. Shimizu, 
UTokyo



∆)/F∈(E-
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0.5

1

1.5

2

2.5

3

Introduction to quantum mechanical derivation: 
Integrate contribution of all the quasi-particles

𝑅( ∝ 𝑃 ≅ Σ^,^",`F ∝ (photon energy) x (net # of absorbed photons)

= ℏ𝜔 𝑛a − 𝑛b = ℏ𝜔Y
c

d

𝑑𝐸 𝑓 𝐸 − 𝑓 𝐸 + ℏ𝜔 ×𝑁 𝐸 𝑁 𝐸 + ℏ𝜔

Fermi’s Golden rule [Z. Physik 266 p.209 (1974)]

𝐸

𝐸 + ℏ𝜔 ℏ𝜔

𝐸

𝐸 + ℏ𝜔
ℏ𝜔

All quasiparticles
Δ < 𝐸 < ∞

𝑁(𝐸): density of states (how many quantum 
states at energy 𝐸: a kind of degeneracy)

𝑓(𝐸): distribution function (how many 
electrons are in one state at energy 𝐸)
Fermi-Dirac function in equilibrium state

𝑓 𝐸 =
1

exp − ⁄E 𝑘'𝑇 + 1

2

Gap Δ

31

𝑅( ∝
𝜔𝟏.𝟓

𝑇 exp −
Δ
𝑘o𝑇

Q4𝑇 = 0

𝑇 > 0
𝑇 > 0
𝑓 𝐸 > 0

𝑅2 𝑇 = 0 = 0

Follow 
the math
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Introduction to quantum mechanical derivation: 
Integrate contribution of all the quasi-particles

𝑅( ∝ 𝑃 ≅ Σ^,^",`F ∝ (photon energy) x (net # of absorbed photons)

= ℏ𝜔 𝑛a − 𝑛b = ℏ𝜔Y
c

d

𝑑𝐸 𝑓 𝐸 − 𝑓 𝐸 + ℏ𝜔 ×𝑁 𝐸 𝑁 𝐸 + ℏ𝜔

Fermi’s Golden rule [Z. Physik 266 p.209 (1974)]

𝐸

𝐸 + ℏ𝜔 ℏ𝜔

𝐸

𝐸 + ℏ𝜔
ℏ𝜔

All quasiparticles
Δ < 𝐸 < ∞

𝑁(𝐸): density of states (how many quantum 
states at energy 𝐸: a kind of degeneracy)

𝑓(𝐸): distribution function (how many 
electrons are in one state at energy 𝐸)
Fermi-Dirac function in equilibrium state

𝑓 𝐸 =
1

exp − ⁄E 𝑘'𝑇 + 1

2

Gap Δ

32

𝑇 = 0

𝑇 > 0
𝑇 > 0
𝑓 𝐸 > 0

More exaggerated plots

𝑅( ∝
𝜔𝟏.𝟓

𝑇 exp −
Δ
𝑘o𝑇

Q4

𝑅2 𝑇 = 0 = 0

Follow 
the math



Reality in the literature…complete picture until 1970s

33

MaVs and Bardeen Phys Rev 111 2 1958 Abrikosov et at JTEP 35 182 1959

Strong coupling theory
(Eliashberg JTEP 11 696 1960; Nam Phys Rev 156 470 1967; Marsiglio et al PRB 50 7203 1994)

Electron-phonon spectral function 𝛼"𝐹(𝜔)

Wolf, J Low Temp 
Phys 40 19 1980



Good news: classical model works very well

𝜕𝑗(
𝜕𝑡

−
𝑛)𝑒*

𝑚∗ 𝐸 = 0

𝒏𝑵/𝒏

𝒏𝑺/𝒏

𝑗( = 𝑗r exp(𝑖𝜔𝑡)

𝑗( = −𝑖
𝑛)𝑒*

𝑚∗𝜔
𝐸

≡ 𝜎(

Supercurrent

Normal current

𝑗D =
𝑛D𝑒*𝜏
𝑚∗ 𝐸Ohm’s law à

≡ 𝜎DTotal current induced by RF

𝑗 = 𝑗) + 𝑗D à 𝑗 = 𝜎D − 𝑖𝜎) 𝐸
Inertia of 
Cooper pairs 
à inductive

Dissipation by 
quasi-particles 
àresistive

Equivalent circuit

𝜎D 𝜎(

Two 
fluid 
model

34

Phase 
shift 𝜋/2



Surface resistance of superconductor

z

x
surface

y

vacuum

𝐸!(𝑧 = 0)

