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How to accelerate charged particles

1V
+e

Kinetic energy of a charge +e (1.6 × 10−19C) accelerated by 1 V
𝐸 = 1 eV

Modern science ≫ MeV (Neutrons>1GeV, hard X-rays>10GeV, Higgs boson>125+90 GeV)
4

Electron’s rest mass 
in the natural unit
𝑚 𝑐2 = 511 keV



DC cannot provide high accelerating gradient (𝑬𝒂𝒄𝒄)

10 MV
breakdown

We can generate high DC voltage but is limited to O(10MV)

→ For GeV science RadioFrequency (RF) is one option

Cockcroft-Walton @ CERN
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Particle acceleration with RF resonant cavities
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LHC

𝛻 ⋅ 𝑬 = 0

𝛻 × 𝑬 = −
𝜕𝑩

𝜕𝑡
𝛻 ⋅ 𝑩 = 0

𝛻 × 𝑩 =
1

𝑐2
𝜕𝑬

𝜕𝑡

ቊ
𝒏 × 𝑬 = 0
𝒏 ⋅ 𝑩 = 0

Boundary condition

Maxwell equation

Courtesy: F. Bouly

𝒏



Our interest: (unloaded) quality factor
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𝑄0 =
𝜔𝑈

𝑃𝑐
=
𝜅𝐸𝑎𝑐𝑐

2

𝑃𝑐

Higher Q → higher field 𝐸𝑎𝑐𝑐 with smaller 
power dissipation 𝑃𝑐

http://lossenderosstudio.com/glossary.php?index=q

𝑄0 =
𝐺

𝑅𝑠
G is a geometrical factor
• Elliptical cavity 𝐺~250 Ω
• Spoke cavity 𝐺~133 Ω
• Quarter-wave resonator 𝐺~30 Ω

Smaller surface resistance 𝑅𝑠
→ high Q & low Pc

Experimental 
observable From 

material

𝑃𝑐 =
𝜅𝑅𝑠
𝐺

𝐸𝑎𝑐𝑐
2

Geometrical

Geome
trical

Experimental 
observable



High-Q (𝑄0) and high-gradient (𝐸𝑎𝑐𝑐) is the keyword
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𝐸𝑎𝑐𝑐

𝑄0

High-gradient: 𝐸𝑎𝑐𝑐

One of our goals in SRF is to go

with lower power consumption 𝑃𝑐

High-Q: 𝑄0 =
𝐺

𝑅𝑠

We first consider lower 𝑹𝒔



cavity

https://www.123rf.com/stock-photo/old_radio.html?sti=mbqiuc5egnu4ynov6q|&mediapopup=41753240
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cryogenics

Cryolab
@CERN



Superconducting cavity for 𝑅𝑠 → 0?

Heike Kamerlingh Onnes

DC Current 𝑱

DC resistivity 𝜌

𝜌 ≡
𝐸

𝐽
DC conductivity 𝜎

𝜎 =
1

𝜌
≡
𝐽

𝐸

Cool down the resistor…

Nobel prize in 1913

10

Ohm’s law

𝝆 = 𝟎 below transition temperature 𝑇𝑐

𝜌



RF resistance 𝑅𝑠 is non zero

z

x

surface

y

vacuum Local surface resistance

𝑅𝑠 ≡ Re
𝐸𝑥(𝑧 = 0)

0׬
∞
𝐽𝑥(𝑧)𝑑𝑧

𝑅𝑠 =
𝜋𝑓𝜇0
𝜎

∝ 𝑓 Τ1 2Normal conducting (Cu)

𝑅𝑠 =
𝐴𝑓2

𝑇
exp −

Δ

𝑘𝐵𝑇
∝ 𝑓2Super- conducting (Nb)

Superconducting 𝑹𝒔 is small but non zero

𝐸𝑥(𝑧 = 0)

𝐽𝑥(𝑧)

Materials provide boundary conditions with finite power dissipation

SRF cavity wins
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After this lecture, you will be able to answer…

1. What is the superconductivity? Keyword: Higgs mechanism
2. What are the intrinsic origins of finite 𝑅𝑠 in SRF cavities?
3. What is the fundamental limitation of the field 𝐸𝑎𝑐𝑐 inside 

SRF cavities?

12

I also list up questions → report assignment ☺
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A lot of models…all failed 
Development of quantum field theory in many body problems was necessary…14

Challengers for microscopic theory of superconductors
J. Schmalian, arxiv:1008.0447



Feynman tried to get superconductivity by perturbation theory including 
attraction forces between electrons caused by lattice vibration → failed 

15

Challengers for microscopic theory of superconductors
J. Schmalian, arxiv:1008.0447



Challengers for microscopic theory of superconductors
J. Schmalian, arxiv:1008.0447

Bardeen and Fröhlich had a good idea but needed young talents 
• Many body problem (Quantum field theory)
• Application of techniques developed in particle physics 16



Theory of superconductor in equilibrium 

John Bardeen Leon Cooper John Robert 
Schrieffer

ℋ𝐵𝐶𝑆| ۧΦ0 = 𝐸| ۧΦ0

Cooper pair: Composite boson
Two electrons are bounded by something (phonon) → effective Hamiltonian ℋ𝐵𝐶𝑆

Mean field approximation + Variational method (+other approximations…)

Non-perturbative!

