RF Superconductivity part1 : fundamental

Akira Miyazaki CNRS/IN2P3/IJCLab Université Paris-Saclay

CERN Summer Student Lecture 2024

Akira.Miyazaki@ijclab.in2p3.fr / Akira.Miyazaki@cern.ch

Outline

- Introduction: why superconducting RF for accelerators?
- Superconductors in thermal equilibrium
 - Bardeen-Cooper-Schrieffer theory
 - Superconductors and Higgs mechanism
- Response against Radio Frequency
 - Linear response theory
 - Residual resistance
- Field limitations
 - Physics of phase transition
 - Fundamental challenges
- Conclusion

Outline

- Introduction: why superconducting RF for accelerators?
- Superconductors in thermal equilibrium
 - Bardeen-Cooper-Schrieffer theory
 - Superconductors and Higgs mechanism
- Response against Radio Frequency
 - Linear response theory
 - Residual resistance
- Field limitations
 - Physics of phase transition
 - Fundamental challenges
- Conclusion

How to accelerate charged particles

Electron's rest mass in the natural unit $m(c^2) = 511 \text{ keV}$

Kinetic energy of a charge +e (1.6×10^{-19} C) accelerated by 1 V E = 1 eV

Modern science >> MeV (Neutrons>1GeV, hard X-rays>10GeV, Higgs boson>125+90 GeV)

DC cannot provide high accelerating gradient (E_{acc})

 \rightarrow For GeV science RadioFrequency (RF) is one option $_{5}$

Particle acceleration with RF resonant cavities

Our interest: (unloaded) quality factor

Higher Q \rightarrow higher field E_{acc} with smaller power dissipation P_c _{Geome}

Geometrical

material

- Smaller surface resistance R_s
- \rightarrow high Q & low P_c

Experimental $Q_0 = \frac{G}{D}$ From

Experimental
$$P_{c} = \frac{\kappa R_{s}}{G} E_{acc}^{2}$$

http://lossenderosstudio.com/glossary.php?index=q

G is a geometrical factor

- Elliptical cavity $G \sim 250 \Omega$
- Spoke cavity $G \sim 133 \Omega$
- Quarter-wave resonator $G \sim 30 \ \Omega$

High-Q (Q_0) and high-gradient (E_{acc}) is the keyword

One of our goals in SRF is to go

High-gradient: E_{acc}

with lower power consumption P_c

High-Q:
$$Q_0 = \frac{G}{R_s}$$

We first consider lower R_s

Superconducting cavity

Cryolab @CERN

Superconducting cavity for $R_s \rightarrow 0$?

Heike Kamerlingh Onnes

Nobel prize in 1913

 $\rho = 0$ below transition temperature T_c

RF resistance R_S is non zero Materials provide boundary conditions with finite power dissipation

After this lecture, you will be able to answer...

- 1. What is the superconductivity? Keyword: Higgs mechanism
- 2. What are the intrinsic origins of finite R_s in SRF cavities?
- 3. What is the fundamental limitation of the field E_{acc} inside SRF cavities?

I also list up questions \rightarrow report assignment \odot

Outline

Introduction: why superconducting RF for accelerators?

Superconductors in thermal equilibrium

- Bardeen-Cooper-Schrieffer theory
- Superconductors and Higgs mechanism
- Response against Radio Frequency
 - Linear response theory
 - Residual resistance
- Field limitations
 - Physics of phase transition
 - Fundamental challenges
- Conclusion

Challengers for microscopic theory of superconductors

Albert Einstein (1879-1955)

Lev D. Landau (1908-1968)

Niels Bohr (1885-1962)

Felix Bloch (1905-1983)

Ralph Kronig (1905-1995)

Léon Brillouin (1889 -1969)

John Bardeen (1908-1991)

Max Born (1882-1970)

Werner Heisenberg (1901-1976)

Herbert Fröhlich (1905-1991)

J. Schmalian, arxiv:1008.0447

Fritz London (1900-1954)

Richard Feynman (1918-1988)

A lot of models...all failed Development of quantum field theory in many body problems was necessary...