𝐽!(𝑧)
→ 𝑅( ≡ Re

𝐸u 𝑧 = 0
∫r
d 𝐽u 𝑧 𝑑𝑧

~
1
2
𝜎D
𝜎)

𝜔𝜇r
𝜎)

=
𝜇r*

2
𝜆+v𝜎D𝜔* > 0

𝑗u = 𝜎D − 𝑖𝜎) 𝐸u

𝐸u 𝑧 = 𝐸r exp − ⁄𝑧 𝜆+

𝜎D =
𝑒*𝑛D𝜏
𝑚∗ ∝ 𝑛D ∝ exp −

Δ
𝑘o𝑻Lessons

• One origin of the finite 𝑅/ of superconductors is quasi-particles
• Quasi-particles are thermally activated from Cooper pairs at 0 < 𝑇 < 𝑇&
• 𝑅/ exponentially decreases by lower 𝑇 because quasi-particles are frozen out
• Higher RF frequency increases 𝑅/~𝜔$

Classical understanding is sufficient in most of the SRF activities35

Q5
Follow 
the math



Superconducting cavities: 𝑅-./(𝑇, 𝑓)

36

𝑅'34 𝑇 =
𝐴
𝑇
exp

Δ
𝑘'𝑇

𝑇 < ⁄𝑇- 2

𝑅'34 𝑓 ∝ 𝑓/.6

Frequency dependence between 𝑓x.y and  𝑓*Temperature dependence is exponential 

Classically derived two-fluid model works fine to explain quantum calculation of BCS
à Practically, we can use the two fluid model to interpret data in your lab

• Halbritter, KFK-Ext.03/70-06 (1970), https://publikationen.bibliothek.kit.edu/270004230: Fortran66 code for all (𝜉, 𝜆, 𝑙)
Detail phonon-electron interaction is not included à BCS (weak coupling limit) + phenomenological parameter 𝛼 = ⁄Δ 𝑘#𝑇$

https://publikationen.bibliothek.kit.edu/270004230


Smearing of Density of States and residual resistance

37

Remark: DoS smearing is not the only cause of residual resistance
• Lossy oxides?
• Hydride?
• Grain boundaries??
• Influence of magnetic vortex

𝑅7+2 = 10 nΩ

𝑅7+2 = 1 nΩ

Pure BCS 𝑅
7+2 =

0

Forget about practicalities J
Let’s focus on fundamental aspect of 
topological defect

Phenomenologial 
smearing (Dynes)

BCS 
density 
of state

Generate 𝑅��(

etc…

In reality 𝑅(~𝑅��� 𝑇 + 𝑅���

Reduce 𝑅'34 by 
removing the divergence



Under strong but static magnetic field: Type-I vs Type-II 

38

Type-II superconductors become energetically favorable to create normal conducting 
boundaries inside if 𝐵 > 𝐵!x
àHow to maximize interface area? à Quantized flux Φr =

`
*�
= 2.07×10bxy Wb

𝜅 =
𝜆
𝜉
>

1
2
= 0.71𝜅 =

𝜆
𝜉 <

1
2
= 0.71

𝜅89~
36 nm
39 nm

~0.92𝜅:9~
28 nm
71 nm~0.40

Meissner 
state

normal state normal state

Meissner 
state

Mixed state
𝐵7%

𝐵7$

𝐵7

Type-I Type-2 Stabilized by NC/SC boundary energy
1
2𝜇*

𝜉*𝐵-& − 𝜆;𝐵& < 0 for 𝐵 > 𝐵-/

𝑥/𝜉*

𝑦/
𝜉 *

Without pinning centers, type-II 
traps magnetic flux if 𝐵 > 𝐵7$

2D strong type-II 
simulation with TDGL



𝑅)*+ contribution from magnetic flux oscillation
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environmental 𝑩

defect

Flux captured by 
pinning centers

Flux expulsion may not be perfect
Pinning 
Center

Pinning 
Center

𝑩𝑹𝑭(𝒕)

Mattia Checchin, 
TTC Topical 
Workshop, CERN

Phenomenological equation of motion (Bardeen Stephen)

