Experimental Physics at Lepton Colliders

Frank Simon @ Summer Student Lectures CERN - July 2024

Overview

A two-part story

- Part I:
 - Scientific motivation
 - Future e⁺e⁻ colliders in broad strokes
- Part II:
 - Detectors at future e^+e^- and $\mu^+\mu^-$ colliders
 - Some physics examples

Disclaimer

I have taken material from many different presenters - impossible to list them all. I want to single out Mogens Dam, who gave excellent lectures on the same topic a few years ago, which I took as inspiration. An excellent resource reflecting a recent survey of this field is the Snowmass '21 CSS Meeting in Seattle in July 2022: https://indico.fnal.gov/event/22303

The selection of material reflects my personal bias. I am not trying to "sell" a particular future facility - but use your own judgment to form you opinion!

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Part I

Introduction

Where we are, how we got there

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

The Standard Model of Particle Physics

A Collider Success Story

SPEAR / AGS 1974 Fermilab 1977 Tevatron 1995

AGS 1962 **SPEAR 1975** Fermilab 2000

• The result of generations of accelerators, and the interplay of experiment and theory Providing testable predictions

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

PETRA 1979 SppS 1983

LHC 2012

Contributions from

- e+e⁻ colliders
- hadron colliders
- fixed target

The Universe at Large and Small Scales

Open Questions

• The Standard Model: Explaining the micro-world

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

• The Standard Model: Explaining the micro-world

Open Questions

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

The Universe at Large and Small Scales

But: does not explain key astrophysical observations...

• The Standard Model: Explaining the But: does not explain key astrophysical observations... micro-world

Open Questions

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

The Universe at Large and Small Scales

The Universe at Large and Small Scales **Open Questions**

• The Standard Model: Explaining the micro-world

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

But: does not explain key astrophysical observations...

The Universe at Large and Small Scales **Open Questions**

• The Standard Model: Explaining the micro-world

... and raises new questions by itself!

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

But: does not explain key astrophysical observations...

Responding to missing Guidance

Maggie Mühlleitner - FC@CERN WS 2024

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

New physics may be heavy, with new particles at a large mass scale. New physics may be light, but with small couplings. New physics is subtle: - small cross sections Energy - novel signatures Frontier Energy

Responding to missing Guidance

Maggie Mühlleitner - FC@CERN WS 2024

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

New physics may be heavy, with new particles at a large mass scale. New physics may be light, but with small couplings. New physics is subtle: - small cross sections Energy - novel signatures Frontie Energy

No single right experimental path forward.

Responding to missing Guidance

Maggie Mühlleitner - FC@CERN WS 2024

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

No single right experimental path forward.

Energy

Exploiting different strategies:

- Direct production at high energies
- Precision measurements + precise theory: Indirect probe of high scales
- Direct detection of "dark sector" particles

Energy

New physics may be

heavy, with new particles

New physics may be light,

but with small couplings.

→ New physics is subtle:

- small cross sections

- novel signatures

at a large mass scale.

Responding to missing Guidance

Maggie Mühlleitner - FC@CERN WS 2024

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

No single right experimental path forward.

Energy

New physics may be

heavy, with new particles

at a large mass scale.

Energy

New physics may be light,

but with small couplings.

→ New physics is subtle:

- small cross sections

- novel signatures

Exploiting different strategies:

- Direct production at high energies
- Precision measurements + precise theory: Indirect probe of high scales
- Direct detection of "dark sector" particles

Particle colliders contribute in all categories!

Strategies for Discovery in Particle Physics

Direct and indirect

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Direct observation of new particles: Requires sufficient energy for production

Strategies for Discovery in Particle Physics

Direct and indirect

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Direct observation of new particles: Requires sufficient energy for production

Indirect discovery: Deviations from expectation hinting at new phenomena at (much) higher energy scale

Precision Measurements

An established discovery strategy

Particle	Indirect			Direct		
ν	β decay	Fermi	1932	Reactor v-CC	Cowan, Reines	1956
W	β decay	Fermi	1932	W→ev	UA1, UA2	1983
С	$K^0 \rightarrow \mu\mu$	GIM	1970	J/ψ	Richter, Ting	1974
b	СРV <i>К⁰→пп</i>	CKM, 3 rd gen	1964/72	Y	Ledermann	1977
Ζ	v-NC	Gargamelle	1973	$Z \rightarrow e^+e^-$	UA1	1983
t	B mixing	ARGUS	1987	$t \rightarrow Wb$	D0, CDF	1995
н	e+e-	EW fit, LEP	2000	$H \rightarrow 4\mu/\gamma\gamma$	CMS, ATLAS	2012
?	What's next ?		?			?
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ W^{-} \\ \end{array} \\ \stackrel{e^{-}}{\overline{\nu}_{e}} \\ \\ \hline \\ K^{0} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \stackrel{w}{\overline{\nu}_{e}} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \mu^{-} \\ \end{array} \\ \begin{array}{c} \end{array} \\ p \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array}						
$d \qquad \mu^+$				b d taken from Niels T		

