Flavour Physics - Chapter II

Yasmine Amhis CERN Summer School

July/August 2024

Next steps

http://ckmfitter.in2p3.fr/

2

Types of CP violation

•

3

Let's start with sin2beta With the "golden" mode $B^0 \rightarrow J/\Psi (\rightarrow \mu + \mu +) K_s (\pi - \pi -)$

 $\mathcal{A}^{CP}(t) = \frac{\Gamma(\overline{B}^{0}(t) \to \psi K^{0}_{\mathrm{S}}) - \Gamma(B^{0}(t) \to \psi K^{0}_{\mathrm{S}})}{\Gamma(\overline{B}^{0}(t) \to \psi K^{0}_{\mathrm{S}}) + \Gamma(B^{0}(t) \to \psi K^{0}_{\mathrm{S}})} \approx \underbrace{D_{\Delta t} D_{FT}}_{\text{Experimental dilution factors}} S \sin(\Delta m_{d} t)$

Time dependent analysis \rightarrow requires flavour tagging

sin 2β aka the raison d'être of B-factories - 2001

BaBar, PRL 87 (2001) 091801

 $\sin 2\beta = 0.59 \pm 0.14 \text{ (stat)} \pm 0.05 \text{ (syst)}.$

Different conventions on each side of the pacific

Belle, PRL 97 (2001) 091802

 $\sin 2\phi_1 = 0.99 \pm 0.14 (\text{stat}) \pm 0.06 (\text{syst}).$

Legacy from B-Factories

BaBar, PRD 79 (2009) 072009

Belle, PRL 108 (2012) 171802

Flavour Tagging @ LHCb

PV

Trigger wise dilepton decays are a day at the beach

Combination of a few decay channels

Summary plot

HFLAV Summer 2023 PRELIMINARY $\sin(2\beta) \equiv \sin(2\phi_1)$

BaBar PRD 79	J/ψ Κ _S 9 (2009) 0720	09 · ►	* •		0.657 ± 0	.036 ± 0.012
BaBar PRD 79	J/ψ K _L 9 (2009) 0720	₀₉	-		0.694 ± 0	.061 ± 0.031
BaBar PRD 79	ψ(2S) K _S 9 (2009) 0720	09		H	0.897 ± 0	.100 ± 0.036
Belle J PRL 10	l/ψ K _S 8 (2012) 1718	802	*		0.670 ± 0	.029 ± 0.013
Belle J PRL 10	l/ψ K _L 8 (2012) 1718	802 H 🚽	, ,		0.642 ± 0	.047 ± 0.021
Belle v PRD 77	⊭(2S) K _S 7 (2008) 0911	03(R) 🛏			0.718±0	.090 ± 0.031
LHCb JHEP 1	Run 1 J/ψ K 1 (2017) 170	s	-	- * •	0	.750 ± 0.040
LHCb JHEP 1	Run 1 ψ(2S 1 (2017) 170) K _s		·	★ 0.840±0	.100 ± 0.010
LHCb LHCb-F	Run 2 J/ψ K PAPER-2023-	(013		-	0.720 ± 0	.014 ± 0.007
LHCb LHCb-F	Run 2 ψ(2S PAPER-2023-) K _s , 013			0.647 ± 0	.053 ± 0.018
World HFLAV	Average				0	.708 ± 0.011
0.4	0.5	0.6	0.7	0.8	0.9	1

A nice read https://cerncourier.com/a/lhcb-sets-record-precision-on-cp-violation/

Is there room for NP in this corner ?

It's interesting to see what a "just" a difference in the spectator quark can do

An other fascinating topic is simple lifetime measurements. If you are interested in this Google my dear colleague Alex Lenz

10

A few lines about the mixing formalism

A few lines about the mixing formalism

CERN-THESIS-2014-361 a very pedagogical reference.

If you'll indulge me a little parenthesis

From my PhD 2006-2009

The channels in question $B^0 \rightarrow D^- \rho^+(770) \implies$ Gamma Extraction:U-spin modes $B^0{}_s \to D^-{}_s \rho^+ \longrightarrow$ Bs Oscillations measurement.