𝑀
𝜕*𝒖
𝜕𝑡*

+ 𝜂
𝜕𝒖
𝜕𝑡
− 𝜖

𝜕*𝒖
𝜕𝑧*

+ 𝛻𝑈 𝑧, 𝑢 = 𝑱��(𝑧, 𝑢)×𝑩���
Effective 
inertia

Effecave 
viscosity

Effective 
tension

Pinning 
potential

Lorentz force drives 
flux oscillation

This flux oscillation can cause substantial power dissipation



Simple approximation
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Solutions
1. A good magnetic shield (earth field 50uT à < 1uT)
2. Expel more fluxes at phase transition
3. (Reduce sensitivity of the flux oscillation against RF)

𝑀
𝜕*𝒖
𝜕𝑡*

+ 𝜂
𝜕𝒖
𝜕𝑡
− 𝜖

𝜕*𝒖
𝜕𝑧*

+ 𝛻𝑈 𝑧, 𝑢 = 𝑱��(𝑧, 𝑢)×𝑩���

𝑅!"#~𝑁×𝜋𝜉$%×𝑅&~
𝐵'()
2𝐵*%

𝑅&
D. Longuevergne, AM 
arXiv:2009.07007
S, Calatroni and R. Vaglio, 
PRAB 22, 022001 (2019)

Static model

Flux 
number 
density

Normal 
conducting 
area

Earth field 𝐵jkl=50uT
𝐵&$~400 mT (Nb)
𝑅m~1.3 mΩ at 1.3 GHz (Nb)

Normal 
conducting 
surface 
resistance

𝑅!"#~80nΩ > 𝑅+,- 2𝐾 ~10nΩ
A cavity can be spoiled!

Engineering 
challenges!
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Remark: validity of linear response theory

42

Nb (type-II)

is valid for low RF field (𝐵fg ≪ 𝐵&) 
because it is 1st order perturbation 
(linear response)

𝑅@AB ∝
𝜔".o!$.p

𝑇
exp −

Δ
𝑘@𝑇

Our formula (f<< 2D, T<Tc/2)

50 MV/m

However, state-of-the-art cavities 
reach 50 MV/m i.e. 𝐵fg~𝐵&

à Fundamental challenge in condensed matter physics



The RF magnetic field exceeds Bc1

43

Does type-II superconductor dissipate too much power from flux 
entry & oscillation? Are type-II superconductors useless for SRF?

normal state

Meissner 
state

𝐵7%

𝐵7$

𝑥/𝜉p

𝑦/
𝜉 p



1st order phase transi5on can be metastable

44

https://tenor.com/view/diy-science-hack-ice-water-gif-3448836

SC phase transition with a magnetic field is a 1st order phase transition
à 𝑩 > 𝑩𝒄𝟏 can be a metastable super-heating state

Super-cooling of water: 𝑇 < 0 C but still liquid



Relevant critical field for SRF: superheating field

45

J. Matricon and D. Saint-James 
Phys Lett A 24 241 (1967) 

Pb (type-I) Nb (type-II)

Still 
Meissner state

Still 
Meissner state

𝐵(`~1.2𝐵! > 𝐵!x𝐵(`~1.3𝐵!
Ginzburg-Landau equation

Go’rkov showed that BCS theory reproduces Ginzburg Landau equation around 𝑻 → 𝑻𝒄
à The validity of this 𝐵(` at 𝑇 < 𝑇! deserves discussion

𝐵!+ > 𝐵7 in general

Quasi-classical formalism, influence of impurity, multilayer 
coating to further enhance 𝐵(`, nonlinear 𝑅((𝐵��)…

Nb
Pb

𝜅



Q vs E

Mid-T baking
Cold EP & 2-step low-
temperature baking

Courtesy of Sergey Belomestnykh

Nitrogen doping

standard ILC treatment

𝐸877 [ ⁄MV m]

𝑄"~
𝐺 [Ω]
𝑅! [𝑛Ω]

𝐵*0~4×𝐸877 [mT]

Constant 𝑃7 contour

𝑄" =
𝜔𝑈
𝑃7

∝ 𝐸877% /𝑃7

quench

High-field 
Q-slope

mid-field 
Q-slope / anti-Q-slope

low-field
(anti-) Q-slope

• Upper right is better
• Unknown causes of 

nonlinear behavior
• Quench limits
• Dramatic change by 100 

nm surface treatment
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Answer to the first three questions
1. What is the superconduc2vity?