Challengers for microscopic theory of superconductors

Albert Einstein (1879-1955)

Lev D. Landau (1908-1968)

Niels Bohr (1885-1962)

Felix Bloch (1905-1983)

Ralph Kronig (1905-1995)

Léon Brillouin (1889 -1969)

John Bardeen (1908-1991)

Max Born (1882-1970)

Werner Heisenberg (1901-1976)

Herbert Fröhlich (1905-1991)

J. Schmalian, arxiv:1008.0447

Fritz London (1900-1954)

Richard Feynman (1918-1988)

Feynman tried to get superconductivity by **perturbation theory** including attraction forces between electrons caused by lattice vibration \rightarrow failed \bigotimes

Challengers for microscopic theory of superconductors

Albert Einstein (1879-1955)

Niels Bohr (1885-1962)

Ralph Kronig (1905-1995)

John Bardeen (1908-1991)

Max Born (1882-1970)

Werner Heisenberg (1901-1976)

Herbert Fröhlich (1905-1991)

J. Schmalian, arxiv:1008.0447

Fritz London (1900-1954)

Richard Feynman (1918-1988)

16

Bardeen and Fröhlich had a good idea but needed young talents

- Many body problem (Quantum field theory)
- Application of techniques developed in **particle physics**

Lev D. Landau (1908-1968)

Felix Bloch (1905-1983)

Léon Brillouin (1889 -1969)

Theory of superconductor in equilibrium

Cooper pair: Composite boson

Two electrons are bounded by something (phonon) \rightarrow effective Hamiltonian \mathcal{H}_{BCS}

Mean field approximation + Variational method (+other approximations...)

$$\mathcal{H}_{BCS} | \Phi_0 \rangle = E | \Phi_0 \rangle$$
 Non-perturbative!

Solution: superconducting gap

The cause of Ohmic loss, stochastic scattering of one single electron by phonon or impurity cannot break the pair
 →No DC loss

Self-consistent gap equation

The Equilibrium state of conventional superconductor was understood !

 \rightarrow In this lecture, we try to obtain qualitative insight of the phenomenon ¹⁸

In reality, imperfection causes quasi-particle scattering

Electrons in real metals show Ohmic loss

Paired electrons can avoid Ohmic loss

If electrons *in a distance* (>39 nm) are bounded, *local* (< 0.5 nm) scattering can be avoided

Any small attractive interaction V between electrons can lead to a **Cooper pair** coupled with an energy 2 Δ , below critical temperature T_c <u>BCS gap equation (1957)</u>

Non-perturbative!

$$\Delta = n(E_F) V \int_{\Delta}^{\hbar\omega_D} \frac{\Delta}{\sqrt{\xi^2 + \Delta^2}} \tanh\left(\frac{1}{2} \frac{\sqrt{\xi^2 + \Delta^2}}{k_B T}\right) d\xi$$

Classical superconductors' attractive potential is from *longitudinal mode of lattice vibration*

 $k + q \qquad -k' - q$ $phonon \qquad k \\ e^{-} \qquad e^{-} \qquad -k'$

If energy transfer $|\epsilon_{k+q} - \epsilon_k|$ is smaller than phonon energy the interaction is attractive (Flöhlich) \rightarrow Eliashberg's strong coupling superconductor (1960)

Implication of *no* scattering?

No scattering

$$m^* \frac{\partial \langle v \rangle}{\partial t} = -eE$$

generates super-current

$$j_{s} = -en_{s} \langle v \rangle$$

$$\rightarrow \frac{\partial j_{s}}{\partial t} - \frac{n_{s}e^{2}}{m^{*}} E = 0$$
Apply $\nabla \times$ from the left
$$\frac{\partial}{\partial t} \left(\nabla \times j_{s} \right) - \frac{n_{s}e^{2}}{m^{*}} \xrightarrow{\partial t} = 0$$
leads to
$$\frac{\partial}{\partial t} \left[\nabla^{2} B - \frac{1}{\lambda_{L}^{2}} B \right] = 0$$

le

Electric field *E*

Constant of time

 \rightarrow Initial condition before phase transition $T > T_c$ must be preserved²²

