Experimental Physics at Lepton Colliders

Frank Simon @ Summer Student Lectures CERN - July 2024

Overview

A two-part story

- Part I:
 - Scientific motivation
 - Future e⁺e⁻ colliders in broad strokes
- Part II:
 - Detectors at future e^+e^- and $\mu^+\mu^-$ colliders
 - Some physics examples

Part II

Detectors at Future Lepton Colliders

- Extensively developed for linear colliders (ILC, CLIC)
- Specific developments for FCC-ee firming up, requiring some modifications wrt LCs
- Muon colliders the latest addition, challenges being understood, concepts emerging

General Detector Features

Aiming for precision, profiting from benign backgrounds

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

HL-LHC

from this...

General Detector Features

Aiming for precision, profiting from benign backgrounds

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

and Electronics

General Detector Features

Aiming for precision, profiting from benign backgrounds

- Need detector systems that match the ambitious precision goals of lepton colliders: Resolution, calibration accuracy, stability...
- The main concern is not survival: (With very few exceptions) radiation tolerance requirements are very minor, occupancies and rates typically low

and Electronics

Detector Requirements: High Level

Depending on Physics / Energy Stage

Higgs Physics

- Charged particle momentum resolution
- Vertex resolution for flavour tagging
- Particle ID for flavour tagging
- Jet energy / angular resolution, particle flow

Flavour Physics

- Charged particle momentum resolution
- IP, vertex resolution
- General PID capabilities
- Photon resolution, neutral pion reconstruction

Electroweak Precision

- Acceptance
- Alignment and calibration
- Luminosity / precise normalisation

BSM / FIPs

- Instrumented volume
- High radial segmentation
- Displaced vertex reconstruction capability
- Specific trigger / filters
- Acceptance

Detector Performance Goals - Tracking

Motivated by key physics signatures

Momentum resolution Higgs recoil measurement, H -> $\mu\mu$, BSM decays with leptons

σ(p_T) / p_T² ~ 2 x 10⁻⁵ / GeV

precise and highly efficient tracking, extending to 100+ GeV

low mass, good resolution:

for Si tracker ~ 1-2% X₀ per layer, 7 μ m point resolution

 $< 0.2 X_0$ per layer

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Frank Simon (frank.simon@kit.edu)

Detector Performance Goals - Jets, Photons, PID

Motivated by key physics signatures

 Jet energy resolution Recoil measurements with hadronic Z decays, separation of W, Z, H bosons, ...

 $\sigma(E_{jet}) / E_{jet} \sim 3\% - 5\%$ for $E_{jet} > 45$ GeV

reconstruction of complex multi-jet final states.

• Photons

Resolution often not in the focus: ~ 15 - $20\%/\sqrt{E}$

- but relevant for flavour physics in particular,

Detector Performance Goals - Jets, Photons, PID

Arbitrary Units

Motivated by key physics signatures

 Jet energy resolution
Recoil measurements with hadronic Z decays, separation of W, Z, H bosons, …

σ(E_{jet}) / E_{jet} ~ 3% - 5% for E_{jet} > 45 GeV

reconstruction of complex multi-jet final states.

• Photons

Resolution often not in the focus: ~ 15 - $20\%/\sqrt{E}$

- but relevant for flavour physics in particular,

Particle ID

Clean identification of e, μ up to highest energies

• PID of hadrons to improve tagging, jets,...

Detector Performance Goals - Jets, Photons, PID

Motivated by key physics signatures

 Jet energy resolution Recoil measurements with hadronic Z decays, separation of W, Z, H bosons, ...

σ(E_{jet}) / E_{jet} ~ 3% - 5% for E_{jet} > 45 GeV

reconstruction of complex multi-jet final states.

• Photons

Resolution often not in the focus: ~ 15 - $20\%/\sqrt{E}$

- but relevant for flavour physics in particular,

Particle ID

Clean identification of e, μ up to highest energies

- PID of hadrons to improve tagging, jets,...
- Hermetic coverage

Dark matter searches in mono-photon events, ...