17



Solution: superconducting gap

• The Cooper pair needs certain amount of 
energy to be broken

• The cause of Ohmic loss, stochastic 
scattering of one single electron by phonon 
or impurity cannot break the pair

→No DC loss

The Equilibrium state of conventional superconductor was understood !

Quasi-particles

18

Scaler 
wavefunction

Self-consistent gap equation

𝜟 = 𝑁 𝐸𝐹 𝑉 න

𝛥

ℏ𝜔𝐷
𝜟

𝜉2 + 𝛥2
tanh

1

2

𝜉2 + 𝛥2

𝑘𝐵𝑇
𝑑𝜉

→ In this lecture, we try to obtain qualitative insight of the phenomenon



Electrons in a perfect metal are free (or independent)

+ ++ + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

e

e
e

e

Perfectly periodic potential by ions does 
NOT scatter electrons (Bloch’s theorem)

These electrons are NOT our favorite 
elementary particle of

𝑚 = 511 keV

These electrons are dressed by complicated 
electromagnetic property of metals to have an 
effective mass 𝑚∗given by a band structure

→ Quasi-particles

In reality, imperfection causes quasi-particle scattering 19

Q1

Q2 Electron-electron scattering?
→Pauli’s exclusion principle
Cf. Fermi-liquid theory by Landau

Check this



Electrons in real metals show Ohmic loss

+ ++ + +

+ +
+

+ +

+ + +
+ +

+ + + + +

+ + + + +

e

e
e

e

𝒋 = 𝜎𝑬

Imperfections causes local scattering
1. Impurity, defects (scattering time 𝜏𝑑𝑒𝑓)

2. Lattice vibration, phonon (𝜏𝑝ℎ)

Macroscopic phenomenology (Drude model)
An electron accelerated by an electric field

𝑚∗
𝑑𝑣

𝑑𝑡
= −𝑒𝐸

is scattered by imperfections per 𝜏, and its 
velocity relaxes to a mean velocity

𝑣 = −
𝑒

𝑚∗
𝐸𝜏

Electric current is a collective flow of 𝑛 electrons

𝑗 = −𝑒𝑛 𝑣 =
𝑒2𝑛𝜏

𝑚∗
𝐸

1

𝜏
=

1

𝜏def
+

1

𝜏𝑝ℎ

Total scattering time

Ohm’s law

Electrical conductivity 𝜎 20



Paired electrons can avoid Ohmic loss

+ ++ + +

+ +
+

+ +

+ + +
+ +

+ + + + +

+ + + + +

e

e
e

e

If electrons in a distance (>39 nm) are bounded, 
local (< 0.5 nm) scattering can be avoided

Any small attractive interaction 𝑉 between 
electrons can lead to a Cooper pair coupled with 
an energy 2𝛥, below critical temperature 𝑇𝑐

𝜟 = 𝑛 𝐸𝐹 𝑉 න

𝛥

ℏ𝜔𝐷
𝜟

𝜉2 + 𝛥2
tanh

1

2

𝜉2 + 𝛥2

𝑘𝐵𝑇
𝑑𝜉

Classical superconductors’ attractive potential is 
from longitudinal mode of lattice vibration

Non-perturbative!

𝑒− 𝑒−
𝑘

𝑘 + 𝑞 −𝑘′ − 𝑞

−𝑘′

If energy transfer |𝜖𝑘+𝑞 − 𝜖𝑘| is 

smaller than phonon energy the 
interaction is attractive (Flöhlich)
→ Eliashberg’s strong coupling 
superconductor (1960) 21

BCS gap equation (1957)

0.330 nm (Nb)

39 nm
(Nb)



Implication of no scattering?
No scattering

𝑚∗
𝜕 𝑣

𝜕𝑡
= −𝑒𝐸

generates super-current
𝑗𝑠 = −𝑒𝑛𝑆 𝑣

→
𝜕𝑗𝑠
𝜕𝑡

−
𝑛𝑆𝑒

2

𝑚∗
𝐸 = 0

Apply 𝛻 × from the left
𝜕

𝜕𝑡
(𝛻 × 𝑗𝑠) −

𝑛𝑆𝑒
2

𝑚∗
𝛻 × 𝐸 = 0

leads to
𝜕

𝜕𝑡
𝛻2𝑩 −

1

𝜆𝐿
2 𝑩 = 0

Electric field 𝑬

−
𝜕𝑩

𝜕𝑡

Constant of time
→ Initial condition before phase transition 𝑇 > 𝑇𝑐 must be preserved

~ Τ𝛻 × 𝑩 𝜇0
𝜆𝐿
2 ≡

𝑚∗

𝑛𝑠𝑒
2𝜇0

22

+ ++ + +

+ +
+

+ +

+ + +
+ +

+ + + + +

+ + + + +

e

e
e

e



Superconductor ≠ Perfect electric conductor
Meissner effect differentiates them

𝛻2𝑩 −
1

𝜆𝐿
2 𝑩 = 0

𝛻2
𝜕𝑩

𝜕𝑡
−

1

𝜆𝐿
2

𝜕𝑩

𝜕𝑡
= 0

Superconductivity is a thermodynamical state which expels magnetic fields and 
cannot be explained by classical electrodynamics → quantum field theory!