Superconductor ≠ Perfect electric conductor

Meissner effect differentiates them

Superconductivity is a thermodynamical state which expels magnetic fields and cannot be explained by classical electrodynamics \rightarrow quantum field theory \bowtie

Cross-over of particle physics and condensed matter physics

PHYSICAL REVIEW

VOLUME 122, NUMBER 1

APRIL 1, 1961

Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. I*

The vacuum is similar to the superconducting state

Particle mass = superconducting gap (gauge symmetry is broken in the ground state)

→ Chiral symmetry breaking, Higgs mechanism, Electroweak theory
→ Origin of mass

Yoichiro Nambu

Spontaneous gauge symmetry breaking

<u>Ginzburg-Landau theory</u> $(T \rightarrow T_c \text{ of BCS theory}, \Psi = \Delta)$

$$F = (\nabla \times A)^2 + \frac{\hbar^2}{4m_e} |(\nabla + ieA)\Psi|^2 + \frac{g}{4} (|\Psi|^2 - v^2)^2 \sim \phi^4 \text{ theory}$$

EM energy Scaler Kinetic energy Scaler potential

Excitation around potential minimum v at fixed gauge (Unitary gauge) $\Psi(\mathbf{x}) \rightarrow v + \phi(x)$

Kinetic term

 $|(\nabla + ieA)\Psi|^2 = |\nabla \phi|^2 + e^2 \nu^2 |A|^2 + \cdots$

Gauge field gains mass: Nambu-Goldston mode is absorbed by photon $e^2v^2|A|^2 \equiv m_v|A|^2$ Massive vector boson eq. H_0 - $(\nabla^2 - m_v^2)A = 0$ \leftrightarrow London eq. \Rightarrow Massive photon \Rightarrow finite interaction length: penetration depth $\lambda_L = \frac{1}{m_v}$ Meissner effect = Higgs mode ϕ has a mass $m_S = v\sqrt{g}$: coherence length $\xi_0 = \frac{1}{m_s}$ to broken Gauge symmetry

R. Matsunaga et al PRL 111 057002 (2013)

Outline

- Introduction: why superconducting RF for accelerators?
- Superconductors in thermal equilibrium
 - Bardeen-Cooper-Schrieffer theory
 - Superconductors and Higgs mechanism
- Response against Radio Frequency
 - Linear response theory
 - Residual resistance
- Field limitations
 - Physics of phase transition
 - Fundamental challenges
- Conclusion

At finite temperature $0 < T < T_c$, these two states are *in thermal equilibrium* # of quasiparticles: $n_N \sim \exp\left(-\frac{\Delta}{k_B T}\right)$ # of electrons in Cooper pairs: $n_S \sim n - n_N$

Quasi-particles (~normal conducting electrons) still exist if T > 0

Why normal and super electrons at a time?

Linear response to $RF \rightarrow BCS$ resistance R_{BCS}

Quamtum mechanical *derivation* of R_s requires quantum many body theory

Quantum *derivation of* Ohm's law $\sigma = -\frac{1}{i\omega} [\Phi^R(\omega) - \Phi^R(0)]$ is equally complicated... $\Phi^R = \frac{i}{\hbar V} \theta(t) \langle \hat{j}(t) \hat{j}(0) - \hat{j}(0) \hat{j}(t) \rangle \rightarrow \sigma = \frac{ne^2 \tau_k \widetilde{\rho_0}}{m \rho_0}$

Introduction to *quantum* mechanical derivation: Integrate contribution of all the quasi-particles

Introduction to *quantum* mechanical derivation:

