

CERN Summer Student Lectures 2024

Heavy lons 2/3

Francesca Bellini

University and INFN, Bologna, Italy Contact: francesca.bellini@cern.ch

Experimental principles

QCD in extreme conditions in the laboratory

A QGP can be formed by compressing large amount of energy in a small volume \rightarrow collide heavy nuclei (multiple, ~simultaneous nucleon-nucleon collisions)

- \rightarrow control the energy deposited in the collision region by varying the collision system
 - nuclear species, p-Pb, pp
 - vary impact parameter (centrality)

Hadron and ion colliders

With symmetric proton beams with energy E, the centre-of-mass energy is $\sqrt{s} = 2E$.

With heavy-nuclei, only protons can be accelerated, but neutrons are there too:

 $p_{\rm A} = Z/A p_{\rm proton}$

<u>At the LHC</u>, the rigidity of accelerated particles is fixed by the magnet field configuration ($B_{max} = 8.3 \text{ T}$).

For the ²⁰⁸Pb⁸²⁺ ions used at the LHC: $p_{Pb} = 82 / 208 p_{proton}$

 $p_{\text{proton}} = 6.5 \text{ TeV} (\text{Run } 2) \rightarrow p_{\text{Pb}} = 2.56 \text{ TeV}$ $\rightarrow \sqrt{s_{\text{NN}}} = 5.02 \text{ TeV} \rightarrow \sqrt{s} \sim 1.04 \text{ PeV}$

Experimental exploration of the QCD phase diagram

RHIC and the LHC explore the region of the phase diagram for $\mu_{\rm B} \sim 0$.

which is also the region of the phase diagram where lattice QCD calculations can be performed.

Low energy (& high $\mu_{\rm B}$) are the conditions to study the 1st order transition and the search for the critical point, the key regime being 2.5 < $\sqrt{s_{\rm NN}}$ < 8-10 GeV

Heavy-ion physics worldwide: high energy

CERN SPS

 $\sqrt{s_{NN}}$ < 20 GeV

Super Proton Syncrotron and Large Hadron Collider, **CERN (Switzerland/France)**

Operating since 1986 Circumference 6.9 Km max p = 450 A/Z GeVOngoing: NA61/Shine

Brookhaven RHIC

- Operating since 2000
- Circumference 3.83 km, 2 rings
- Superconducting magnets
- $\sqrt{s_{NN}}$ = 3 200 GeV in Au-Au
- 3 Beam-energy scans campaigns
- Ongoing exp: STAR

CERN LHC

- **Operating since 2009**
- Run 3 started in 2022
- Circumference: 27 km
- B-field: 8 T, superconducting
- pp $\sqrt{s} = 0.9 13.6 \text{ TeV}$
- Pb-Pb $\sqrt{s_{NN}}$ = 2.76-5.36 TeV
- Main ongoing exp.:
 - ALICE, ATLAS, CMS, LHCb

Heavy-ion physics worldwide: low energy

Heavy-ion physics at the LHC

Guidance for the experimental study of the QGP

How can a QGP, once formed, be detected and investigated? How can the physical properties be determined?

Back in 1990's, some **"smoking gun"** observables were proposed, however these were not based on solid calculations (IQCD was still a "baby"...)

Today, we have several powerful theoretical tools at disposal:

- Lattice QCD (the only one from first principles)
- Hydrodynamics and standard model of HIC
- Bayesian analysis
- Transport models

Remember: the QGP is not static but an evolving system!

J.Harris, B.Muller, Annu Rev. Part. Nucl. Physics 46 (1996) 71

QGP: from "discovery" to "measurement"

First "compelling" evidence of QGP at the CERN SPS.

At BNL RHIC, "remarkable" evidence that the hot matter formed is

- Extremely strongly interacting (sQGP)
- Absorbing energy of traversing partons
 → An almost opaque medium
- Reacting to pressure gradients by flowing with very small shear viscosity
 → An almost perfect liquid

At the LHC, the increased beam energies leads to the production of a hotter, larger and longer-lived QGP

 \rightarrow Measure QGP probes with increased precision.