Additional constraint 
(broken Gauge symmetry)

Apply 𝑩

Cooling 
down

𝑇 > 𝑇𝑐

Switch off 𝑩

Perfect Electric Conductor

Superconductor
𝑇 < 𝑇𝑐

London 
equation

23

Preserve initial condition!

Zero field!

𝑇 < 𝑇𝑐



Cross-over of particle physics and condensed matter physics

Yoichiro Nambu

Superconductivity Particle physics

The vacuum is similar to the superconducting state
Particle mass = superconducting gap (gauge symmetry is broken in the ground state)

→Chiral symmetry breaking, Higgs mechanism, Electroweak theory
→Origin of mass 24

𝐸2 = 𝑘2 + Δ2 𝐸2 = 𝑝2 +m2



Spontaneous gauge symmetry breaking

25

R. Matsunaga et al PRL 111 057002 (2013)

𝐹 = 𝛻 × 𝐴 2 +
ℏ2

4𝑚𝑒
𝛻 + 𝑖𝑒𝐴 Ψ 2 +

𝑔

4
Ψ 2 − 𝑣2 2

EM energy Scaler Kinetic energy Scaler potential

Ginzburg-Landau theory (𝑇 → 𝑇𝑐 of BCS theory, Ψ = Δ)

~𝜙4 theory

Excitation around potential minimum 𝑣 at fixed gauge (Unitary gauge)
Ψ x → 𝑣 + 𝜙(𝑥)

Kinetic term
𝛻 + 𝑖𝑒𝐴 Ψ 2 = 𝛻𝜙 2 + 𝑒2𝑣2 𝐴 2 +⋯

Gauge field gains mass: Nambu-Goldston mode is absorbed by photon
𝑒2𝑣2 𝐴 2 ≡ 𝑚𝑣 𝐴

2

𝛻2 −𝑚𝑣
2 𝐴 = 0

→ Massive photon → finite interaction length: penetration depth 

𝜆𝐿 =
1

𝑚𝑣

Higgs mode 𝜙 has a mass 𝑚𝑆 = 𝑣 𝑔 : coherence length

𝜉0 =
1

𝑚𝑠

Massive vector boson eq. 
↔London eq. 

Meissner effect = 
photon gains mass due 
to broken Gauge 
symmetry



Spontaneous gauge symmetry breaking

26

R. Matsunaga et al PRL 111 057002 (2013)

𝐹 = 𝛻 × 𝐴 2 +
ℏ2

4𝑚𝑒
𝛻 + 𝑖𝑒𝐴 Ψ 2 +

𝑔

4
Ψ 2 − 𝑣2 2

EM energy Scaler Kinetic energy Scaler potential

Ginzburg-Landau theory (𝑇 → 𝑇𝑐 of BCS theory, Ψ = Δ)

~𝜙4 theory

Excitation around potential minimum 𝑣 at fixed gauge (Unitary gauge)
Ψ x → 𝑣 + 𝜙(𝑥)

Kinetic term
𝛻 + 𝑖𝑒𝐴 Ψ 2 = 𝛻𝜙 2 + 𝑒2𝑣2 𝐴 2 +⋯

Gauge field gains mass: Nambu-Goldston mode is absorbed by photon
𝑒2𝑣2 𝐴 2 ≡ 𝑚𝑣 𝐴

2

𝛻2 −𝑚𝑣
2 𝐴 = 0

→ Massive photon → finite interaction length: penetration depth 

𝜆𝐿 =
1

𝑚𝑣

Higgs mode 𝜙 has a mass 𝑚𝑆 = 𝑣 𝑔 : coherence length

𝜉0 =
1

𝑚𝑠

Massive vector boson eq. 
↔London eq. 

Meissner effect = 
photon gains mass due 
to broken Gauge 
symmetry

Q3
Read it!
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Superconducting gap

e

e

e

e

irradiate with a photon 
with energy 2𝛥~meV
(typically THz)

Tear apart
Two 
quasi-particlesA Cooper pair

At finite temperature 0 < 𝑇 < 𝑇𝑐, these two 
states are in thermal equilibrium

# of quasiparticles: 𝑛𝑁~exp −
𝚫

𝑘𝐵𝑇

# of electrons in Cooper pairs: 𝑛𝑆~𝑛 − 𝑛𝑁

Heuristic interpolation

ΤΔ(𝑇) Δ(0) = cos
𝜋

2

𝑇

𝑇𝑐

2 Τ1 2

Quasi-particles (~normal conducting electrons) still exist if 𝑇 > 0 28



Why normal and super electrons at a time?