You can tell I was young, I was using ComicSense

[Submitted on 22 Sep 2006]

Observation of Bs-Bsbar Oscillations 22 days after the start of my thesis

CDF Collaboration

We report the observation of Bs-Bsbar oscillations from a time-dependent measurement of the Bs-Bsbar oscillation frequency Delta ms. Using a data sample of 1 fb^-1 of p-pbar collisions at sqrt{s}=1.96 TeV collected with the CDF II detector at the Fermilab Tevatron, we find signals of 5600 fully reconstructed hadronic Bs decays, 3100 partially reconstructed hadronic Bs decays, and 61500 partially reconstructed semileptonic Bs decays. We measure the probability as a function of proper decay time that the Bs decays with the same, or opposite, flavor as the flavor at production, and we find a signal for Bs-Bsbar oscillations. The probability that random fluctuations could produce a comparable signal is 8 X 10^-8, which exceeds 5 sigma significance. We measure

Delta ms = 17.77 +- 0.10 (stat) +- 0.07 (syst) ps^-1 and extract |Vtd/Vts| = 0.2060 +- 0.0007 (exp) + 0.0081 - 0.0060 (theor).

[Submitted on 22 Sep 2006]

Observation of Bs-Bsbar Oscillations 22 days after the start of my thesis

CDF Collaboration

We report the observation of Bs-Bsbar oscillations from a time-dependent measurement of the Bs-Bsbar oscillation frequency Delta ms. Using a data sample of 1 fb^-1 of p-pbar collisions at sqrt{s}=1.96 TeV collected with the CDF II detector at the Fermilab Tevatron, we find signals of 5600 fully reconstructed hadronic Bs decays, 3100 partially reconstructed hadronic Bs decays, and 61500 partially reconstructed semileptonic Bs decays. We measure the probability as a function of proper decay time that the Bs decays with the same, or opposite, flavor as the flavor at production, and we find a signal for Bs-Bsbar oscillations. The probability that random fluctuations could produce a comparable signal is 8 X 10^-8, which exceeds 5 sigma significance. We measure Delta ms = 17.77 + -0.10 (stat) + -0.07 (syst) ps^-1

and extract |Vtd/Vts| = 0.2060 + -0.0007 (exp) + 0.0081 - 0.0060 (theor).

CERN releases analysis of LHC incident One year after the start of my thesis

16 OCTOBER, 2008

Geneva, 16 October 2008. Investigations at CERN following a large helium leak into sector 3-4 of the Large Hadron Collider (LHC) tunnel have confirmed that cause of the incident was a faulty electrical connection between two of the accelerator's magnets. This resulted in mechanical damage and release of helium from the magnet cold mass into the tunnel.

[Submitted on 22 Sep 2006]

Observation of Bs-Bsbar Oscillations 22 days after the start of my thesis

CDF Collaboration

We report the observation of Bs-Bsbar oscillations from a time-dependent measurement of the Bs-Bsbar oscillation frequency Delta ms. Using a data sample of 1 fb^-1 of p-pbar collisions at sqrt{s}=1.96 TeV collected with the CDF II detector at the Fermilab Tevatron, we find signals of 5600 fully reconstructed hadronic Bs decays, 3100 partially reconstructed hadronic Bs decays, and 61500 partially reconstructed semileptonic Bs decays. We measure the probability as a function of proper decay time that the Bs decays with the same, or opposite, flavor as the flavor at production, and we find a signal for Bs-Bsbar oscillations. The probability that random fluctuations could produce a comparable signal is 8 X 10^-8, which exceeds 5 sigma significance. We measure Delta ms = 17.77 + -0.10 (stat) + -0.07 (syst) ps^-1

and extract |Vtd/Vts| = 0.2060 + -0.0007 (exp) + 0.0081 - 0.0060 (theor).