Reality in the literature...complete picture until 1970s

Mattis and Bardeen Phys Rev 111 2 1958 Abrikosov et at JTEP 35 182 1959

$$\mathbf{j}(\mathbf{r},t) = \sum_{\omega} \frac{e^2 N(0) v_0}{2\pi^2 \hbar c}$$

$$\times \int \frac{\mathbf{R} [\mathbf{R} \cdot \mathbf{A}_{\omega}(r')] I(\omega,R,T) e^{-R/l} dr'}{R^4}$$

$$I(\omega,R,T) = -\pi i \int_{\epsilon_0 - \hbar \omega}^{\epsilon_0} [1 - 2f(E + \hbar \omega)]$$

$$\times [g(E) \cos(\alpha \epsilon_2) - i \sin(\alpha \epsilon_2)] e^{i\alpha \epsilon_1} dE$$

$$-\pi i \int_{\epsilon_0}^{\infty} \{ [1 - 2f(E + \hbar \omega)] \}$$

$$\times [g(E) \cos(\alpha \epsilon_2) - i \sin(\alpha \epsilon_2)] e^{i\alpha \epsilon_1} - [1 - 2f(E)]$$

$$\times [g(E) \cos(\alpha \epsilon_2) - i \sin(\alpha \epsilon_2)] e^{i\alpha \epsilon_1} - [1 - 2f(E)]$$

$$\times [g(E) \cos(\alpha \epsilon_1) + i \sin(\alpha \epsilon_1)] e^{-i\alpha \epsilon_2} \} dE,$$

$$\frac{\sigma_1}{\sigma_N} = \frac{2}{\hbar \omega} \int_{\epsilon_0}^{\infty} [f(E) - f(E + \hbar \omega)] g(E) dE$$

$$+ \frac{1}{\hbar \omega} \int_{\epsilon_0 - \hbar \omega}^{-\epsilon_0} [1 - 2f(E + \hbar \omega)] g(E) dE,$$

$$\frac{\sigma_2}{\sigma_N} = \frac{1}{\hbar \omega} \int_{\epsilon_0 - \hbar \omega, -\epsilon_0}^{\epsilon_0} \frac{[1 - 2f(E + \hbar \omega)] (E^2 + \epsilon_0^2 + \hbar \omega E)}{(\epsilon_0^2 - E^2)^{\frac{1}{2}} [(E + \hbar \omega)^2 - \epsilon_0^2]^{\frac{1}{2}}}$$

$$\begin{split} \mathbf{j}(\mathbf{k},\omega) &= \frac{3e^2N\mathbf{A}\left(\mathbf{k},\omega\right)}{32mc} \int_{-1}^{1} d\cos\theta\sin^2\theta \int_{-\xi_0}^{\xi_0} d\xi \left[\left(1 - \frac{\xi_1\xi_2 + \Delta^2}{\varepsilon_1\varepsilon_2}\right) \left(\tanh\frac{\varepsilon_1}{2T} + \tanh\frac{\varepsilon_2}{2T}\right) \left(\frac{1}{\varepsilon_1 + \varepsilon_2 + \omega + i\delta} + \frac{1}{\varepsilon_1 + \varepsilon_2 - \omega - i\delta}\right) \right] \\ &+ \left(1 + \frac{\xi_1\xi_2 + \Delta^2}{\varepsilon_1\varepsilon_2}\right) \left(\tanh\frac{\varepsilon_1}{2T} - \tanh\frac{\varepsilon_2}{2T}\right) \left(\frac{1}{\varepsilon_1 - \varepsilon_2 + \omega + i\delta} + \frac{1}{\varepsilon_1 - \varepsilon_2 - \omega - i\delta}\right) \right] - \frac{e^2}{mc} N\mathbf{A}\left(\mathbf{k},\omega\right). \\ \frac{Z\left(\omega\right)}{R_n} &= 2\left(\frac{\omega}{\pi\Delta}\right)^{1/s} \left[\frac{4}{3\pi}\sinh\frac{\omega}{2T}K_0\left(\frac{\omega}{2T}\right)e^{-\Delta/T} - i\right]. \end{split}$$