N.B.: Achievable limits do not depend strongly on $\sigma(E_v)$

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Linear Collider Conditions

... and the consequences for the detector design

• Linear Colliders operate in bunch trains:

- at CLIC: Δt_b = 0.5 ns; f_{rep} = 50 Hz
- at ILC: $\Delta t_b = 554 \text{ ns}$; $f_{rep} = 5 \text{ Hz}$

- \Rightarrow Enables power pulsing of front-end electronics, resulting in dramatically reduced power consumption
 - \Rightarrow Eliminates need for active cooling in many areas of the detectors: Reduced material, increased compactness

Linear Collider Conditions

... and the consequences for the detector design

• Linear Colliders operate in bunch trains:

- at CLIC: Δt_b = 0.5 ns; f_{rep} = 50 Hz
- at ILC: $\Delta t_b = 554 \text{ ns}$; $f_{rep} = 5 \text{ Hz}$
- ... and require extreme focusing to achieve high luminosity

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

- \Rightarrow Enables power pulsing of front-end electronics, resulting in dramatically reduced power consumption
 - \Rightarrow Eliminates need for active cooling in many areas of the detectors: Reduced material, increased compactness

- Significant beam-induced backgrounds
 - \Rightarrow Constraints on beam pipe geometry, crossing angle and vertex detector radius
 - \Rightarrow In-time pile-up of hadronic background: sufficient granularity for topological rejection
 - \Rightarrow At CLIC: small Δt_b also results in out-of-time pile-up: **ns-level timing** in many detector systems

The Linear Collider Detector Design - Main Features

Focusing on general aspects

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

- A large-volume solenoid 3.5 5 T, enclosing calorimeters and tracking
- Highly granular calorimeter systems, optimised for particle flow reconstruction, best jet energy resolution [Si, Scint + SiPMs, RPCs]
- Low-mass main tracker, for excellent momentum resolution at high energies [Si, TPC + Si]
- Forward calorimeters, for low-angle electron measurements, luminosity [Si, GaAs]
- Vertex detector, lowest possible mass, smallest possible radius [MAPS, thinned hybrid detectors]
- Triggerless readout of main detector systems

all: capable of dealing with beam background via timing, granularity, radiation hardness where needed

From linear to circular

Key differences with detector implications

- Energy: Focus on lower energy for FCCee a maximum of 365 GeV
 - Reduced calorimeter depth
- Less collimated jets can potentially compromise on calorimeter compactness, granularity Need the beams to survive, and reach high luminosity
 - Limits on solenoidal field
 - Reduced momentum resolution at constant tracker size
 - Larger magnetic volume "affordable": A path to recover momentum resolution
- No bunch train structure: DC operation of the detector readout
 - Active cooling (or compromises on granularity, speed) required in many areas of the detector: Increased material, less compact construction of calorimeters
- Very high luminosity, sustained high rates
 - Revisit DAQ and trigger concepts still in an early phase

important, adding additional detector requirements. Also: Absolute normalization to high precision!

In addition: slightly different physics emphasis: Flavour at the Z pole in particular - which makes PID more

• A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLIC to CLD

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

• A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLIC to CLD

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

• A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLIC to CLD

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

• A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLIC to CLD

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

• A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLIC to CLD

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

FCC-ee: Additional Concepts

Different calorimeter concepts, other track solutions

• Putting more emphasis on (low-energy) photons: Requires better resolution in the ECAL

IDEA: Based on dual readout calorimetry, low-mass drift chamber as main tracker

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

FCC-ee: Additional Concepts

Different calorimeter concepts, other track solutions

Putting more emphasis on (low-energy) photons: Requires better resolution in the ECAL

low-mass drift chamber as main tracker

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Combined with scintillator-based HCAL, different tracker options

Frank Simon (<u>frank.simon@kit.edu</u>)

FCC-ee: Additional Concepts

Different calorimeter concepts, other track solutions

Putting more emphasis on (low-energy) photons: Requires better resolution in the ECAL

low-mass drift chamber as main tracker

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Combined with scintillator-based HCAL, different tracker options

+ investigating detector concepts with added PID

Detectors at Muon Colliders

The background challenge

- The constant decay $\mu \rightarrow evv$ creates a very large beam-induced background (BIB): High-energy showers induced by electrons, creating a wide range of different background particles.
 - Radiation levels comparable to HL-LHC.
- \Rightarrow The main challenge for experiments at muon colliders!