CERN releases analysis of LHC incident One year after the start of my thesis

16 OCTOBER, 2008

Geneva, 16 October 2008. Investigations at CERN following a large helium leak into sector 3-4 of the Large Hadron Collider (LHC) tunnel have confirmed that cause of the incident was a faulty electrical connection between two of the accelerator's magnets. This resulted in mechanical damage and release of helium from the magnet cold mass into the tunnel.

The end of the universe if not something very close

In 2008

B factories and Tevratron students

These were dark days for us

LHC students

https://arxiv.org/pdf/hep-ex/0209007

Figure 7: The combined B_s^0 oscillation results from ALEPH, CDF, DELPHI, OPAL, and SLD shown as amplitude versus hypothesized Δm_s [11]. The dots with error bars show the fitted aplitude values and uncertainties. An observed (expected) 95% C.L. lower limit on Δm_s of 14.9 ps⁻¹ (19.3 ps⁻¹) is obtained.

My personal end of the universe at the time

A. Abulencia,²³ J. Adelman,¹³ T. Affolder,¹⁰ T. Akimoto,⁵⁵ M.G. Albrow,¹⁶ D. Ambrose,¹⁶ S. Amerio,⁴⁴ Amidei,³⁴ A. Anastassov,⁵² K. Anikeev,¹⁶ A. Annovi,¹⁸ J. Antos,¹ M. Aoki,⁵⁵ G. Apollinari,¹⁶ J.-F. Arguin,³ Arisawa,⁵⁷ A. Artikov,¹⁴ W. Ashmanskas,¹⁶ A. Attal,⁸ F. Azfar,⁴² P. Azzi-Bacchetta,⁴³ P. Azzurri,⁴⁶ Bacchetta,⁴³ W. Badgett,¹⁶ A. Barbaro-Galtieri,²⁸ V.E. Barnes,⁴⁸ B.A. Barnett,²⁴ S. Baroiant,⁷ V. Bartsch,³⁰ G. Bauer,³² F. Bedeschi,⁴⁶ S. Behari,²⁴ S. Belforte,⁵⁴ G. Bellettini,⁴⁶ J. Bellinger,⁵⁹ A. Belloni,³² D. Benjamin, A. Beretvas,¹⁶ J. Beringer,²⁸ T. Berry,²⁹ A. Bhatti,⁵⁰ M. Binkley,¹⁶ D. Bisello,⁴³ R.E. Blair,² C. Blocker,⁶ B. Blumenfeld,²⁴ A. Bocci,¹⁵ A. Bodek,⁴⁹ V. Boisvert,⁴⁹ G. Bolla,⁴⁸ A. Bolshov,³² D. Bortoletto,⁴⁸ J. Boudreau, A. Boveia,¹⁰ B. Brau,¹⁰ L. Brigliadori,⁵ C. Bromberg,³⁵ E. Brubaker,¹³ J. Budagov,¹⁴ H.S. Budd,⁴⁹ S. Budd,² S. Budroni,⁴⁶ K. Burkett,¹⁶ G. Busetto,⁴³ P. Bussey,²⁰ K. L. Byrum,² S. Cabrera,¹⁵ M. Campanelli,¹⁹ M. Campbell,³⁴ F. Canelli,¹⁶ A. Canepa,⁴⁸ S. Carrillo,¹⁷ D. Carlsmith,⁵⁹ R. Carosi,⁴⁶ S. Carron,³³ B. Casal,¹¹ M. Casarsa,⁵⁴ A. Castro,⁵ P. Catastini,⁴⁶ D. Cauz,⁵⁴ M. Cavalli-Sforza,³ A. Cerri,²⁸ L. Cerrito,³⁰ S.H. Chang,² Y.C. Chen,¹ M. Chertok,⁷ G. Chiarelli,⁴⁶ G. Chlachidze,¹⁴ F. Chlebana,¹⁶ I. Cho,²⁷ K. Cho,²⁷ D. Chokheli,¹⁴ J.P. Chou,²¹ G. Choudalakis,³² S.H. Chuang,⁵⁹ K. Chung,¹² W.H. Chung,⁵⁹ Y.S. Chung,⁴⁹ M. Ciljak,⁴⁶ C.I. Ciobanu,²³ M.A. Ciocci,⁴⁶ A. Clark,¹⁹ D. Clark,⁶ M. Coca,¹⁵ G. Compostella,⁴³ M.E. Convery,⁵⁰ J. Conwa B. Cooper,³⁵ K. Copic,³⁴ M. Cordelli,¹⁸ G. Cortiana,⁴³ F. Crescioli,⁴⁶ C. Cuenca Almenar,⁷ J. Cuevas,¹¹ Culbertson,¹⁶ J.C. Cully,³⁴ D. Cyr,⁵⁹ S. DaRonco,⁴³ S. D'Auria,²⁰ T. Davies,²⁰ M. D'Onofrio,³ D. Dagenhart, P. de Barbaro,⁴⁹ S. De Cecco,⁵¹ A. Deisher,²⁸ G. De Lentdecker,⁴⁹ M. Dell'Orso,⁴⁶ F. Delli Paoli,⁴³ L. Demortier, J. Deng,¹⁵ M. Deninno,⁵ D. De Pedis,⁵¹ P.F. Derwent,¹⁶ G.P. Di Giovanni,⁴⁴ C. Dionisi,⁵¹ B. Di Ruzza,⁵⁴ nann,⁴ P. DiTuro,⁵² C. Dörr,²⁵ S. Donati,⁴⁶ M. Donega,¹⁹ P. Dong,⁸ J. Donini,⁴³ T. Dorigo,⁴³ S. Dube,⁵ J. Efron,³⁹ R. Erbacher,⁷ D. Errede,²³ S. Errede,²³ R. Eusebi,¹⁶ H.C. Fang,²⁸ S. Farrington,²⁹ I. Fedorko,⁴⁶ W.T. Fedorko,¹³ R.G. Feild,⁶⁰ M. Feindt,²⁵ J.P. Fernandez,³¹ R. Field,¹⁷ G. Flanagan,⁴⁸ A. Foland,²¹ S. Forreste G.W. Foster,¹⁶ M. Franklin,²¹ J.C. Freeman,²⁸ H. J. Frisch,¹³ I. Furic,¹³ M. Gallinaro,⁵⁰ J. Galyardt,¹² J.E. Garcia,⁴⁶ F. Garberson,¹⁰ A.F. Garfinkel,⁴⁸ C. Gay,⁶⁰ H. Gerberich,²³ D. Gerdes,³⁴ S. Giagu,⁵¹ A. Gibson,²⁸ K. Gibson,⁴⁷ J.L. Gimmell,⁴⁹ C. Ginsburg,¹⁶ N. Giokaris,¹⁴ M. Giordani,⁵⁴ P. Giromini,¹⁸ M. Giunta,⁴ G. Giurgiu,¹² V. Glagolev,¹⁴ D. Glenzinski,¹⁶ M. Gold,³⁷ N. Goldschmidt,¹⁷ J. Goldstein,⁴² G. Gomez,¹ Gomez-Ceballos,¹¹ M. Goncharov,⁵³ O. González,³¹ I. Gorelov,³⁷ A.T. Goshaw,¹⁵ K. Goulianos,⁵⁰ A. Gresele M. Griffiths.²⁹ S. Grinstein.²¹ C. Grosso-Pilcher,¹³ R.C. Group.