29

Water at 300 K niobium at 2 K

Liquid 
phase

gas 
phase

H
ig

h
t 

in
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e

H
ig

h
t 

in
 m

o
m

e
n

tu
m

sp
ac

e

Super 
electrons 
(Cooper 
pairs)

Normal 
electrons 
(quasipart
icles)



Linear response to RF→ BCS resistance 𝑅𝐵𝐶𝑆
Quamtum mechanical derivation of 𝑅𝑠 requires quantum many body theory

If the RF field is “small”

= + + …

First order 
perturbation

Higher order 
terms ignored 

equilibrium equilibrium

The responding current is given by the equilibrium state

ℋ = ℋ𝐵𝐶𝑆 +ℋ𝑅𝐹(𝑡)

Quantum derivation of Ohm’s law 
is equally complicated…

𝜎 = −
1

𝑖𝜔
Φ𝑅 𝜔 −Φ𝑅 0

Φ𝑅 =
𝑖

ℏ𝑉
𝜃(𝑡) መ𝐽 𝑡 መ𝐽 0 − መ𝐽(0) መ𝐽(𝑡)

→ 𝜎 =
𝑛𝑒2𝜏𝒌
𝑚

෦𝜌0
𝜌0

30

𝐽 𝑞 = −
1

𝑐
𝐾 𝑞 𝐴(𝑞)

A. Shimizu, 
UTokyo



Introduction to quantum mechanical derivation: 
Integrate contribution of all the quasi-particles

𝑅𝑠 ∝ 𝑃 ≅ Σ𝑝,𝑝′,ℎ𝑘 ∝ (photon energy) x (net # of absorbed photons)

= ℏ𝜔 𝑛+ − 𝑛− = ℏ𝜔න

Δ

∞

𝑑𝐸 𝑓 𝐸 − 𝑓 𝐸 + ℏ𝜔 × 𝑁 𝐸 𝑁 𝐸 + ℏ𝜔

Fermi’s Golden rule [Z. Physik 266 p.209 (1974)]

𝐸

𝐸 + ℏ𝜔 ℏ𝜔

𝐸

𝐸 + ℏ𝜔
ℏ𝜔

All quasiparticles
Δ < 𝐸 < ∞

𝑁(𝐸): density of states (how many quantum 

states at energy 𝐸: a kind of degeneracy)

𝑓(𝐸): distribution function (how many 

electrons are in one state at energy 𝐸)

Fermi-Dirac function in equilibrium state

𝑓 𝐸 =
1

exp − ΤE 𝑘𝐵𝑇 + 1

2

Gap Δ

31

𝑅𝑠 ∝
𝜔𝟏.𝟓

𝑇
exp −

Δ

𝑘𝐵𝑇

Q4
𝑇 = 0

𝑇 > 0
𝑇 > 0
𝑓 𝐸 > 0

𝑅𝑠 𝑇 = 0 = 0

Follow 
the math
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𝐸

𝐸 + ℏ𝜔 ℏ𝜔

𝐸

𝐸 + ℏ𝜔
ℏ𝜔

All quasiparticles
Δ < 𝐸 < ∞

𝑁(𝐸): density of states (how many quantum 

states at energy 𝐸: a kind of degeneracy)

𝑓(𝐸): distribution function (how many 

electrons are in one state at energy 𝐸)

Fermi-Dirac function in equilibrium state

𝑓 𝐸 =
1

exp − ΤE 𝑘𝐵𝑇 + 1

2

Gap Δ

32

𝑇 = 0

𝑇 > 0
𝑇 > 0
𝑓 𝐸 > 0

More exaggerated plots

𝑅𝑠 ∝
𝜔𝟏.𝟓

𝑇
exp −

Δ

𝑘𝐵𝑇

Q4

𝑅𝑠 𝑇 = 0 = 0

Follow 
the math



Reality in the literature…complete picture until 1970s

33

Mattis and Bardeen Phys Rev 111 2 1958 Abrikosov et at JTEP 35 182 1959

Strong coupling theory
(Eliashberg JTEP 11 696 1960; Nam Phys Rev 156 470 1967; Marsiglio et al PRB 50 7203 1994)

Electron-phonon spectral function 𝛼2𝐹(𝜔)

Wolf, J Low Temp 
Phys 40 19 1980



Good news: classical model works very well

𝜕𝑗𝑠
𝜕𝑡

−
𝑛𝑆𝑒

2

𝑚∗
𝐸 = 0

𝑗𝑠 = 𝑗0 exp(𝑖𝜔𝑡)

𝑗𝑠 = −𝑖
𝑛𝑆𝑒

2

𝑚∗𝜔
𝐸

≡ 𝜎𝑠

Supercurrent

Normal current

𝑗𝑁 =
𝑛𝑁𝑒

2𝜏

𝑚∗
𝐸Ohm’s law →

≡ 𝜎𝑁Total current induced by RF

𝑗 = 𝑗𝑆 + 𝑗𝑁 → 𝑗 = 𝜎𝑁 − 𝑖𝜎𝑆 𝐸
Inertia of 
Cooper pairs 
→ inductive

Dissipation by 
quasi-particles 
→resistive

Equivalent circuit

𝜎𝑁 𝜎𝑠

Two 
fluid 
model

34

Phase 
shift 𝜋/2



Surface resistance of superconductor

z

x

surface

y

vacuum

𝐸𝑥(𝑧 = 0)