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

with a well-founded theoretical model, precision measurements can be turned into discoveries - and precision measurements can guide the development of new models.

uring, ICHEP 2018

Frank Simon (frank.simon@kit.edu)

Precision Measurements

An established discovery strategy

Why e⁺e⁻ Colliders?

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Frank Simon (<u>frank.simon@kit.edu</u>)

The main workhorses of HEP

proton-proton collider

• Colliders accelerate charged particles to high energy and bring them to collision - two main types so far:

electron-positron collider

Frank Simon (<u>frank.simon@kit.edu</u>)

The main workhorses of HEP

proton-proton collider

composite particles

dominated by strong interaction

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

• Colliders accelerate charged particles to high energy and bring them to collision - two main types so far:

electron-positron collider

Frank Simon (<u>frank.simon@kit.edu</u>)

The main workhorses of HEP

proton-proton collider

composite particles

dominated by strong interaction

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

• Colliders accelerate charged particles to high energy and bring them to collision - two main types so far:

electron-positron collider

dominated by electroweak interaction

The main workhorses of HEP

and e⁺e⁻ colliders

composite particles

dominated by strong interaction

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

• Colliders accelerate charged particles to high energy and bring them to collision - two main types so far:

Frank Simon (<u>frank.simon@kit.edu</u>)

Institute for

Data Processing and Electronics

Higgs production as an example to illustrate differences

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Frank Simon (<u>frank.simon@kit.edu</u>)

Higgs production as an example to illustrate differences

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Higgs production as an example to illustrate differences

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Experimental Conditions at e⁺e⁻ Colliders Looking back at LEP

- LEP the first occupant of the tunnel we now know as the "LHC tunnel": 1989 2000, 91 209 GeV • Fantastically clean events: No pile-up, no underlying events -> All you see is the physics! • Signal and physics background cross sections comparable: no trigger challenge!

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Frank Simon (<u>frank.simon@kit.edu</u>)

Experimental Conditions at e+e- Colliders Looking back at LEP

- A key feature: Excellent knowledge of initial state, given by $\sqrt{s} \rightarrow$ Energy conservation means the fourvector of the final state is known.
 - uncertainties in WW events, for example

Here:

$$e^+e^- \rightarrow W^+W^- \rightarrow q\bar{q}q\bar{q}$$

accurate measurements of the jet directions, together with event constraints provide precise jet energies and di-jet masses (W mass)

• Can be exploited in event reconstruction - kinematic fitting, et. al., used to eliminate jet energy scale

• An era of precision measurements - still dominating many parameters 25 years later...

After 5 years at LEP1: per-mille level precision $N_v = 2.984 \pm 0.008$ Γ_Z = 2495.2 ± 2.3 MeV m_z = 91187.5 ± 2.1 MeV $\alpha_s = 0.1190 \pm 0.0025$

Precision measurements could predict the top and Higgs masses prior to discovery

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

The Big Questions

What we know we don't know

- How can the Higgs boson be so light?
- What is the mechanism behind electroweak symmetry breaking?
- What is Dark Matter made out of?
- What drives inflation?

. . .

- Why is the universe made out of matter?
- What generates Neutrino masses?

Frank Simon (frank.simon@kit.edu)

The Big Questions

What we know we don't know

- How can the Higgs boson be so light?
- What is the mechanism behind electroweak symmetry breaking?
- What is Dark Matter made out of?
- What drives inflation?

. . .

- Why is the universe made out of matter?
- What generates Neutrino masses?

The answers to these questions have to be *outside* of the Standard Model!