1. A finite a+rac.ve interac.on between independent electrons form a Cooper 
pair that obeys nonrela.ves.c U(1) Higgs mechanism

2. Photons gain mass in superconductors due to spontaneous symmetry breaking, 
which leads to the Meissner effect

2. What are the fundamental origins of finite RF loss in SRF cavi2es?
1. Thermally ac.vated quasi-par.cles at finite temperature act like normal 

conduc.ng electrons and cause a loss in RF
2. Even at absolute zero temperature, residual resistance exists due to several 

different mechanisms, such as flux oscilla.on and subgap state’s effect, whose 
ul.mate origins are not wholly understood

3. What are the fundamental limita2ons of the field inside SRF cavi2es?
1. Superhea.ng field, which exceeds thermodynamic cri.cal fields in equilibrium 

state, would give a fundamental limita.on
2. The dynamic calcula.on of the superhea.ng field is s.ll an open field of 

fundamental research
48
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Three characteristic lengths

Mean free path
𝑙 = 𝑣 𝜏

e

e

Coherent length

𝜉! =
ℏ𝑣"
𝜋Δ

(London) Penetration depth

𝜆# =
𝑚∗

𝑛%𝑒&𝜇!

z

x
surface

y

vacuum𝐵*

𝐵!(𝑧)

How often quasi-
particles are scattered

CharacterisXc size of 
Cooper pairs

How much magnetic 
fields can penetrate 
into a superconductor

𝛻&𝑩 = /
<!
"𝑩

→ 𝐵! 𝑧 = 𝐵* exp − =
<!

bulk

𝜉r~𝟑𝟗 nm for Nb 𝜆+~𝟑𝟔 nm for Nb
𝑙 depends on RRR (𝑙~2.7×𝑅𝑅𝑅) 
RRR=300 à 𝑙 = 𝟖𝟏𝟎 nm 52

Cf. La]ce constant of Nb is 0.330 nm



𝑅&'( vs mean free path 𝑙: anomalous skin effect

53

dirty clean

Optimal
𝑙~ ⁄𝜉! 2

𝑅(~
𝜇r*

2
𝜆rv𝜎D𝜔*

𝜆r = 𝜆+ 1 +
𝜋𝜉r
2𝑙

𝜎D =
𝑒*𝑛𝜏
𝑚∗ ∝ 𝑙

→ 𝑅(~𝑙× 1 +
𝜋𝜉r
2𝑙

⁄v *

Counter intuitively, super clean material is not ideal for SRF cavities!
à Heat treatment, doping, etc to make surface dirty



Penetration depth vs skin depth: similar but totally different origin

Superconductor

𝜆# =
𝑚∗

𝑛%𝑒&𝜇!

Normal conductor

𝛿 =
1

𝜋𝑓𝜇!𝜎

For 300K copper and 𝑓 = 0.1 − 1 GHz 
𝛿 > 2 µm

For niobium (<9.25K)
𝜆#~36 nm

𝛻*𝑩 −
1
𝜆+*
𝑩 = 0

From London equation
(broken gauge symmetry)

Both static magnetic field and RF
electromagnetic field and currents

RF electromagnetic fields and currents

≪

𝒋> = 𝜎𝑬

From a RF screening effect of quasi-particles 

𝛻×𝛻×𝑬 = −
𝜕 𝛻×𝐵
𝜕𝑡

~𝜇*
𝜕𝒋>
𝜕𝑡(= −𝛻&𝑬)

𝐸 = 𝐸"𝑒𝑥𝑝(𝑖2𝜋𝑓𝑡)
𝛻*𝑬 −

1
𝛿*
𝑬 = 0
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Quantum 
mechanics

From classical 
electrodyamics

Math looks similar…
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Remark: DoS smearing is not the only cause of residual resistance
• Lossy oxides?
• Hydride?
• Grain boundaries??
• Influence of magneKc vortex

𝑅7+2 = 10 nΩ

𝑅7+2 = 1 nΩ

Pure BCS 𝑅
7+2 =

0

However, the question is ultimate 
limits on minimum 𝑅% (highest Q) 
after removing extrinsic effects

Phenomenologial 
smearing (Dynes)