𝐽𝑥(𝑧)
→ 𝑅𝑠 ≡ Re

𝐸𝑥 𝑧 = 0

0׬
∞
𝐽𝑥 𝑧 𝑑𝑧

~
1

2

𝜎𝑁
𝜎𝑆

𝜔𝜇0
𝜎𝑆

=
𝜇0
2

2
𝜆𝐿
3𝜎𝑁𝜔

2 > 0

𝑗𝑥 = 𝜎𝑁 − 𝑖𝜎𝑆 𝐸𝑥

𝐸𝑥 𝑧 = 𝐸0 exp − Τ𝑧 𝜆𝐿

𝜎𝑁 =
𝑒2𝑛𝑁𝜏

𝑚∗
∝ 𝑛𝑁 ∝ exp −

Δ

𝑘𝐵𝑻Lessons
• One origin of the finite 𝑅𝑠 of superconductors is quasi-particles
• Quasi-particles are thermally activated from Cooper pairs at 0 < 𝑇 < 𝑇𝑐
• 𝑅𝑠 exponentially decreases by lower 𝑇 because quasi-particles are frozen out
• Higher RF frequency increases 𝑅𝑠~𝜔

2

Classical understanding is sufficient in most of the SRF activities35

Q5
Follow 
the math



Superconducting cavities: 𝑅𝐵𝐶𝑆(𝑇, 𝑓)

36

𝑅𝐵𝐶𝑆 𝑇 =
𝐴

𝑇
exp

Δ

𝑘𝐵𝑇

𝑇 < Τ𝑇𝑐 2

𝑅𝐵𝐶𝑆 𝑓 ∝ 𝑓1.6

Frequency dependence between 𝑓1.5 and  𝑓2Temperature dependence is exponential 

Classically derived two-fluid model works fine to explain quantum calculation of BCS
→ Practically, we can use the two fluid model to interpret data in your lab

• Halbritter, KFK-Ext.03/70-06 (1970), https://publikationen.bibliothek.kit.edu/270004230: Fortran66 code for all (𝜉, 𝜆, 𝑙)
Detail phonon-electron interaction is not included → BCS (weak coupling limit) + phenomenological parameter 𝛼 = ΤΔ 𝑘𝐵𝑇𝑐

https://publikationen.bibliothek.kit.edu/270004230


Smearing of Density of States and residual resistance
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Remark: DoS smearing is not the only cause of residual resistance
• Lossy oxides?
• Hydride?
• Grain boundaries??
• Influence of magnetic vortex

𝑅𝑟𝑒𝑠 = 10 nΩ

𝑅𝑟𝑒𝑠 = 1 nΩ

Forget about practicalities ☺
Let’s focus on fundamental aspect of 
topological defect

Phenomenologial 
smearing (Dynes)

BCS 
density 
of state

Generate 𝑅𝑟𝑒𝑠

etc…

In reality 𝑅𝑠~𝑅BCS 𝑇 + 𝑅res

Reduce 𝑅𝐵𝐶𝑆 by 
removing the divergence



Under strong but static magnetic field: Type-I vs Type-II 

38

Type-II superconductors become energetically favorable to create normal conducting 
boundaries inside if 𝐵 > 𝐵𝑐1

→How to maximize interface area? → Quantized flux Φ0 =
ℎ

2𝑒
= 2.07 × 10−15 Wb

𝜅 =
𝜆

𝜉
>

1

2
= 0.71𝜅 =

𝜆

𝜉
<

1

2
= 0.71

𝜅𝑁𝑏~
36 nm

39 nm
~0.92𝜅𝑃𝑏~

28 nm

71 nm
~0.40

Meissner 
state

normal state normal state

Meissner 
state

𝐵𝑐2

𝐵𝑐1

𝐵𝑐

Type-I Type-2 Stabilized by NC/SC boundary energy
1

2𝜇0
𝜉0𝐵𝑐

2 − 𝜆𝐿𝐵
2 < 0 for 𝐵 > 𝐵𝑐1

𝑥/𝜉0

𝑦
/𝜉

0

Without pinning centers, type-II 
traps magnetic flux if 𝐵 > 𝐵𝑐1

2D strong type-II 
simulation with TDGL



𝑅res contribution from magnetic flux oscillation
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environmental 𝑩

defect

Flux captured by 
pinning centers

Flux expulsion may not be perfect

Pinning 
Center

Pinning 
Center

𝑩𝑹𝑭(𝒕)

Mattia Checchin, 

TTC Topical 

Workshop, CERN

Phenomenological equation of motion (Bardeen Stephen)

𝑀
𝜕2𝒖

𝜕𝑡2
+ 𝜂

𝜕𝒖

𝜕𝑡
− 𝜖

𝜕2𝒖

𝜕𝑧2
+ 𝛻𝑈 𝑧, 𝑢 = 𝑱𝑅𝐹(𝑧, 𝑢) × 𝑩ext

Effective 
inertia

Effective 
viscosity

Effective 
tension

Pinning 
potential

Lorentz force drives 
flux oscillation

This flux oscillation can cause substantial power dissipation



Simple approximation
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Solutions
1. A good magnetic shield (earth field 50uT → < 1uT)
2. Expel more fluxes at phase transition
3. (Reduce sensitivity of the flux oscillation against RF)