Strong coupling theory

(Eliashberg JTEP 11 696 1960; Nam Phys Rev 156 470 1967; Marsiglio et al PRB 50 7203 1994) $\sigma_{1}(\nu) = \frac{ne^{2}}{m} \frac{1}{2\nu} \left(\int_{0}^{D} d\omega \left[\tanh \frac{\beta(\omega+\nu)}{2} - \tanh \frac{\beta\omega}{2} \right] g(\omega,\nu) \right)^{\widetilde{\omega}(\omega) = \omega + i\pi T} \sum_{m=0}^{\infty} \frac{\widetilde{\omega}(i\omega_{m})}{\left[\widetilde{\omega}^{2}(i\omega_{m}) - \phi^{2}(i\omega_{m})\right]^{1/2}} \left[\lambda(\omega - i\omega_{m}) - \lambda(\omega + i\omega_{m}) \right]$ $+i\pi\int_{-\infty}^{\infty}dz\frac{\widetilde{\omega}(\omega-z)}{[\widetilde{\omega}^{2}(\omega-z)-\phi^{2}(\omega-z)]^{1/2}}\alpha^{2}F(z)[N(z)+f(z-\omega)],$ $+\int_{-\nu}^{0} d\omega \tanh \frac{\beta(\omega+\nu)}{2} g(\omega,\nu) \bigg|,$ (1) $\phi(\omega) = i\pi T \sum_{\alpha}^{\infty} \frac{\phi(i\omega_m)}{[\varpi^{2}(i\omega_{\alpha}) - \phi^{2}(i\omega_{\alpha})]^{1/2}} [\lambda(\omega - i\omega_m) + \lambda(\omega + i\omega_m) - 2\mu^*]$ $g(\omega, \nu) = \operatorname{Im}\left(\frac{1 - N(\omega)N(\omega + \nu) - P(\omega)P(\omega + \nu)}{\epsilon(\omega) + \epsilon(\omega + \nu) + i/\tau}\right)$ $+i\pi\int_{-\infty}^{\infty}dz\frac{\phi(\omega-z)}{\left[\tilde{\omega}^{2}(\omega-z)-\phi^{2}(\omega-z)\right]^{1/2}}\alpha^{2}F(z)[N(z)+f(z-\omega)].$ $+\frac{1+N^{*}(\omega)N(\omega+\nu)+P^{*}(\omega)P(\omega+\nu)}{\epsilon^{*}(\omega)-\epsilon(\omega+\nu)-i/\tau}\right) \quad \text{Electron-phonon spectral function } \alpha^{2}F(\omega)$ $\epsilon(\omega) \equiv \sqrt{\tilde{\omega}^2(\omega + i\delta)} - \phi^2(\omega + i\delta)$ Wolf, J Low Temp 0.4 (3) L Phys 40 19 1980 $N(\omega) \equiv \tilde{\omega}(\omega + i\,\delta)/\epsilon(\omega),$ 0.2 $P(\omega) \equiv \phi(\omega + i\,\delta)/\epsilon(\omega).$ 33 I2 I6 20 ENERGY IN MEV

Good news: classical model works very well

Surface resistance of superconductor

- One origin of the finite R_s of superconductors is quasi-particles
- Quasi-particles are thermally activated from Cooper pairs at $0 < T < T_c$
- R_s exponentially decreases by lower T because quasi-particles are frozen out
- Higher RF frequency increases $R_s \sim \omega^2$

Classical understanding is sufficient in most of the SRF activities

Superconducting cavities: $R_{BCS}(T, f)$

• Halbritter, KFK-Ext.03/70-06 (1970), <u>https://publikationen.bibliothek.kit.edu/270004230</u>: Fortran66 code for all (ξ, λ, l) Detail phonon-electron interaction is not included \rightarrow BCS (weak coupling limit) + phenomenological parameter $\alpha = \Delta/k_BT_c$

<u>Frequency</u> dependence between $f^{1.5}$ and f^2 Temperature dependence is exponential 10⁶ R_{BCS} [nΩ] R_{BCS} [nΩ] 10⁵ 250 200 10⁴ 150 10³ $T < T_c/2$ 10² 100 $R_{BCS}(T) = \frac{A}{\tau} \exp\left(\frac{1}{\tau}\right)$ $R_{BCS}(f) \propto f^{1.6}$ 10 50 8 10 6 2 3 8 9 10 4 frequency [GHz] T [K]