BCS 
density 
of state

Generate 𝑅��(

etc…

In reality 𝑅(~𝑅��� 𝑇 + 𝑅���

Reduce 𝑅'34 by 
removing the divergence

Tunneling 
measurement
T. Proslier et at Appl Phys
Lett 92 212505 2008

Smearing of Density of States and residual resistance

DoS 
smearing 
is REAL



Minimum surface resistance from the theory
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dirty clean

Optimal
𝑙~ ⁄𝜉! 2

𝑅��� 𝑇 has a minimum as a 
function of impurity scattering 
(anomalous skin effect)

56

Takayuki Kubo, Phys. Rev. 
Applied 17, 014018, 2022

𝑅��� 𝑇 + 𝑅��( has a minimum as a 
function of Dynes parameter G with a 
given impurity scattering

Fundamental question:
What causes the Dyne’s DoS smearing?
F. Herman: pair-breaking term (?) [PRB 96 014509]

Dynes Superconductor
Model



Lower 𝐽-

Flux expulsion at the phase transition from NC to SC

M. Checchin TTC topical workshop 2017

Meissner State Mixed State

𝑓

𝑓

𝑔(𝑥)

𝑥

𝑦

• Balance between thermodynamic force 𝑓G and pinning force 𝑓 in the mixed state 
[𝐵!x 𝑇! < 𝐵�u� < 𝐵!*(𝑇!)]

• Higher thermal gradient à higher expulsion efficiency
• Statistical assumption in trapping efficiency  à Material difference (Jc) reproduced

à Cooling down with higher thermal gradient is a standard receipt in LCLS-II at SLAC

𝑓? = ̅𝐽-×𝑛�Φ* = 𝐽-𝐵

𝑓@ = 𝑆𝚫𝑻 = −𝜙* ⁄𝜕𝐻-/ 𝜕𝑇 ⋅ 𝚫𝑻



𝜉@A , 𝜆@A in Ginzburg Landau theory
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BCS-Gor’kov à GL around 𝑇5

𝜉93(𝑇) = 0.739 𝜉":% + 0.882 𝜉"𝑙 :$ ⁄:$ %𝑅 ⁄:$ % 1 −
𝑇
𝑇7

⁄:$ %

𝜆93(𝑇) = 2 ⁄:$ %𝜆3 1 +
0.882𝜉"

𝑙

⁄$ %
𝑅 ⁄$ % 1 −

𝑇
𝑇7

⁄:$ %

𝜅93 ≡
𝜆93 𝑇
𝜉93 𝑇

= 0.957
𝜆3
𝜉"

1 +
0.882𝜉"

𝑙
𝑅:$~

𝜆3
𝜉"

T. P. Orlando, E. J. McNiff, Jr., S. Foner, and M. R. Beasley, Phys. Rev. B 19, 454 (1979)

1 = 𝑅 0 < 𝑅 𝑙 < 𝑅 ∞ = 1.17
T [K]

0 1 2 3 4 5 6 7 8 9 10

 [T
]

c2B

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

data

BCS-Gor’kov

)
c

GL (T~T

×~0.7

𝐵-& 𝑇 =
Φ*

2𝜋𝜉A; 𝑇 &

à 𝐵-& 𝑇 → 𝑇- ∝ 1 − ( ⁄𝑇 𝑇-)

AM, WV Delsolaro, 
SUST 32 025002



Superconductor is protected against parallel magne=c fields

59

C. P. Bean and J. D. Livingston
Phys. Rev. Lett. 12, 14 (1964)

𝛻&𝐻 𝑥, 𝑧 −
1
𝜆&𝐻 𝑥, 𝑧 = −

𝜙*
𝜇*𝜆&

𝛿 𝑥 𝛿 𝑧 − 𝑧* − 𝛿 𝑥 𝛿 𝑧 + 𝑧*

Solving London equation with the image force term

Results in two terms

(To fulfill boundary condition)

1. External field term which attracts the parallel flux

𝑓x =
𝜙r𝐻r
𝜆 exp −

𝑧r
𝜆

2. Image force term which expels the parallel flux

𝑓* 𝑥 =
𝜙r

2𝜋𝜇r𝜆v
𝐾x

2zr
𝜆

(one particular solution using 2D Green function)

The 2nd term dominates even at 𝐻 > 𝐻!x but to be 
defeated by the 1st term Above 𝐻 > 𝐻(~

£#
¤¥¦§~

$̈
* the 

surface barrier disappears but this is sXll lower than 
superheaXng field 𝐻(` esXmated from GL theory