𝑀
𝜕2𝒖

𝜕𝑡2
+ 𝜂

𝜕𝒖

𝜕𝑡
− 𝜖

𝜕2𝒖

𝜕𝑧2
+ 𝛻𝑈 𝑧, 𝑢 = 𝑱𝑅𝐹(𝑧, 𝑢) × 𝑩ext

𝑅mag~𝑁 × 𝜋𝜉0
2 × 𝑅n~

𝐵ext
2𝐵𝑐2

𝑅n
D. Longuevergne, AM 
arXiv:2009.07007
S, Calatroni and R. Vaglio, 
PRAB 22, 022001 (2019)

Static model

Flux 
number 
density

Normal 
conducting 
area

Earth field 𝐵𝑒𝑥𝑡=50uT
𝐵𝑐2~400 mT (Nb)
𝑅𝑛~1.3 mΩ at 1.3 GHz (Nb)

Normal 
conducting 
surface 
resistance

𝑅mag~80nΩ > 𝑅𝐵𝐶𝑆 2𝐾 ~10nΩ

A cavity can be spoiled!

Engineering 
challenges!
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Remark: validity of linear response theory

42

Nb (type-II)

is valid for low RF field (𝐵𝑅𝐹 ≪ 𝐵𝑐) 
because it is 1st order perturbation 
(linear response)

𝑅𝐵𝐶𝑆 ∝
𝜔1.5−2.0

𝑇
exp −

Δ

𝑘𝐵𝑇

Our formula (f<< 2D, T<Tc/2)

50 MV/m

However, state-of-the-art cavities 
reach 50 MV/m i.e. 𝐵𝑅𝐹~𝐵𝑐

→ Fundamental challenge in condensed matter physics



The RF magnetic field exceeds Bc1

43

Does type-II superconductor dissipate too much power from flux 
entry & oscillation? Are type-II superconductors useless for SRF?

normal state

Meissner 
state

𝐵𝑐2

𝐵𝑐1

𝑥/𝜉0

𝑦
/𝜉

0



1st order phase transition can be metastable

44

https://tenor.com/view/diy-science-hack-ice-water-gif-3448836

SC phase transition with a magnetic field is a 1st order phase transition
→ 𝑩 > 𝑩𝒄𝟏 can be a metastable super-heating state

Super-cooling of water: 𝑇 < 0 C but still liquid



Relevant critical field for SRF: superheating field

45

J. Matricon and D. Saint-James 
Phys Lett A 24 241 (1967) 

Pb (type-I) Nb (type-II)

Still 
Meissner state

Still 
Meissner state

𝐵𝑠ℎ~1.2𝐵𝑐 > 𝐵𝑐1𝐵𝑠ℎ~1.3𝐵𝑐

Ginzburg-Landau equation

Go’rkov showed that BCS theory reproduces Ginzburg Landau equation around 𝑻 → 𝑻𝒄
→ The validity of this 𝐵𝑠ℎ at 𝑇 < 𝑇𝑐 deserves discussion

𝐵𝑠ℎ > 𝐵𝑐 in general

Quasi-classical formalism, influence of impurity, multilayer 
coating to further enhance 𝐵𝑠ℎ, nonlinear 𝑅𝑠(𝐵𝑅𝐹)…

Nb
Pb

𝜅



Q vs E

Mid-T baking
Cold EP & 2-step low-
temperature baking

Courtesy of Sergey Belomestnykh

Nitrogen doping

𝐸𝑎𝑐𝑐 [ ΤMV m]

𝑄0~
𝐺 [Ω]

𝑅𝑠 [𝑛Ω]

𝐵𝑝𝑘~4 × 𝐸𝑎𝑐𝑐 [mT]

Constant 𝑃𝑐 contour

𝑄0 =
𝜔𝑈

𝑃𝑐
∝ 𝐸𝑎𝑐𝑐

2 /𝑃𝑐

quench

High-field 
Q-slope

mid-field 
Q-slope / anti-Q-slope

low-field
(anti-) Q-slope

• Upper right is better
• Unknown causes of 

nonlinear behavior
• Quench limits
• Dramatic change by 100 

nm surface treatment
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Answer to the first three questions

1. What is the superconductivity?
1. A finite attractive interaction between independent electrons form a Cooper 

pair that obeys nonrelativestic U(1) Higgs mechanism
2. Photons gain mass in superconductors due to spontaneous symmetry breaking, 

which leads to the Meissner effect

2. What are the fundamental origins of finite RF loss in SRF cavities?
1. Thermally activated quasi-particles at finite temperature act like normal 

conducting electrons and cause a loss in RF
2. Even at absolute zero temperature, residual resistance exists due to several 

different mechanisms, such as flux oscillation and subgap state’s effect, whose 
ultimate origins are not wholly understood

3. What are the fundamental limitations of the field inside SRF cavities?
1. Superheating field, which exceeds thermodynamic critical fields in equilibrium 

state, would give a fundamental limitation
2. The dynamic calculation of the superheating field is still an open field of 

fundamental research

48



References 1/2: textbook and reviews
• Standard textbooks on SRF
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034004 (2017)
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• Introduction to superconductivity + minimal knowledge on condensed matter physics 
(but lack of SRF…)
• S. Fujita and S. Godoy “Quantum statistical theory of superconductivity”, Springer, (1996)
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• M. Tinkham “Introduction to superconductivity”, 2nd edition, Dover (2004)