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Detectors at Muon Colliders

First ideas

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

• 3 TeV μ Col: A modified CLIC detector concept, adjusted for background conditions

> ~ 10 degree acceptance limitation in forward region due to tungsten nozzles precise timing throughout detector

important to reject BIB

• For 10 TeV: Higher magnetic field to maintain momentum resolution, deeper calorimeters

Physics Examples

A Selection

- Higgs Boson
- Electroweak Precision & Flavour
- Top Quark
- Into the unknown

Disclaimer

- The point of the following discussions is not to compare projects in the sense of drawing performance projections shown here.
- but to illustrate certain features of measurements and facilities
- I am focussing on e⁺e⁻ colliders, only few remarks about $\mu^+\mu^-$ •

conclusions which one should be built - that is a multi-facetted question which extends beyond

• The numerical results may not always be perfectly up-to-date - again, the goal is not to compare,

Reminder: Higgs Boson Production in e⁺e⁻

A rich field to explore

250 GeV:

Maximum of ZH production

350 GeV: WW fusion kicks in (and top pair production)

500 - 1000+ GeV:

ttH: direct access to top Yukawa coupling

500 GeV; 1+ TeV: Higgs self-coupling

Reminder: Higgs Boson Production in e⁺e⁻

A rich field to explore

- 240 250 GeV: the minimum energy for a Higgs factory
- ~ 350 GeV: Additional production mode, also still access to ZH
- Higher energies: More processes
- 125 GeV, and extreme luminosity: A possibility to measure electron Yukawa coupling

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

250 GeV:

Maximum of ZH production

350 GeV: WW fusion kicks in (and top pair production)

500 - 1000+ GeV:

ttH: direct access to top Yukawa coupling

500 GeV; 1+ TeV: Higgs self-coupling

Hadronic Recoils & Invisible Decays

Fully exploiting Higgsstrahlung

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Hadronic Recoils & Invisible Decays

Fully exploiting Higgsstrahlung

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Precision Measurements of Couplings

Exploring the Higgs Sector

• The main measurements to make:

Experiments It Lepts: Colliders - CERN Summer Student Lectures, July 2024

directly constrain the coupling of Higgs to Z in a model-independent way

Precision Measurements of Couplings

Exploring the Higgs Sector

• The main measurements to make:

 σ x BR for specific Higgs decays - here the mass of 125 GeV is giving us many possibilities

HWW/W

~ THAN

directly constrain the coupling of Higgs to Z in a model-independent way

Precision Measurements of Couplings

Exploring the Higgs Sector

• The main measurements to make:

 σ x BR for specific Higgs decays - here the mass of 125 GeV is giving us many possibilities

measure couplings to fermions and bosons using production and decay ~ 9. HWW YHWW/W Experiments It Colliders - CERN Summer Student Lectures, July 2024

directly constrain the coupling of Higgs to Z in a model-independent way

- can be made model-independent in combination with the measurement of the HZ coupling in recoil

Model independent measurement at high precision

a few %:

• e⁺e⁻ colliders provide the possibility for a model-independent measurement of the total width at the level of

Model independent measurement at high precision

- e⁺e⁻ colliders provide the possibility for a model-independent measurement of the total width at the level of a few %:
- In the "model-independent fit" framework the total width is obtained from production and decay of the Higgs: $\sigma(\mathrm{ZH}) \times \mathrm{BR}(\mathrm{H} \to \mathrm{ZZ}) \propto rac{g_{HZZ}^4}{\Gamma_{\mathrm{tot}}} \ \ \mathrm{and} \ \ \sigma(\mathrm{ZH}) \propto g_{HZZ}^2$

 \Rightarrow The low BR of H->ZZ and correspondingly large uncertainties make this determination relatively imprecise

Model independent measurement at high precision

- a few %:
- $\sigma(\mathrm{ZH}) \times \mathrm{BR}(\mathrm{H} \to \mathrm{ZZ}) \propto \frac{g_{HZZ}^4}{\Gamma_{\mathrm{tot}}} \text{ and } \sigma(\mathrm{ZH}) \propto g_{HZZ}^2$

 \Rightarrow Profits substantially from higher energy, where WW fusion becomes relevant: $\sigma(\mathrm{H}\nu_e\nu_e) \times \mathrm{BR}(\mathrm{H} \to \mathrm{WW}^*) \propto \frac{g_{\mathrm{HWW}}^4}{\Gamma_{\mathrm{tot}}}$

$$\frac{\sigma(e^+e^- \to \mathrm{ZH}) \times \mathrm{BR}(\mathrm{H} \to b\bar{b})}{\sigma(e^+e^- \to \mathrm{H}\nu_e\nu_e) \times \mathrm{BR}(\mathrm{H} \to b\bar{b})} \propto \frac{g_{\mathrm{HZZ}}^2}{g_{\mathrm{HWW}}^2}$$