Institute for

Data Processing and Electronics

The Way Forward

- What we do know:

 - Most hints for new phenomena come from the electroweak + Higgs sector: Expect some new particles to be charged under electroweak interactions
- What we don't know:
 - The energy scale of new particles / phenomena

• The Higgs is connected to all particles we know - and is at the center of some of our questions

No Guarantees

The challenge of making the case for future colliders

• Before the start of LHC: The "no-lose theorem"

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Frank Simon (<u>frank.simon@kit.edu</u>)

No Guarantees

The challenge of making the case for future colliders

• Before the start of LHC: The "no-lose theorem"

With the "completion" of the standard model: No certainty - and no clear indication of the energy scale of new phenomena

Asking for Directions

Promising Areas for a New Precision Program

- Study with highest precision what has not yet been scrutinized in depth: The Higgs Boson, the top quark
- Revisit areas of previous precision exploits with a whole new level of scrutiny: The Z pole: Electroweak, QCD, flavour; the W boson
- Explore the unknown: Search for new phenomena at high energies, and with extreme luminosity / sensitivity at lower energies

A new precision program

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

The Higgs Boson

model-independent study of all accessible couplings

Frank Simon (<u>frank.simon@kit.edu</u>)

21

A new precision program

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

The Top Quark a precise measurement of its properties. A possible window to new physics due to its high **The Higgs Boson** mass! model-independent study of all accessible couplings

A new precision program

Electroweak Precision

push down the uncertainties on all electroweak measurements to push the SM to (hopefully beyond) its breaking point

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

The Top Quark a precise measurement of its properties. A possible window to new physics due to its high **The Higgs Boson** mass! model-independent study of all accessible couplings

A new precision program

Electroweak Precision

push down the uncertainties on all electroweak measurements to push the SM to (hopefully beyond) its breaking point

The Top Quark a precise measurement of its properties. A possible window to new physics due to its high The Higgs Boson mass! model-independent study of all accessible couplings

Flavour Physics

use extremely large data sets to explore, resolve and understand the puzzles in the flavour sector

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

A new precision program

Electroweak Precision

push down the uncertainties on all electroweak measurements to push the SM to (hopefully beyond) its breaking point

The Higgs Boson

model-independent study of all accessible couplings

Flavour Physics

use extremely large data sets to explore, resolve and understand the puzzles in the flavour sector

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

The Top Quark

a precise measurement of its properties.

A possible window to new physics due to its high

mass!

New Particles

searches for weakly coupled new particles with high luminosity / high energy in a clean environment

Perspectives of Energy

Bringing together physics goals and collider energy

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Frank Simon (<u>frank.simon@kit.edu</u>)

22

Data Processing and Electronics

Perspectives of Energy

Bringing together physics goals and collider energy

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Thresholds and cross sections set collider energy targets:

91.2 GeV - The Z pole

160 GeV - The WW threshold

250 GeV - The ZH maximum

350 GeV - The top threshold, **VBF** Higgs production

500 GeV - ttH, ZHH

1+ TeV - VBF double Higgs

Frank Simon (frank.simon@kit.edu)

22

Perspectives of Energy

Bringing together physics goals and collider energy

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

A rich field to explore

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

A rich field to explore

250 GeV: Maximum of ZH production

Frank Simon (<u>frank.simon@kit.edu</u>)

23

A rich field to explore

250 GeV:

Maximum of ZH production

350 GeV:

WW fusion kicks in

(and top pair production)

A rich field to explore

250 GeV:

Maximum of ZH production

350 GeV:

WW fusion kicks in

(and top pair production)

500 - 1000+ GeV:

ttH: direct access to top Yukawa coupling

A rich field to explore

250 GeV:

Maximum of ZH production

350 GeV:

WW fusion kicks in (and top pair production)

500 - 1000+ GeV:

ttH: direct access to top Yukawa coupling

500 GeV; 1+ TeV: Higgs self-coupling

A rich field to explore

- 240 250 GeV: the minimum energy for a Higgs factory
- ~ 350 GeV: Additional production mode, also still access to ZH
- Higher energies: More processes
- 125 GeV, and extreme luminosity: A possibility to measure electron Yukawa coupling

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

250 GeV:

Maximum of ZH production

350 GeV:

WW fusion kicks in (and top pair production)

500 - 1000+ GeV:

ttH: direct access to top Yukawa coupling

500 GeV; 1+ TeV: Higgs self-coupling

Model Independence: The Pillar of Higgs Physics in e+e-

The ZH Higgsstrahlung process

- What model independence means: Measure the coupling of the Higgs Bosons to elementary particles free from model assumptions (e.g. how it decays)
 - Requires: The "tagging" of Higgs production without observing the particle directly
 - Not possible at hadron colliders

Model Independence: The Pillar of Higgs Physics in e+e-

The ZH Higgsstrahlung process

- What model independence means: Measure the coupling of the Higgs Bosons to elementary particles free from model assumptions (e.g. how it decays)
 - Requires: The "tagging" of Higgs production without observing the particle directly
 - Not possible at hadron colliders

and Electronics

Model Independence: The Pillar of Higgs Physics in e+e-

The ZH Higgsstrahlung process

- What model independence means: Measure the coupling of the Higgs Bosons to elementary particles free from model assumptions (e.g. how it decays)
 - Requires: The "tagging" of Higgs production without observing the particle directly
 - Not possible at hadron colliders

Collider Types Circular and Linear

Circular Colliders:

Collision of two particle beams on circular orbits in opposite direction

Re-use of non-collided particles in future turns, acceleration can proceed over many revolutions. Need for bending magnets to keep particles on track.