• More advanced textbook on superconductivity
• N. Kopnin “Theory of Nonequilibrium Superconductivity”, Oxford Science Publications (2001)
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• BCS resistance

• J. Bardeen, L. N. Cooper, and J. R. Schrieffer,Phys. Rev.108, 1175 (1957). [Matrix elements for static magnetic field were calculated 
here]

• D. C. Mattis and J. Bardeen, Phys. Rev.111,412 (1958). [1st order perturbation of RF response and nonlocality, substituting matrix 
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• J. Halbritter, Z. Physik266, 209 (1974) [Fermi‘s golden rule applied for constant martix element and two fluid approximation ]

• J. Halbritter, KFK-Ext.03/70-06 (1970) [FORTRAN66 code for BCS resistance of f<D/2 and arbitrary 𝜉0, 𝜆𝐿, 𝑙]

• Residual resistance due to flux oscillation

• J. Bardeen and M. J. Stephen, Phys. Rev.140, A1197(1965). [Phenomenological model to describe trapped flux as a string]

• J. I. Gittleman and B. Rosenblum, Phys. Rev. Lett.16,734 (1966). [driven-damped ordinary differential equation for flux oscillation 
driven by Lorentz force]

• M. Checchin, M. Martinello, A. Grassellino, A. Roma-nenko, and J. F. Zasadzinski, Supercond. Sci. Technol.30, 3 (2017). [application of 
Gittleman & Rosenblum for SRF cavities]

• A.  Gurevich and  G.  Ciovati,  Phys.  Rev.  B87,  054502 (2013). [keeping tension term and solved partial differential equation 
instead]

• Quench field
• J. Matricon and D. Saint-James Phys Lett A 24 241 (1967). [solving Ginzburg-Landau equation to estimate superheating field]

• F. P.-J. Lin and A. Gurevich, Phys. Rev. B 85, 054513 (2012). [solving Eilenberger equations to estimate superheating field in arbitrary 
impurity]

• Vudtiwat Ngampruetikorn and J. A. Sauls, Phys. Rev. Research 1, 012015(R) (2019). [including inhomogeneity at the surface]
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Three characteristic lengths

Mean free path
𝑙 = 𝑣 𝜏

e

e

Coherent length

𝜉0 =
ℏ𝑣𝐹
𝜋Δ

(London) Penetration depth

𝜆𝐿 =
𝑚∗

𝑛𝑠𝑒
2𝜇0

z

x
surface

y

vacuum𝐵0

𝐵𝑥(𝑧)

How often quasi-
particles are scattered

Characteristic size of 
Cooper pairs

How much magnetic 
fields can penetrate 
into a superconductor

𝛻2𝑩 =
1

𝜆𝐿
2𝑩

→ 𝐵𝑥 𝑧 = 𝐵0 exp −
𝑧

𝜆𝐿

bulk

𝜉0~𝟑𝟗 nm for Nb 𝜆𝐿~𝟑𝟔 nm for Nb
𝑙 depends on RRR (𝑙~2.7 × 𝑅𝑅𝑅) 
RRR=300 → 𝑙 = 𝟖𝟏𝟎 nm 52

Cf. Lattice constant of Nb is 0.330 nm



𝑅𝐵𝐶𝑆 vs mean free path 𝑙: anomalous skin effect
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dirty clean

Optimal
𝑙~ Τ𝜉0 2

𝑅𝑠~
𝜇0
2

2
𝜆0
3𝜎𝑁𝜔

2

𝜆0 = 𝜆𝐿 1 +
𝜋𝜉0
2𝑙

𝜎𝑁 =
𝑒2𝑛𝜏

𝑚∗
∝ 𝑙

→ 𝑅𝑠~𝑙 × 1 +
𝜋𝜉0
2𝑙

Τ3 2

Counter intuitively, super clean material is not ideal for SRF cavities!
→ Heat treatment, doping, etc to make surface dirty



Penetration depth vs skin depth: similar but totally different origin

Superconductor

𝜆𝐿 =
𝑚∗

𝑛𝑠𝑒
2𝜇0

Normal conductor

𝛿 =
1

𝜋𝑓𝜇0𝜎

For 300K copper and 𝑓 = 0.1 − 1 GHz 
𝛿 > 2 mm

For niobium (<9.25K)
𝜆𝐿~36 nm

𝛻2𝑩 −
1

𝜆𝐿
2 𝑩 = 0

From London equation
(broken gauge symmetry)

Both static magnetic field and RF
electromagnetic field and currents

RF electromagnetic fields and currents

≪

𝒋𝑛 = 𝜎𝑬

From a RF screening effect of quasi-particles 

𝛻 × 𝛻 × 𝑬 = −
𝜕 𝛻 × 𝐵

𝜕𝑡
~𝜇0

𝜕𝒋𝑛
𝜕𝑡

(= −𝛻2𝑬)

𝐸 = 𝐸0𝑒𝑥𝑝(𝑖2𝜋𝑓𝑡)

𝛻2𝑬 −
1

𝛿2
𝑬 = 0

54

Quantum 
mechanics

From classical 
electrodyamics

Math looks similar…
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Remark: DoS smearing is not the only cause of residual resistance
• Lossy oxides?
• Hydride?
• Grain boundaries??
• Influence of magnetic vortex