Classically derived two-fluid model works fine to explain quantum calculation of BCS \rightarrow Practically, we can use the two fluid model to interpret data in your lab ³⁶

Smearing of Density of States and residual resistance In reality $R_s \sim R_{BCS}(T) + R_{res}$ N(E)/N R_s [nΩ] 6 BCS Phenomenologial 10² density smearing (Dynes) $R_{res} = 10 \text{ n}\Omega$ of state Pute BCS Rres 10 3 $R_{res} = 1 n\Omega$ Generate *R_{res}* 10° Reduce R_{BCS} by 3 8 6 9 5 4 0.8 0.6 1.2 1.4 removing the divergence T_c/T E/Δ

Remark: DoS smearing is not the only cause of residual resistance

- Lossy oxides?
- Hydride?
- Grain boundaries??
- Influence of magnetic vortex

etc...

Forget about practicalities ③ Let's focus on fundamental aspect of *topological defect*

Under strong but *static* magnetic field: Type-I vs Type-II

→ How to maximize interface area? → Quantized flux $\Phi_0 = \frac{h}{2e} = 2.07 \times 10^{-15}$ Wb ³⁸

This flux oscillation can cause substantial power dissipation

39

Simple approximation

<u>Solutions</u>

- 1. A good magnetic shield (earth field 50uT \rightarrow < 1uT)
- 2. Expel more fluxes at phase transition
- 3. (Reduce sensitivity of the flux oscillation against RF)

Engineering challenges!

Outline

- Introduction: why superconducting RF for accelerators?
- Superconductors in thermal equilibrium
 - Bardeen-Cooper-Schrieffer theory
 - Superconductors and Higgs mechanism
- Response against Radio Frequency
 - Linear response theory
 - Residual resistance

• Field limitations

- Physics of phase transition
- Fundamental challenges

Conclusion

Remark: validity of linear response theory

Our formula (f<< 2Δ , T<T_c/2)

$$R_{BCS} \propto \frac{\omega^{1.5-2.0}}{T} \exp\left(-\frac{\Delta}{k_B T}\right)$$

is valid for low RF field $(B_{RF} \ll B_c)^{-1}$ because it is 1st order perturbation (linear response)

However, state-of-the-art cavities reach 50 MV/m i.e. $B_{RF} \sim B_c$

→ Fundamental challenge in condensed matter physics

The RF magnetic field exceeds B_{c1}

Does type-II superconductor dissipate too much power from flux entry & oscillation? Are type-II superconductors *useless* for SRF₄?

1^{st} order phase transition can be *metastable* Super-cooling of water: T < 0 C but still liquid

https://tenor.com/view/diy-science-hack-ice-water-gif-3448836

SC phase transition with a *magnetic field* is a 1st order phase transition $\rightarrow B > B_{c1}$ can be a metastable super-heating state ⁴⁴

Go'rkov showed that BCS theory reproduces Ginzburg Landau equation around $T \rightarrow T_c$ \rightarrow The validity of this B_{sh} at $T < T_c$ deserves discussion

Quasi-classical formalism, influence of impurity, multilayer coating to further enhance B_{sh} , nonlinear $R_s(B_{RF})$...

Q vs E

- Upper right is better
- Unknown causes of nonlinear behavior
- **Quench** limits

10¹¹

o^o 10¹⁰

10⁸

T= 2K

n

10

15

Dramatic change by 100 nm surface treatment

Outline

- Introduction: why superconducting RF for accelerators?
- Superconductors in thermal equilibrium
 - Bardeen-Cooper-Schrieffer theory
 - Superconductors and Higgs mechanism
- Response against Radio Frequency
 - Linear response theory
 - Residual resistance
- Field limitations
 - Physics of phase transition
 - Fundamental challenges