The "little bang" in the laboratory

"Little bangs" of heavy nuclei can be studied similarly as the Early Universe **No direct observation of the QGP is possible**

 \rightarrow use particles that decouple from the system at different phases of the evolution as probes

The "little bang" in the laboratory

High-p_T **partons (** \rightarrow **jets), charm and beauty quarks (** \rightarrow **open HF, quarkonia),** produced in the early stages in hard processes, traverse the QGP interacting with its constituents \rightarrow rare, calibrated probes, pQCD \rightarrow **interaction (energy loss) and transport properties in QGP**

 \rightarrow modification of the strong force in a colored medium

The "little bang" in the laboratory

Low-p_T particles, light flavour hadrons (u,d,s, + nuclei) produced from hadronization of the strongly-interacting, thermalized QGP constitute the bulk of the system and undergo collective expansion \rightarrow non-perturbative regime

- \rightarrow thermodynamics, flavour composition and equilibration in QGP
- \rightarrow hydrodynamical and transport properties of the QGP

>2k charged particles per unit of rapidity in 5% most central Pb-Pb: 98% with p_T < 2 GeV/c, 90% pions Heavy-ion and high-energy physics have different goals and thus different detector requirements.

Observables:

- soft (low p_T) and hard (high p_T) probes
- hadron production rates (needs PID)
- collectivity, flow (needs acceptance coverage)
- photon/W/Z (calorimetry)
- jets (coverage, high p_T)

In HI physics special emphasis on:

- soft (non-perturbative) regime, i.e. low p_T
- identification of hadron species
- minimum bias events \rightarrow centrality dependence
- midrapidity measurements

Complementarity of the LHC experiments

- ALICE
 - $Low p_T$
 - PID
 - Low material budget next to IP

ATLAS/CMS

- ATLAS
- Wide pseudorapidity coverage
- High p_{T,} jets

- LHCb
- Forward pseudorapidity
- PID
 - Fixed target

LHCb

Centrality

Centrality = fraction of the total hadronic cross section of a nucleus-nucleus collision, typically expressed in percentile, and related to the **impact parameter**, **b**, of the collision.

Central collisions (e.g. 0-5%) \rightarrow smaller impact parameter \rightarrow larger overlap region \rightarrow more participants, N_{part}

- \rightarrow more binary collisions, N_{coll}
- \rightarrow more particles produced

Peripheral collision (e.g. 80-90%)

- \rightarrow larger impact parameter
- \rightarrow smaller overlap region
- \rightarrow less participants
- \rightarrow less binary collisions
- \rightarrow less particles produced

 N_{part} , N_{coll} , **b** determined with a <u>Glauber model fit</u> to the signal amplitudes.

M. L. Miller et al., An.Rev.Nucl.Part.Sci. 57 (2007) 205

Centrality - Experimental determination

Centrality is determined by counting the number of particles (multiplicity) or measuring the energy deposition in different phase space regions \rightarrow correlation observed!

Rapidity and pseudorapidity

The rapidity can be approximated by **pseudo-rapidity** in the ultra-relativistic limit in which *p>>m*:

$$y = \frac{1}{2} \ln \frac{E + p \cos \vartheta}{E - p \cos \vartheta} \overset{p \gg m}{\approx} \frac{1}{2} \ln \frac{1 + \cos \vartheta}{1 - \cos \vartheta} = \frac{1}{2} \ln \frac{2 \cos^2 \frac{\vartheta}{2}}{2 \sin^2 \frac{\vartheta}{2}} = -\ln \left[\tan \frac{\vartheta}{2} \right] =: \eta$$
$$\cos(2\alpha) = 2 \cos^2 \alpha - 1 = 1 - 2 \sin^2 \alpha$$

Where ϑ is the angle between the direction of the beam and the particle. The relation to transverse and longitudinal momenta are

High energy HI collisions – the midrapidity region

In **high-energy** collisions (RHIC, LHC), the beams have large rapidity difference before the collision. After the collision nuclei slow down to lower γ and y, particles are produced with a "plateau" in the central rapidity region \rightarrow **Transparency regime**

The baryon number carried out by the colliding nuclei is outside the centre-of-mass rapidity region, $y_{CM} = 0$. The **midrapidity region** is the hottest region, where particle production is maximal and the highest temperatures are reached.