• e⁺e⁻ colliders provide the possibility for a model-independent measurement of the total width at the level of

• In the "model-independent fit" framework the total width is obtained from production and decay of the Higgs:

 \Rightarrow The low BR of H->ZZ and correspondingly large uncertainties make this determination relatively imprecise

need the "model-independent anchor" of the ZH measurement

Model independent measurement at high precision

- e⁺e⁻ colliders provide the possibility for a model-independent measurement of the total width at the level of a few %:
- In the "model-independent fit" framework the total width is obtained from production and decay of the Higgs: $\sigma(\mathrm{ZH}) \times \mathrm{BR}(\mathrm{H} \to \mathrm{ZZ}) \propto \frac{g_{HZZ}^4}{\Gamma_{\mathrm{tot}}} \text{ and } \sigma(\mathrm{ZH}) \propto g_{HZZ}^2$

 \Rightarrow Profits substantially from higher energy, where WW fusion becomes relevant: $\sigma(\mathrm{H}\nu_e\nu_e) \times \mathrm{BR}(\mathrm{H} \to \mathrm{WW}^*) \propto \frac{g_{\mathrm{HWW}}^4}{\Gamma_{\mathrm{tot}}}$

 $\frac{\sigma(e^+e^- \to \text{ZH}) \times \text{BR}(\text{H} \to b\bar{b})}{\sigma(e^+e^- \to \text{H}\nu_e\nu_e) \times \text{BR}(\text{H} \to b\bar{b})} \propto \frac{g_{\text{HZZ}}^2}{g_{\text{HWW}}^2}$ \Rightarrow Higher energies important for width measurements

 \Rightarrow The low BR of H->ZZ and correspondingly large uncertainties make this determination relatively imprecise

- \Rightarrow In EFT fits W and Z are connected, there the width can be well constrained also without WW fusion

Unique Measurements at Lepton Colliders

Enabled by the clean environment

• H->bb: A difficult channel at LHC, a "simple" measurement in e+e-

of Higgs produced: ~4,000,000 significance: 5.4o

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

 Low backgrounds, and highly capable detectors enable observations of final states that are hard or impossible at LHC

~400

5.2σ

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Unique Méasurements at Lepton Colliders

Enabled by the clean environment

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Accessing the Couplings to First Generation Leptons

Requiring extreme luminosities of circular colliders

- The only chance to access couplings to first generation: Study of s-channel Higgs production in e+ecollisions
 - Requires high luminosities and very small energy spread at 125.1 GeV

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Institute for

Data Processing nd Electronics

• Two processes with sensitivity at e⁺e⁻ colliders:

Summer Student Lectures, July 2024

• Two processes with sensitivity at e⁺e⁻ colliders:

Summer Student Lectures, July 2024

cross section depends nonlinearly on λ , measurements at different energies / of different processes lift

• Two processes with sensitivity at e⁺e⁻ colliders:

Summer Student Lectures, July 2024

cross section depends nonlinearly on λ , measurements at different energies / of different processes lift

Full potential unfolds in the multi-TeV region through growing σ of VBF process:

- 10% measurement feasible $\widehat{}$
- Significant observation also of ZHH channel in lower-energy running (up to ~ 1.5 TeV)

Higgs Physics at Muon Colliders Brief overview

• In general the same processes as for e+e-, but with the backdrop of a much larger background, and reduced acceptance at small angles (which has an impact on WW fusion processes in particular). Here (much) higher energy can compensate!

- $WW \rightarrow H$
- ZZ→H
- $VV \rightarrow W^{\pm}H$
- $VV \rightarrow ZH$
- ----- ZH
 - VV→tīH
- ----- tt H
 - ZHH
 - $VV \rightarrow HH$

Higgs Physics at Muon Colliders Brief overview

• In general the same processes as for e⁺e⁻, but with the backdrop of a much larger background, and (much) higher energy can compensate!