Conclusion

Answer to the first three questions

- 1. What is the superconductivity?
 - 1. A finite attractive interaction between independent electrons form a Cooper pair that obeys nonrelativestic U(1) Higgs mechanism
 - 2. Photons gain mass in superconductors due to spontaneous symmetry breaking, which leads to the Meissner effect
- 2. What are the fundamental origins of finite RF loss in SRF cavities?
 - 1. Thermally activated quasi-particles at finite temperature act like normal conducting electrons and cause a loss in RF
 - 2. Even at absolute zero temperature, residual resistance exists due to several different mechanisms, such as flux oscillation and subgap state's effect, whose ultimate origins are not wholly understood
- 3. What are the fundamental limitations of the field inside SRF cavities?
 - 1. Superheating field, which exceeds thermodynamic critical fields in equilibrium state, would give a fundamental limitation
 - 2. The dynamic calculation of the superheating field is still an open field of fundamental research

References 1/2: textbook and reviews

- Standard textbooks on SRF
 - H. Padamsee et al "RF superconductivity for accelerators", 2nd edition, WILEY-VCH (2008)
 - H. Padamsee "RF superconductivity", WILEY-VCH (2009)
- Reviews on SRF
 - J. P. Turneaure et al "The surface impedance of superconductors and normal conductors: the Mattis-Bardeen theory", J. Supercond. 4, 341-355 (1991)
 - A. Gurevich "Theory of RF superconductivity for resonant cavities", Supercond. Sci. Technol. 30 034004 (2017)
- Introduction to solid state physics (before second quantization)
 - N. W. Ashcroft and N. D. Mermin, "Solid State Physics" Thomson Learning (1976)
- Introduction to superconductivity + minimal knowledge on condensed matter physics (but lack of SRF...)
 - S. Fujita and S. Godoy "Quantum statistical theory of superconductivity", Springer, (1996)
- Dictionary of superconductivity
 - M. Tinkham "Introduction to superconductivity", 2nd edition, Dover (2004)
- More advanced textbook on superconductivity
 - N. Kopnin "Theory of Nonequilibrium Superconductivity", Oxford Science Publications (2001)

References 2/2: selected papers related to this lecture

• BCS resistance

- J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957). [Matrix elements for static magnetic field were calculated here]
- D. C. Mattis and J. Bardeen, Phys. Rev.111,412 (1958). [1st order perturbation of RF response and nonlocality, substituting matrix elements modified for RF]
- J. Halbritter, Z. Physik266, 209 (1974) [Fermi's golden rule applied for constant martix element and two fluid approximation]
- J. Halbritter, KFK-Ext.03/70-06 (1970) [FORTRAN66 code for BCS resistance of f< $\Delta/2$ and arbitrary ξ_0 , λ_L , l]
- Residual resistance due to flux oscillation
 - J. Bardeen and M. J. Stephen, Phys. Rev.140, A1197(1965). [Phenomenological model to describe trapped flux as a string]
 - J. I. Gittleman and B. Rosenblum, Phys. Rev. Lett.16,734 (1966). [driven-damped ordinary differential equation for flux oscillation driven by Lorentz force]
 - M. Checchin, M. Martinello, A. Grassellino, A. Roma-nenko, and J. F. Zasadzinski, Supercond. Sci. Technol.30, 3 (2017). [application of Gittleman & Rosenblum for SRF cavities]
 - A. Gurevich and G. Ciovati, Phys. Rev. B87, 054502 (2013). [keeping tension term and solved partial differential equation instead]
- Quench field
 - J. Matricon and D. Saint-James Phys Lett A 24 241 (1967). [solving Ginzburg-Landau equation to estimate superheating field]
 - F. P.-J. Lin and A. Gurevich, Phys. Rev. B 85, 054513 (2012). [solving Eilenberger equations to estimate superheating field in arbitrary impurity]
 - Vudtiwat Ngampruetikorn and J. A. Sauls, Phys. Rev. Research 1, 012015(R) (2019). [including inhomogeneity at the surface]

backup

Three characteristic lengths

Mean free path $l = \langle v \rangle \tau$

How often quasiparticles are scattered

l depends on RRR ($l \sim 2.7 \times RRR$) RRR=300 $\rightarrow l = 810$ nm Characteristic size of Cooper pairs

