DATA ACQUISITION Electronics & Trigger

Tommaso Colombo CERN

Summer Student Lectures Programme CERN, 23 July 2024

SIGNAL PROCESSING CLOCK

WHAT IS A CLOCK?

T. Colombo ► Data acquisition 2/3

DIGITIZING A WHOLE PULSE

NYQUIST-SHANNON THEOREM

If a pulse contains no frequencies higher than f_{max} hertz, then it can be completely determined from its values at a sequence of points spaced less than $1/2f_{max}$ seconds apart.

From J. Bertolotti, https://commons.wikimedia.org/wiki/File:Nyquist_sampling.gif

CERN, 23 Jul 2024

TRY AGAIN...

...WITH MORE SAMPLES

...AND CLOCK JITTER 🔅

WHY YOU NEED A GLOBAL CLOCK

LHC collisions: Every 25 ns

If a local clock is off by 1 ns (4%), the particle you wanted to measure is already gone!

CLOCK DISTRIBUTION

- Recovering clock frequency is easy: Rx could be a simple comparator: input goes higher than threshold → clock tick
- Ok, not so easy: If noise makes the signal a little higher or lower → clock ticks move → jitter

CLOCK RECOVERY

 Not just long distance optical links: clock transmission and recovery is needed within any sufficiently large circuit
 → that is where noise is

picked up

 Standard clock recovery: use the incoming clock to tune a local clock source (oscillator)
 → removes high-frequency jitter

<mark>Original</mark> First, second, third recovery

 Jitter cleaning: measure many clock periods and average them out → removes random jitter TRIGGER **BASICS**

WHEN DO WE START?

- A trigger is a prompt signal starting the data acquisition process
- When do you want to start? When something interesting happens!
- Who decides what "interesting" means?
 - The signal processing electronics itself. Examples:
 - Continuously sample the signal at a given frequency
 - Whenever a pulse is produced by the sensor, the ADC is started
 - An external entity. Examples:
 - A "particle spill" at a fixed-target beam line has started
 - The collider's clock, ticking with every collision
 - One or more "special" sensors in a detector have seen something interesting

INTERNAL SYNCHRONOUS TRIGGER

- Fully sequential system
- Limited by single-measurement processing time
- If the trigger clock is ticking at 1 kHz, ADC+Processing+Storage can take at most 1 ms per measurement

INTERNAL DATA-DRIVEN TRIGGER

- Trigger when signal goes over threshold
- Delay compensates for trigger latency,
 i.e.: time to reach decision
- What if a new signal arrives when the system is not done digitizing, processing, and storing the previous one?

BUSY

- Busy logic blocks triggers while processing
- While the DAQ is busy, no more data can be acquired → dead time

DEAD TIME AND EFFICIENCY

- Let's call the dead time per acquired signal T, average input signal rate f_{in} , and acquisition rate f_{out}
- If f_{in} is constant: $f_{out} = \min(f_{in}, 1/T) \rightarrow \text{efficiency: } f_{out}/f_{in} = \min(1, 1/f_{in}T)$
- If the sensor observes a Poisson process, i.e. events occurring randomly with an average frequency of f_{in} :
 - Probability P_{out} of acquiring a signal after another arrived: $P_{out}(t) = 0$ for $t \le T$ $P_{out}(t) = P_{in}(t-T)$ for t > T
 - Expected time between acquisitions: $1/f_{out} = \int_{T} t P_{in}(t-T) dt = \int_{0} t t r P_{in}(t) dt = 1/f_{in} + T$
 - Efficiency: $f_{out}/f_{in} = 1/(1{+}f_{in}\,T)\,<\,100\%$

DEAD TIME AND EFFICIENCY

• 95% efficiency $\rightarrow 1/T = 19 f_{in}$

- 99% efficiency $\rightarrow 1/T = 99 f_{in}$
- High DAQ efficiency \rightarrow low system usage

T. Colombo ► Data acquisition 2/3

DERANDOMISATION

- Add a buffer to absorb the input frequency peaks
- A first-in first-out (FIFO) buffer smooths the input fluctuations, providing a steady output stream (De-randomised)

• With reasonable FIFO depth, we can now get 99% DAQ efficiency at $1/T = f_{in}$

Reminder: no FIFO $\rightarrow 1/T = 99 f_{in}$

T. Colombo ► Data acquisition 2/3

CERN, 23 Jul 2024

TRIGGER DETECTORS

- Contemporary HEP focuses or rare processes
- The vast majority of the collisions is "boring":
 - They only result in particles and processes that were studied to death decades ago
 - Interesting physics
 is ≥ 9 orders of
 magnitude rarer:
 ≥ one in a billion

THE NEEDLE

- This is what we're looking for: a Higgs boson decaying in four easily identifiable muons
- The LHC produces a few of these **per day**

THE HAYSTACK

- This is where it hides: tens of other hard collisions producing 1000s of particles
- The LHC makes 40 million of these per second!

EXCURSUS: CLOCK, AGAIN

- Even though the tens of collisions are all produced by a single bunch crossing, the particles coming out of them won't produce signals in detectors at precisely at the same time
- If you had a sufficiently precise clock, you could use time as a "fourth dimension" to separate these superimposed signals
- All LHC experiments are working on this, in anticipation of the LHC increasing luminosity in 2028

BACK TO THE HAYSTACK

- Can we get all of these signals out of the detector?
- Yes, at a price: we have to route many (100k) of optical fibers into the bowels of our detector

→ might "steal" valuable sensitive volume from the detector itself

IF YOU MUST...

- Use fast sensors as triggers
 - In HEP: try to identify high-momentum and high-energy particles
- The remaining sensors have to buffer the data in their pipelines until a decision is made
 - The trigger has hard latency constraints
 - This usually requires custom (expensive, inflexible) electronics

FAST, LOCAL ALGORITHMS

- v n р
- Calorimeters:
 - Cluster finding
 - Energy deposition evaluation
 - Coarse grained wrt. real calorimeter resolution

- Muon systems:
 - Track finding
 - Momentum evaluation
 - Dedicated fast sensors

SUMMARY

- Trigger starts the data acquisition process
- Depending on requirements, it can be:
 - A local clock
 - A global clock (collision clock / spill start)
 - The signal itself
 - Signals from dedicated sensors
- While the trigger decides, signals must be delayed/buffered
 → hard real-time constraints on the trigger system or data is lost
- If the trigger rate depends on a physical quantity, derandomising buffers are necessary to maintain good DAQ efficiency

Complexity

ZERO SUPPRESSION

- Without a physics-based trigger, why spend bandwidth sending data that is "zero" for the majority of the time?
- Perform "zero-suppression": only send data with non-zero content
 - Identify the data with a channel number and/or a time-stamp
 - We do not want to lose information of interest so this must be done with great care taking into account pedestals, baseline variations, common mode, noise, etc.
 - Not worth it for occupancies above ~10%

ZERO SUPPRESSION

- Alternative: data compression
 - Huffman encoding and co.
 - Needs power, silicon...
- TANSTAFL (There Aint No Such Thing As A Free Lunch)
 - Data rates fluctuate all the time and we have to fit this into links with a given bandwidth
 - Not any more event synchronous
 - Complicated buffer handling (overflows)
 - Before an experiment is built and running it is very difficult to give reliable estimates of data rates needed (background, new physics, etc.)

POISSON PROCESS ARRIVAL TIMES

T. Colombo ► Data acquisition 2/3

CERN, 23 Jul 2024

CALORIMETER TRIGGER ALGORITHMS

MUON TRIGGER ALGORITHMS