Charged particle production in central HI collisions

Particle production per participant in HI collisions follows a steeper power law than in pp, pA and increases by 2-3x from RHIC to the LHC.

Heavy-ion collisions are more efficient in transferring energy from beam- to mid- rapidity than pp.

Determination of the initial energy density

Measurement of the multiplicity dN_{ch}/dy and the $\langle p_T \rangle$, or of the transverse energy, can be used to determine the initial energy density available in the collision.

J. D. Bjorken, Phys. Rev. D 27 (1983) 140–151.

 S_T = Transverse area from Glauber model $f_{total} = 0.55 \pm 0.01$ = fraction of charged particles $\sqrt{(1+a^2)}$ <m> = effective transverse mass

 $\varepsilon_{LB}\tau_0$ (0-5%) = (12.5 ± 1.0) GeV/fm²/c

For τ_0 ~1fm/c, ~20x the energy density of a hadron, ~70x the density of atomic nuclei

Well above the critical energy density for the phase transition to occur!

Key observable: particle "spectrum"

Particle "**spectra**": $d^2N/(dydp_T) = yield per event per (pseudo)rapidity unit per transverse momentum unit$

~95% of the produced charged particles are "soft", i.e. have $p_T < 2$ GeV/c.

Low/high- p_T ends of the spectra are due to different hadron formation mechanisms

Features of particle spectra

Low p₇ (< 2 GeV/c)

- Particle spectra are described by a Boltzmann distribution → "thermal", ~ exp(-1/k_BT)
- "Bulk" dominated by light flavor particles produced by hadronization of the QGP
- Non-perturbative QCD regime

Mid p₇ (2 to 8 GeV/c)

- Interplay of parton fragmentation and recombination of partons from QGP

High p₇ (> 8-10 GeV/c)

- Particle spectra described by a power law
- Dominated by **parton fragmentation** (jets!)
- Perturbative QCD regime

How does the presence of a colored QGP affect particle production?

Jets

In the early stages of the collision, hard scatterings produce back-to-back recoiling partons, which fragment into collimated "sprays" of hadrons.

 \rightarrow in-vacuum fragmentation

ATLAS, pp collision event display

Jets through a colored medium

In the early stages of the collision, hard scatterings produce back-to-back recoiling partons, which fragment into collimated "sprays" of hadrons.

 \rightarrow in-vacuum fragmentation

When a QGP is formed, the colored partons traverse and interact with a colored medium.

- \rightarrow in-medium fragmentation
- \rightarrow jet ''quenching" (energy loss)

Goal: understand the nature of this energy loss to characterize the strongly-interacting QGP

The nuclear modification factor, R_{AA}

$$R_{AA}(p_T) = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA} / dp_T}{dN_{pp} / dp_T}$$

If a AA collision is a incoherent superposition of independent pp collisions:

$$\mathrm{d}N_{AA} \,/\, \mathrm{d}p_T = N_{coll} \,\times \, \mathrm{d}N_{pp} \,/\, \mathrm{d}p_T$$

and $R_{AA} = 1$ at high p_T \rightarrow the medium is transparent to the passage of partons Note: at low p_T , soft, non perturbative regime $\rightarrow R_{AA}$ not a good observable

If $R_{AA} < 1$ at high p_T

 \rightarrow the medium is opaque to the passage of partons

 \rightarrow parton-medium final state interactions, energy loss, modification of fragmentation in the medium

A strong suppression of high- p_T hadrons and jets is observed in central Pb-Pb collisions. No suppression observed in p-Pb collisions, nor for the color-less Z bosons and photons. \rightarrow Jet quenching is explained as **parton energy loss in a strongly interacting plasma**

Radiative energy loss

In the BDMPS (*Baier-Dokshitzer-Mueller-Peigné-Schiff*) approach, the energy loss depends on

- the color-charge via the Casimir factors C_r
 - $C_r = C_A = 3$ for g interactions
 - $C_r = C_F = 4/3$ for q,qbar interactions
- the strong coupling
- the path length L
- the **transport coefficient** \hat{q} ("q-hat")
 - gives an estimate of the "strength" of the jet quenching
 - is <u>not directly measurable</u> \rightarrow from data through model(s)

Baier-Dokshitzer-Mueller-Peigné-Schiff, Nucl. Phys. B. 483 (1997) 291

How much energy is lost?