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

reduced acceptance at small angles (which has an impact on WW fusion processes in particular). Here

Cross section ~10⁵ x e⁺e⁻: Coupling, + reduced ISR smearing for μ

Frank Simon (<u>frank.simon@kit.edu</u>)

63

Overall Precision Perspective

Including muon colliders

• An EFT fit, performed for Snowmass as a global summary [arXiv:2206.08326]

Frank Simon (<u>frank.simon@kit.edu</u>)

Overall Precision Perspective

Including muon colliders

Electroweak Precision

A Playground for Circular Colliders

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

The FCC-ee Program at Z and WW

The ultimate electroweak program

- Building on the success of LEP & LEP II • High-statistics program at the Z - pole • W pair production - mass measurement and beyond

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

with 2 IPs: 5x10¹² Zs (10⁵ x LEP) 10⁸ W pairs (2x10³ x LEP)

N.B.: Measurements also possible at linear colliders, but the statistics will be orders of magnitude smaller due to their lower luminosity at low energy.

The FCC-ee Program at Z and WW

The ultimate electroweak program

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

- Building on the success of LEP & LEP II • High-statistics program at the Z - pole • W pair production - mass measurement
- Improving electroweak precision observables, enter into global fits

with 2 IPs: 5x10¹² Zs (10⁵ x LEP) 10^8 W pairs (2x10³ x LEP)

Indirect searches for New Physics

N.B.: Measurements also possible at linear colliders, but the statistics will be orders of magnitude smaller due to their lower luminosity at low energy.

Flavour Physics Beyond Super Flavour Factoriesß

- An e⁺e⁻ collider running at the Z pole is also an excellent flavour factory! The 5 x 10¹² Zs at FCC-ee will provide: 10^{12} bb events, 1.7 x 10¹¹ $\tau^+\tau^-$ events An excellent testing ground of universality, rare decays; precision measurements of masses and lifetimes
 - Explore rare be decays with unprecedented precision.
 - Study of CP violation, the CKM matrix, possible lepton flavour non-universality
 - A comprehensive τ physics program

Observable	Current precision	FCC-ee <mark>stat.</mark>	Possibl
m _τ [MeV]	1776.86 ± 0.12	0.004	0.
τ _τ [fs]	290.3 ± 0.5 fs	0.001	0.0
Β(τ→eνν) [%]	17.82 ± 0.05		
Β(τ→μνν) [%]	17.39 ± 0.05	0.0001	0.0

Flavour Physics Beyond Super Flavour Factories

- An e⁺e⁻ collider running at the Z pole is also an excellent flavour factory! The 5 x 10¹² Zs at FCC-ee will provide: 10^{12} bb events, 1.7 x 10¹¹ $\tau^+\tau^-$ events An excellent testing ground of universality, rare decays; precision measurements of masses and lifetimes
 - Explore rare be decays with unprecedented precision.
 - Study of CP violation, the CKM matrix, possible lepton flavour non-universality
 - A comprehensive τ physics program

Observable	Current precision	FCC-ee <mark>stat.</mark>	Possibl
m _τ [MeV]	1776.86 ± 0.12	0.004	0.
τ _τ [fs]	290.3 ± 0.5 fs	0.001	0.0
Β(τ→eνν) [%]	17.82 ± 0.05		
Β(τ→μνν) [%]	17.39 ± 0.05	0.0001	0.0

The Top Quark

A new arena at 350 GeV and above

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Overview: Top Physics at e+e- Colliders

Understanding the Top, using the Top

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Overview: Top Physics at e⁺e⁻ Colliders

Understanding the Top, using the Top

- Measuring the top quark mass (and other parameters) in theoretically welldefined frameworks
- Search for BSM decays in clean

Overview: Top Physics at e⁺e⁻ Colliders

Understanding the Top, using the Top

Overview: Top Physics at e⁺e⁻ Colliders

Understanding the Top, using the Top

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

[requires > 500 GeV, full scope assumes ~ 1 TeV]

Ł

Ultimate precision at the threshold

 Exploit precise theoretical calculations of cross section in the threshold region, in well-defined mass schemes (mt^{PS}, mt^{1S}...) -> Can be converted directly into MSbar mass.

Ultimate precision at the threshold

The threshold is sensitive to top quark properties

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

• Exploit precise theoretical calculations of cross section in the threshold region, in well-defined mass schemes (m_t^{PS}, $m_t^{1S}...$) -> Can be converted directly into MSbar mass.

