DATA ACQUISITION Electronics & Trigger

Tommaso Colombo CERN

Summer Student Lectures Programme CERN, 22 July 2024

DATA ACQUISITION OVERVIEW

- Sensor:
 - detects a physical event or measures a physical quantity
 - transforms this into a *signal*: another quantity that is "easier" to perceive/measure/store
- Detector:

(in nuclear and particle physics)

- a collection of sensors, not necessarily of the same kind

YOU'VE BUILT A NICE DETECTOR. NOW WHAT?

- Data-acquisition (DAQ) system:
 - receives signals from a detector and transforms them into data to analyse

THE MANY FUNCTIONS OF A DAQ SYSTEM

• Trigger:

decide when to start "reading" the data from sensors

- Signal processing: amplification, analog-to-digital conversion, noise reduction, ...
- Collection:

gather signals from different sensors

• Collation:

assemble signals corresponding to the same observed phenomenon

• Filter:

discard faulty or uninteresting data

• Storage: for later analysis

HOW?

- Specialised electronics:
 - Custom or commercial integrated circuits (ICs)
 - Programmable logic devices (FPGAs)
- General-purpose computers:
 - Networks
 - Software

A REAL-WORLD EXAMPLE

• Detector:

lenses + active-pixel sensors

- **Trigger**: human pressing trigger button
- Signal processing, data collection, data collation: onboard processor

- Storage: SD card
- Filter: human looking at screen

IMPORTANT QUANTITIES

• Throughput:

the rate at which something (events, signals, bytes, packets, ...) is processed

• Latency:

the time between the beginning and the end of some process • DAQ efficiency: the fraction of interesting phenomena that could be acquired

• Scalability:

(not really a quantity) the ability of a system to accommodate higher or lower throughput

SIGNAL PROCESSING OVERVIEW

THE SIGNAL

- Typically in NP/HEP* sensors measure some of these quantities:
 - presence of a particle
 - its time of arrival
 - magnitude of energy deposited
- In response, they usually produce a small current pulse
- Duration: from ~100 ps for a Si sensor to ~10 µs for inorganic scintillators

* nuclear physics / high-energy physics

READ-OUT ELECTRONICS

- Directly connected to the sensors
- Generic goal: sense analog signals and make a "usable" data out of them
- In practice:

adapt signals to optimise different, sometimes conflicting properties

- Minimum detectable signal (sensitivity)
- Maximum detectable signal (dynamic range)
- Without forgetting:
 - Compactness, reliability, power consumption, radiation hardness

- Speed (signal rate)
- Timestamping precision
- Pulse shape independence

WHY DIGITAL?

- All of this is easier with digital signals:
 - Protecting signals from noise
 - Buffering to derandomise or wait for trigger (more on this later)
 - Complex filtering
 - Compression
 - Long distance transport
- Digitisation "as soon as possible"

ANOTHER REAL-WORLD EXAMPLE

- Analog TV:
 - 48 channels
 - Standard definition (equivalent to 768x752 @ 25 fps)
 - 400 MHz
 of radio
 spectrum
 in the
 UHF
 band

- Digital terrestrial TV
 - Hundreds of channels
 - High definition (1920x1080 @ 50 fps or more)
 - 200 MHz of radio spectrum

the rest
 was reused
 for 4G

Detector / Sensor

Amplifier

Analog filter

Shaper

Range compression

Sampling

Digital filter / Zero suppression

Buffer

Feature extraction

Buffer

Format

Transport to rest of DAQ system

SIGNAL PROCESSING ANALOG AMPLIFICATION

DETECTOR/AMPLIFIER: PHOTOMULTIPLIER

From H. Spieler "Analog and Digital Electronics for Detectors"

T. Colombo ► Data acquisition 1/3

DETECTOR/AMPLIFIER: PHOTOMULTIPLIER

• High intrinsic gain (i.e.: amplification) \rightarrow no pre-amplifier required

IDEAL AMPLIFIERS: VOLTAGE

- Input voltage: $v_i = \frac{R_i}{R_S + R_i} v_S$
- If $R_i \gg R_S$, then $v_i \approx v_S$
- To amplify voltages, the input resistance (or reactance) should be large compared to the source resistance (or reactance)

From H. Spieler "Analog and Digital Electronics for Detectors"

IDEAL AMPLIFIERS: CURRENT

- Input current: $i_i = \frac{R_s}{R_s + R_i} i_s$
- If $R_i \ll R_S$, then $i_i pprox i_S$
- To amplify currents, the input resistance (or reactance) should be small compared to the source resistance (or reactance)

From H. Spieler "Analog and Digital Electronics for Detectors"

A SIMPLIFIED DETECTOR MODEL

From H. Spieler "Analog and Digital Electronics for Detectors"

From Dougsim, https://commons.wikimedia.org/wiki/File:Ion_chamber_operation.gif

T. Colombo ► Data acquisition 1/3

CERN, 22 Jul 2024

AMPLIFY!