From the BDMPS formula :

$$\left< \Delta E \right> = \frac{1}{4} \alpha_s \ C_R \ \hat{q} \ L^2 \xrightarrow{\text{Dimensional analysis}} \left< \Delta E \right> = \frac{\alpha_s \ C_R \ \hat{q} \ L^2}{4\hbar c}$$

If we take

- $-\hat{q} \sim 5 \text{ GeV}^2/\text{fm}$
- $\alpha_{\rm S}$ = 0.2, strong coupling for Q² = 10 GeV
- $C_{R} = 4/3$
- L = 7.5 fm

we obtain $<\Delta E > \sim 95 \text{ GeV}$

Only partons with E \gtrsim 105 GeV can traverse a 7.5 fm radius fireball and exit with $p_T \gtrsim$ 10 GeV/c

In other words, it takes a ~7.5 fm radius QGP droplet to stop a jet of ~100 GeV (or ~1.5m of hadronic calorimeter!)

Jet transport coefficient \hat{q}

A recent combined analysis of the RHIC and the LHC data on jet quenching (inclusive hadron R_{AA}) allowed to extract a value for the \hat{q} parameter

$$\frac{\hat{q}}{T^3} \approx \begin{cases} 4.6 \pm 1.2 & \text{at RHIC,} \\ 3.7 \pm 1.4 & \text{at LHC,} \end{cases}$$

For a quark jet with E = 10 GeV

$$\hat{q} \approx \begin{cases} 1.2 \pm 0.3 \\ 1.9 \pm 0.7 \end{cases} \text{ GeV}^2/\text{fm at} & \begin{array}{c} \text{T=370 MeV} \\ \text{T=470 MeV} \end{cases}$$

 \rightarrow Still large uncertainties, but important step towards a quantitative characterisation of the QGP.

Heavy-flavour quarks and hadrons as probes

Ideal probes of the QGP:

- large production cross sections
- produced in **initial hard** parton scatterings
- Caibrated probes (p-QCD)
- subject to various processes in a QGP

m(charm) ~ 1.3 GeV/c² m(beauty) ~ 4.7 GeV/c²

Heavy-flavour quarks and hadrons as probes

Ideal probes of the QGP:

- large production cross sections
- produced in initial hard parton scatterings
- Caibrated probes (p-QCD)
- subject to various processes in a QGP

m(charm) ~ 1.3 GeV/c² m(beauty) ~ 4.7 GeV/c²

Energy loss of charm and beauty

- by **gluon radiation** (ref. BDMPS formula)
- by elastic collisions
- dead cone effect = suppression of the gluon radiation emitted by a (slow) heavy quark at small angles, θ < θ_{DC} ~ m_q/E_q
 → observed for the first time in pp collisions by ALICE: *Nature 605 (2022) 7910, 440-446*
- \rightarrow hierarchy in energy loss: $\Delta E_g > \Delta E_c > \Delta E_b$
- \rightarrow radiative energy loss reduced by 25% for charm and 75% for beauty [for μ = 1 GeV/c²]

$R_{AA} \mbox{ of heavy flavours}$

- Strong suppression observed for charm and beauty via open charm mesons and leptons from c and b decay.
- Similar suppression for D and pions
- Less suppression for J/ ψ from beauty than for D mesons $\rightarrow \Delta E_c > \Delta E_b$

Prompt: from c quark Non-prompt: from beauty decay \rightarrow proxy for b quark

Summary

Evidence of the creation of a strongly-interacting medium in central heavy ion collisions comes from the observed strong suppression of particle production, explained by the energy loss of colored partons in the colored QGP.

- Radiative energy loss dominates at high p_T for light flavours, gluons and charm
- Collisional and radiative energy loss, dead cone effect play a role for beauty

A **quantitative characterization** of the properties of the medium (e.g. transport coefficient, ...) requires **models**.