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Collider Types Circular and Linear

Circular Colliders:

Collision of two particle beams on circular orbits in opposite direction

Re-use of non-collided particles in future turns, acceleration can proceed over many revolutions. Need for bending magnets to keep particles on track.

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Linear Colliders:

Collision of two particle beams from linear accelerators pointed at each other

Full acceleration in a "single shot", unused particles are lost. No need for magnets

Collider Types Circular and Linear

Circular Colliders:

Collision of two particle beams on circular orbits in opposite direction

Re-use of non-collided particles in future turns, acceleration can proceed over many revolutions. Need for bending magnets to keep particles on track.

Linear Colliders:

Collision of two particle beams from linear accelerators pointed at each other

Full acceleration in a "single shot", unused particles are lost. No need for magnets

Makes sense for light particles at high energy: Synchrotron radiation losses scale with E⁴ and m⁻⁴ and r⁻²

B

 \bigcirc

Circular vs Linear e+e-

Differences in luminosity and energy reach

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

• Circular colliders very efficient at low energies, at higher energies synchroton radiation becomes a key limiting factor:

Power proportional to E^4/R^2 - Loss per turn ~ E^4/R

- The scaling of the size of the facility with \rightarrow energy is very different:
 - Circular colliders have to grow at least with E²
 - Linear colliders grow with E but inherently more complicated, with a large cost offset

Circular vs Linear e+e-

Differences in luminosity and energy reach

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

• Circular colliders very efficient at low energies, at higher energies synchroton radiation becomes a key limiting factor:

Power proportional to E^4/R^2 - Loss per turn ~ E^4/R

- \Rightarrow The scaling of the size of the facility with energy is very different:
 - Circular colliders have to grow at least with E²
 - Linear colliders grow with E but inherently more complicated, with a large cost offset

More details, and a discussion of different facilities: Lectures of Roderic Bruce.

Conceptual differences in physics reach

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

#HL-CHC

Conceptual differences in physics reach

#HL-CHC

Conceptual differences in physics reach

Future Hadron Colliders HL-CHC

higher masses / energy

Conceptual differences in physics reach

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Future Lepter Collides Future Hadron Colliders HL-CHC

higher masses / energy

Conceptual differences in physics reach

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Circular etc Future Hadron Colliders HL-CHC

higher masses / energy

Conceptual differences in physics reach

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

higher masses / energy

Maximising physics output, react to discoveries

- A general challenge: Colliders and the associated infrastructure are expensive - making long-term scientific exploitation mandatory
- It is basic research:

Discoveries or new insights may call for changes in direction

Maximising physics output, react to discoveries

- A general challenge: Colliders and the associated infrastructure are expensive - making long-term scientific exploitation mandatory
- It is basic research: Discoveries or new insights may call for changes in direction

Evolution scenarios:

Maximising physics output, react to discoveries

- A general challenge: Colliders and the associated infrastructure are expensive - making long-term scientific exploitation mandatory
- It is basic research:

Discoveries or new insights may call for changes in direction

Evolution scenarios:

A big ring: Full length required on day one, then can be used for a lepton and a hadron collider sequentially

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Maximising physics output, react to discoveries

- A general challenge: Colliders and the associated infrastructure are expensive - making long-term scientific exploitation mandatory
- It is basic research:

Discoveries or new insights may call for changes in direction

Evolution scenarios:

A big ring: Full length required on day one, then can be used for a lepton and a hadron collider sequentially

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Maximising physics output, react to discoveries

- A general challenge: Colliders and the associated infrastructure are expensive - making long-term scientific exploitation mandatory
- It is basic research:

Discoveries or new insights may call for changes in direction

Evolution scenarios:

A big ring: Full length required on day A linear collider: Step-wise extension, one, then can be used for a lepton lepton collisions at different energies in and a hadron collider sequentially sequence

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Maximising physics output, react to discoveries

- A general challenge: Colliders and the associated infrastructure are expensive - making long-term scientific exploitation mandatory
- It is basic research:

Discoveries or new insights may call for changes in direction

Evolution scenarios:

e⁺e⁻ Collider Hadron Collider highest possible energy: 100(+) TeV

A big ring: Full length required on day one, then can be used for a lepton and a hadron collider sequentially