 The input is now an RC circuit

- If the signal pulse is short compared to the R_iC_d time constant, C_d discharges quickly and the amplifier senses the current pulse
- If the signal pulse is long compared to the *R_iC_d* time constant, *C_d* discharges slowly and the amplifier senses the voltage, which is proportional to the current integrated over time

CHARGE-SENSITIVE AMPLIFIER

- Actually, we want to measure energy deposition: $E \propto Q_s = \int i_s(t) dt = V_i/C_d$
- Can we avoid depending on C_d , a sensor-specific value? YES!
- We need a specific amplifier
 - Input capacitance: $C_i = C_f (A+1)$
 - Output: $V_o \approx Q_i/C_f$
 - Sensed charge fraction: $Q_i/Q_S = C_i/(C_d+C_i) \approx 1$ if $C_i \gg C_d$

REAL-WORLD COMPLICATIONS

From Thenub314, https://commons.wikimedia.org/wiki/File:Fourier_series_for_square_wave.gif

- All we've talked about so far is true in an ideal world of spherical cows
- Back to planet Earth:
 - Real amplifiers do not respond immediately to input changes
 - For the output voltage to change, a capacitance at their output has to be charged
 - The high-frequency components of the input signal are suppressed by this,
 i.e.: the amplifier gain is not constant across all frequencies

From H. Spieler "Analog and Digital Electronics for Detectors"

REAL-WORLD COMPLICATIONS

- Phase:
 - Amplifiers also shift the output signal in time with respect to the input (i.e.: they add a phase)
 - Unsurprisingly, this phase shift is also frequency-dependent!
- Input impedance:
 - Frequency dependent too!

SIGNAL PROCESSING FILTERING AND SHAPING

FLUCTUATIONS vs. NOISE

- Signals are affected by:
 - Fluctuations intrinsic to the detection process: identical particles with the same momentum and energy will not always generate identical signals
 - Baseline fluctuations in the electronics ("noise")
- Often both of them affect the signal
- They are independent, so their contributions add in quadrature:

 $\Delta E = \sqrt{\Delta E_{fluc}^2 + \Delta E_{noise}^2}$

• Often, the detection fluctuations obey this formula:

 $\varDelta E_{fluc} \propto \sqrt{E}$

PICK YOUR BATTLES

BANDWIDTH AND NOISE

- Electronics noise is essentially:
 - Thermal noise: created by velocity fluctuations of charge carriers in a conductor
 - Shot noise:
 created by fluctuations in the number of charge carriers (e.g. tunneling events in a semi-conductor junction)
- It is **white noise**: same intensity at different frequencies
 - \rightarrow Larger frequency range == more noise!

BANDWIDTH AND RISE TIME

- The bandwidth *B* of an amplifier is the frequency range for which the output power is at least half of the nominal amplification
- The rise-time t_r of a signal is the time in which a signal goes from 10% to 90% of its peak-value
- For an amplifier whose frequency response can be modeled as a RC low-pass filter: $B \cdot t_r = \text{const}$
- To have fast rising outputs (small t_r), a high-bandwidth amplifier is needed, but higher bandwidth == higher noise power
 - → shape the pulse to make it "smoother"

BROADENING PULSES

- Fast rising pulse is made more gentle
- Rise time *t_r* is increased
- Amplifier bandwidth can be reduced and so noise is reduced as well

... IN MODERATION

- Low-bandwidth pulses last longer
- Successive pulses might "pile-up"
- Noise might be low now, but the detector cannot separate two different signals anymore!

SIGNAL PROCESSING DIGITIZATION

DIGI-WHAT?

• Digitization, or analog-to-digital conversion (ADC) simply means creating a binary representation of an analog value

Finite resolution, finite range,
 but: can be processed with digital electronics and software!

FLASH ADC

- Input voltage is compared with Mfractions of a reference voltage: $V_{ref} (m-1/2)/M$
- Result is encoded into a compact binary form of *N* bits
- Simplest and fastest ADC implementation
- But not cheap:
 - Range \propto n. of comparators
 - Resolution \propto n. of comparators

FLASH ADC EXAMPLE

Example with $M\!\!=\!\!3$, so $N\!\!=\!\!2$

FLASH ADC CHARACTERISTICS

Resolution

 (a.k.a.: LSB, least significant bit):

$$LSB = V_{ref} / M = V_{ref} / 2^N$$

- Quantization error: $\pm LSB/2$
- Dynamic range: $V_{ref} / LSB = M$
- With different R₁, ..., R_M, a non-linear-scale ADC can be made
 - Range: >M
 - With **log** scale: the *relative* resolution and quantization errors are constant

Speed (sampling rate)

• Trade-off between speed and resolution (number of bits)

ADC ERRORS

T. Colombo ► Data acquisition 1/3

TDC: ADC FOR TIMINGS

T. Colombo ► Data acquisition 1/3