𝑅𝑟𝑒𝑠 = 10 nΩ

𝑅𝑟𝑒𝑠 = 1 nΩ

However, the question is ultimate 
limits on minimum 𝑅𝑠 (highest Q) 
after removing extrinsic effects

Phenomenologial 
smearing (Dynes)

BCS 
density 
of state

Generate 𝑅𝑟𝑒𝑠

etc…

In reality 𝑅𝑠~𝑅BCS 𝑇 + 𝑅res

Reduce 𝑅𝐵𝐶𝑆 by 
removing the divergence

Tunneling 
measurement
T. Proslier et at Appl Phys
Lett 92 212505 2008

Smearing of Density of States and residual resistance

DoS 
smearing 
is REAL



Minimum surface resistance from the theory

56

dirty clean

Optimal
𝑙~ Τ𝜉0 2

𝑅BCS 𝑇 has a minimum as a 
function of impurity scattering 
(anomalous skin effect)

56

Takayuki Kubo, Phys. Rev. 
Applied 17, 014018, 2022

𝑅BCS 𝑇 + 𝑅𝑟𝑒𝑠 has a minimum as a 
function of Dynes parameter G with a 
given impurity scattering

Fundamental question:
What causes the Dyne’s DoS smearing?
F. Herman: pair-breaking term (?) [PRB 96 014509]

Dynes Superconductor
Model



Lower 𝐽𝑐

Flux expulsion at the phase transition from NC to SC

M. Checchin TTC topical workshop 2017

Meissner State Mixed State

𝑓

𝑓

𝑔(𝑥)

𝑥

𝑦

• Balance between thermodynamic force 𝑓𝑇 and pinning force 𝑓𝑝 in the mixed state 

[𝐵𝑐1 𝑇𝑐 < 𝐵𝑒𝑥𝑡 < 𝐵𝑐2(𝑇𝑐)]
• Higher thermal gradient → higher expulsion efficiency
• Statistical assumption in trapping efficiency  →Material difference (Jc) reproduced

→ Cooling down with higher thermal gradient is a standard receipt in LCLS-II at SLAC

𝑓𝑝 = ҧ𝐽𝑐× 𝑛ഥΦ0 = 𝐽𝑐𝐵

𝑓𝑇 = 𝑆𝚫𝑻 = −𝜙0 Τ𝜕𝐻𝑐1 𝜕𝑇 ⋅ 𝚫𝑻



𝜉𝐺𝐿, 𝜆𝐺𝐿 in Ginzburg Landau theory
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BCS-Gor’kov→ GL around 𝑇𝑐

𝜉𝐺𝐿(𝑇) = 0.739 𝜉0
−2 + 0.882 𝜉0𝑙

−1 Τ−1 2𝑅 Τ−1 2 1 −
𝑇

𝑇𝑐

Τ−1 2

𝜆𝐺𝐿(𝑇) = 2 Τ−1 2𝜆𝐿 1 +
0.882𝜉0

𝑙

Τ1 2

𝑅 Τ1 2 1 −
𝑇

𝑇𝑐

Τ−1 2

𝜅𝐺𝐿 ≡
𝜆𝐺𝐿 𝑇

𝜉𝐺𝐿 𝑇
= 0.957

𝜆𝐿
𝜉0

1 +
0.882𝜉0

𝑙
𝑅−1~

𝜆𝐿
𝜉0

T. P. Orlando, E. J. McNiff, Jr., S. Foner, and M. R. Beasley, Phys. Rev. B 19, 454 (1979)

1 = 𝑅 0 < 𝑅 𝑙 < 𝑅 ∞ = 1.17

× ~0.7

𝐵𝑐2 𝑇 =
Φ0

2𝜋𝜉𝐺𝐿 𝑇 2

→ 𝐵𝑐2 𝑇 → 𝑇𝑐 ∝ 1 − ( Τ𝑇 𝑇𝑐)

AM, WV Delsolaro, 
SUST 32 025002



Superconductor is protected against parallel magnetic fields

59

C. P. Bean and J. D. Livingston
Phys. Rev. Lett. 12, 14 (1964)

𝛻2𝐻 𝑥, 𝑧 −
1

𝜆2
𝐻 𝑥, 𝑧 = −

𝜙0
𝜇0𝜆

2 𝛿 𝑥 𝛿 𝑧 − 𝑧0 − 𝛿 𝑥 𝛿 𝑧 + 𝑧0

Solving London equation with the image force term

Results in two terms

(To fulfill boundary condition)

1. External field term which attracts the parallel flux

𝑓1 =
𝜙0𝐻0
𝜆

exp −
𝑧0
𝜆

2. Image force term which expels the parallel flux

𝑓2 𝑥 =
𝜙0

2𝜋𝜇0𝜆
3
𝐾1

2z0
𝜆

(one particular solution using 2D Green function)

The 2nd term dominates even at 𝐻 > 𝐻𝑐1 but to be 

defeated by the 1st term Above 𝐻 > 𝐻𝑠~
𝜙0

4𝜋𝜉𝜆
~

𝐻𝑐

2
the 

surface barrier disappears but this is still lower than 
superheating field 𝐻𝑠ℎ estimated from GL theory