Coherent length

 $\xi_0 \sim 39$ nm for Nb

Cf. Lattice constant of Nb is 0.330 nm

How much magnetic fields can penetrate into a superconductor

 $\lambda_L \sim 36$ nm for Nb ₅₂

R_{BCS} vs mean free path l: anomalous skin effect

Counter intuitively, super clean material is not ideal for SRF cavities! → Heat treatment, doping, etc to make *surface* dirty Penetration depth vs skin depth: similar but totally different origin

~~

Superconductor
Quantum
mechanics
$$\lambda_L = \sqrt{\frac{m^*}{n_s e^2 \mu_0}}$$

From London equation (broken gauge symmetry)

$$\nabla^2 \boldsymbol{B} - \frac{1}{\lambda_L^2} \boldsymbol{B} = 0$$

Both **static** magnetic field and **RF** electromagnetic field and currents

For niobium (<9.25K) $\lambda_L \sim 36 \text{ nm}$

Normal conductor

$$\delta = \sqrt{\frac{1}{\pi f \mu_0 \sigma}}$$

From classical electrodyamics

From a RF screening effect of quasi-particles

$$\begin{split} \mathbf{j}_{n} &= \sigma \mathbf{E} \\ \nabla \times \nabla \times \mathbf{E} &= -\frac{\partial (\nabla \times B)}{\partial t} \sim \mu_{0} \frac{\partial \mathbf{j}_{n}}{\partial t} \\ &(= -\nabla^{2} \mathbf{E}) \end{split} = \mathbf{V}^{2} \mathbf{E} - \frac{1}{\delta^{2}} \mathbf{E} = \mathbf{0} \\ \mathbf{E} &= E_{0} exp(i2\pi \mathbf{f} t) \end{aligned}$$
 Math looks similar...

RF electromagnetic fields and currents

For 300K copper and $f=0.1-1~{
m GHz}$ $\delta>2~{
m \mu m}$

Minimum surface resistance from the theory

 $R_{BCS}(T)$ has a minimum as a function of impurity scattering (anomalous skin effect)

 $R_{BCS}(T) + R_{res}$ has a minimum as a function of Dynes parameter Γ with a given impurity scattering

Flux expulsion at the phase transition from NC to SC

- Balance between thermodynamic force f_T and pinning force f_p in the mixed state $[B_{c1}(T_c) < B_{ext} < B_{c2}(T_c)]$
- Higher thermal gradient \rightarrow higher expulsion efficiency
- Statistical assumption in trapping efficiency → Material difference (J_c) reproduced
 → Cooling down with higher thermal gradient is a standard receipt in LCLS-II at SLAC

 $1 = R(0) < R(l) < R(\infty) = 1.17$

T. P. Orlando, E. J. McNiff, Jr., S. Foner, and M. R. Beasley, Phys. Rev. B 19, 454 (1979)

Superconductor is *protected* against *parallel* magnetic fields

E

Solving London equation with the image force term (To fulfill boundary condition)

$$\nabla^2 H(x,z) - \frac{1}{\lambda^2} H(x,z) = -\frac{\phi_0}{\mu_0 \lambda^2} [\delta(x)\delta(z-z_0) - \delta(x)\delta(z+z_0)]$$

Results in two terms

1. External field term which attracts the parallel flux

$$f_1 = \frac{\phi_0 H_0}{\lambda} \exp\left(-\frac{z_0}{\lambda}\right)$$

2. Image force term which expels the parallel flux

$$f_2(x) = \frac{\phi_0}{2\pi\mu_0\lambda^3} K_1\left(\frac{2z_0}{\lambda}\right)$$

(one particular solution using 2D Green function)

The 2nd term dominates even at $H > H_{c1}$ but to be defeated by the 1st term Above $H > H_s \sim \frac{\phi_0}{4\pi\xi\lambda} \sim \frac{H_c}{\sqrt{2}}$ the surface barrier disappears but this is still lower than superheating field H_{sh} estimated from GL theory