A linear collider: Step-wise extension, lepton collisions at different energies in sequence

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

e+e- Collider

longer tunnel:

higher energy

Maximising physics output, react to discoveries

- A general challenge: Colliders and the associated infrastructure are expensive - making long-term scientific exploitation mandatory
- It is basic research:

Discoveries or new insights may call for changes in direction

Evolution scenarios:

e⁺e⁻ Collider Hadron Collider highest possible energy: 100(+) TeV

A big ring: Full length required on day one, then can be used for a lepton and a hadron collider sequentially

sequence

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

e+e- Collider

- longer tunnel:
 - higher energy
 - new acceleration technology

- A linear collider: Step-wise extension, lepton collisions at different energies in

Maximising physics output, react to discoveries

- A general challenge: Colliders and the associated infrastructure are expensive - making long-term scientific exploitation mandatory
- It is basic research:

Discoveries or new insights may call for changes in direction

Evolution scenarios:

e⁺e⁻ Collider Hadron Collider highest possible energy: 100(+) TeV

A big ring: Full length required on day one, then can be used for a lepton and a hadron collider sequentially

A linear collider: Step-wise extension, lepton collisions at different energies in sequence

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

e⁺e⁻ Collider

- longer tunnel:
 - higher energy
- new acceleration
 - technology
- as source for other
 - accelerators

• Linear colliders provide a staged physics program - matched to the variety of center-of-mass energies relevant for a broad e⁺e⁻ program

• Linear colliders provide a staged physics program - matched to the variety of center-of-mass energies relevant for a broad e⁺e⁻ program

Frank Simon (<u>frank.simon@kit.edu</u>)

• Linear colliders provide a staged physics program - matched to the variety of center-of-mass energies relevant for a broad e+e- program

Frank Simon (<u>frank.simon@kit.edu</u>)

• Linear colliders provide a staged physics program - matched to the variety of center-of-mass energies relevant for a broad e⁺e⁻ program

• Linear colliders provide a staged physics program - matched to the variety of center-of-mass energies relevant for a broad e⁺e⁻ program

Frank Simon (<u>frank.simon@kit.edu</u>)

• Linear colliders provide a staged physics program - matched to the variety of center-of-mass energies relevant for a broad e⁺e⁻ program

~ 250 GeV

- ~ 350 380 GeV
- ~ 500 550 GeV

~ 3 TeV

+ direct & indirect discovery potential increasing with energy

• Linear colliders provide a staged physics program - matched to the variety of center-of-mass energies relevant for a broad e⁺e⁻ program

+ direct & indirect discovery potential increasing with energy

• Linear colliders provide a staged physics program - matched to the variety of center-of-mass energies relevant for a broad e⁺e⁻ program

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

A Circular Collider Story

A Circular Collider Story

A Circular Collider Story

A Circular Collider Story

together: 50+ years from first e⁺e⁻ collisions to completion of pp program

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Institute for Data Processing ind Electronics

A Balance between Physics Interest and Accelerator Technology Constraints

• Options are being studied:

A Balance between Physics Interest and Accelerator Technology Constraints

Frank Simon (<u>frank.simon@kit.edu</u>)

Institute for

I Data Processing and Electronics

A Balance between Physics Interest and Accelerator Technology Constraints

• Options are being studied:

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

A Balance between Physics Interest and Accelerator Technology Constraints

• Options are being studied:

Lecture 1 Wrap-up

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Conclusions Key Points Part 1

- Lepton and hadron colliders have been instrumental in firmly establishing the Standard Model. The next generation of experiments needs to show where it breaks.
- Global agreement: a e⁺e⁻ Higgs-Elektroweak-Top Factory as the next step:
 - A new era of precision measurements, profiting from benign background conditions, well-defined initial state, and low physics backgrounds. Qualitative differences wrt to (HL-)LHC - features such as model-independent Higgs boson measurements
 - Different possible realisations linear or circular, each with specific strengths and weaknesses \bullet

Perspectives: Physics Emphasis & Collider Geometry

In broad strokes

• e⁺e⁻ collider geometry determines experimental focus beyond the core Higgsstrahlung program:

Circular:

extreme statistics at the Z pole and W threshold: precision electroweak

Linear:

reach to (multi-)TeV energy - double higgs production, high energy exploration

Perspectives: Physics Emphasis & Collider Geometry

In broad strokes

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

• Circular colliders: 3 orders of magnitude more Z's: Tera-Z vs Giga-Z • Both: Similar at Higgs, top threshold (also consider polarisation!)

 Linear colliders: The only path (significantly) beyond tt with e+ettH, direct measurement of Higgs self coupling, extended BSM reach