Ultimate precision at the threshold

The threshold is sensitive to top quark properties

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

• Exploit precise theoretical calculations of cross section in the threshold region, in well-defined mass schemes (m_t^{PS}, $m_t^{1S}...$) -> Can be converted directly into MSbar mass.

Ultimate precision at the threshold

The threshold is sensitive to top quark properties

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

• Exploit precise theoretical calculations of cross section in the threshold region, in well-defined mass schemes (mtPS, $m_t^{1S}...$) -> Can be converted directly into MSbar mass.

Ultimate precision at the threshold

Electroweak Couplings of the Top Quark

Access via cross section and asymmetries

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

• At Linear Colliders:

- Using different beam polarisations
- Measuring cross section, A_{FB}, and helicity angle (some studies)
- Particularly powerful with two (or more) energy points

71

Electroweak Couplings of the Top Quark

Access via cross section and asymmetries

Into the Unknown

Searching for New Physics

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Into the Unknown

Searching for Dark Matter

• A (very) wide range of possibilities - a few obvious examples: Search for Dark Matter

Searching for Dark Matter

• A (very) wide range of possibilities - a few obvious examples: Search for Dark Matter

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Searching for Dark Matter

• A (very) wide range of possibilities - a few obvious examples: Search for Dark Matter

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Sensitivity depends on

- Energy reach -> Mass coverage \bullet
- Background levels: Sensitivity to small \bullet couplings

Dark Sector Searches - an FCC-ee example

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

mass vs mixing² - unique phase space covered by FCC-ee

and the second se	
d vertex	
ed vertex	
IRs	
liggs	
$@ 2x; 1 \in I^2 = 10 J^2 + 10 J^2$	
ced vertex	
BRs	
Higgs	
$0 \circledast 2\alpha; 1\Theta l^2 = 10 J^2 + 10 J^2$	

Indirect and direct exploration of the highest energy scales

Corrections to SM suppressed by 1/(mass scale)² Sensitivity grows with s

Indirect and direct exploration of the highest energy scales

For many generic models & new interactions: Corrections to SM suppressed by 1/(mass scale)² Sensitivity grows with s

Indirect and direct exploration of the highest energy scales

For many generic models & new interactions: Corrections to SM suppressed by 1/(mass scale)² Sensitivity grows with s

Indirect and direct exploration of the highest energy scales

Institute for

Data Processing and Electronics

Conclusions

Wrapping up

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

Compelling Scientific Opportunities

- An e⁺e⁻ collider operating around 250 380 GeV will provide a model-independent, precise investigation of the Higgs sector, and studies of unprecedented precision of the top quark
- A revisit to the Z pole with much higher luminosity than LEP will enable to electroweak precision tests of the Standard Model at completely new levels. At the same time, this will also be a high-statistics flavour physics program.
- Scales in the TeV region and above can directly be probed by high-energy lepton colliders CLIC, a (multi-)TeV ILC, and a muon collider. This also includes the measurement of the self-coupling of the Higgs.

Compelling Scientific Opportunities

- An e⁺e⁻ collider operating around 250 380 GeV will provide a model-independent, precise investigation of the Higgs sector, and studies of unprecedented precision of the top quark
- A revisit to the Z pole with much higher luminosity than LEP will enable to electroweak precision tests of the Standard Model at completely new levels. At the same time, this will also be a high-statistics flavour physics program.
- Scales in the TeV region and above can directly be probed by high-energy lepton colliders CLIC, a (multi-)TeV ILC, and a muon collider. This also includes the measurement of the self-coupling of the Higgs.

CERN is currently studying the feasibility of the Future Circular Collider:

- An e⁺e⁻ machine running from the Z-pole up to 365 GeV precision Higgs, Top, Electroweak.
- Followed by a \sim 100 TeV hadron collider exploration of the highest energy scales, measurement of the self-coupling of the Higgs.
- **CLIC** is studied as "Option B" in case FCC cannot go forward.

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

The Way Forward

Strategies and Timescales - taken from 2022 Snowmass Meeting

Indicative timelines as discussed

resource realism varies - most developed for CERN projects

some of them!

happen.

This will be *your* HEP facility!

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2024

There are very exciting questions in high energy physics - a new e+e- collider may answer

Global large projects = long time scales - but contributions are needed now to make them

Frank Simon (<u>frank.simon@kit.edu</u>)

80