¹⁷ U. Grundler,²³ J. Guimaraes da Costa, nay-Unalan,³⁵ C. Haber,²⁸ K. Hahn,³² S.R. Hahn,¹⁶ E. Halkiadakis,⁵² A. Hamilton,³³ B.-Y. Han,⁴¹ J.Y. Han,⁴⁹ R. Handler,⁵⁹ F. Happacher,¹⁸ K. Hara,⁵⁵ M. Hare,⁵⁶ S. Harper,⁴² R.F. Harr,⁵⁸ R.M. Harris,¹ M Hartz ⁴⁷ K Hatakevama ⁵⁰ J Hauser ⁸ A Heijboer ⁴⁵ B Heinemann ²⁹ J Heinrich ⁴⁵ C Henderson 4. Herndon⁵⁹ J. Heuser.²⁵ D. Hidas.¹⁵ C.S. Hill.¹⁰ D. Hirschbuehl.²⁵ A. Hocker.¹⁶ A. Holloway.²¹ S. Hou M. Houlden,²⁹ S.-C. Hsu,⁹ B.T. Huffman,⁴² R.E. Hughes,³⁹ U. Husemann,⁶⁰ J. Huston,³⁵ J. Incandela,¹⁰ rozzi,⁴⁶ M. Iori,⁵¹ Y. Ishizawa,⁵⁵ A. Ivanov,⁷ B. Iyutin,³² E. James,¹⁶ D. Jang,⁵² B. Jayatilaka,³⁴ D. Jeans H. Jensen,¹⁶ E.J. Jeon,²⁷ S. Jindariani,¹⁷ M. Jones,⁴⁸ K.K. Joo,²⁷ S.Y. Jun,¹² J.E. Jung,²⁷ T.R. Junk,²³ T. Kamon,⁵³ P.E. Karchin,⁵⁸ Y. Kato,⁴¹ Y. Kemp,²⁵ R. Kephart,¹⁶ U. Kerzel,²⁵ V. Khotilovich,⁵³ B. Kilminster,³⁹ D.H. Kim,²⁷ H.S. Kim,²⁷ J.E. Kim,²⁷ M.J. Kim,¹² S.B. Kim,²⁷ S.H. Kim,⁵⁵ Y.K. Kim,¹³ N. Kimura,⁵⁵ L. Kirsch,⁶ S. Klimenko,¹⁷ M. Klute,³² B. Knuteson,³² B.R. Ko,¹⁵ K. Kondo,⁵⁷ D.J. Kong, A. Korytov,¹⁷ A.V. Kotwal,¹ ⁵ A. Kovalev,⁴⁵ A.C. Kraan, J. Kraus,²³ I. Kravchenk M. Kreps,²⁵ J. Kroll,⁴⁵ N. Krumnack,⁴ M. Kruse,¹⁵ V. Krutelyov,¹⁰ T. Kubo,⁵⁵ S. E. Kuhlmann,² T. Kuhr,²⁵ Y. Kusakabe, ⁵⁷ S. Kwang, ¹³ A.T. Laasanen, ⁴⁸ S. Lai, ³³ S. Lami, ⁴⁶ S. Lammel, ¹⁶ M. Lancaster, ³⁰ R.L. Lander, ⁷ K. Lannon, ³⁹ A. Lath, ⁵² G. Latino, ⁴⁶ I. Lazzizzera, ⁴³ T. LeCompte, ² J. Lee, ⁴⁹ J. Lee, ²⁷ Y.J. Lee, ²⁷ S.W. Lee, ⁵⁵ R. Lefèvre,³ N. Leonardo,³² S. Leone,⁴⁶ S. Levy,¹³ J.D. Lewis,¹⁶ C. Lin,⁶⁰ C.S. Lin,¹⁶ M. Lindgren,¹⁶ E. Lipeles,⁴ T.M. Liss,²³ A. Lister,⁷ D.O. Litvintsev,¹⁶ T. Liu,¹⁶ N.S. Lockyer,⁴⁵ A. Loginov,³⁶ M. Loreti,⁴³ P. Loverre,⁵¹ R.-S. Lu,¹ D. Lucchesi,⁴³ P. Lujan,²⁸ P. Lukens,¹⁶ G. Lungu,¹⁷ L. Lyons,⁴² J. Lys,²⁸ R. Lysak,¹ E. Lytken,⁴⁸ P. Mack,²⁵ D. MacQueen,³³ R. Madrak,¹⁶ K. Maeshima,¹⁶ K. Makhoul,³² T. Maki,²² P. Maksimovic,²⁴ S. Malde,⁴² G. Manca,²⁹ F. Margaroli,⁵ R. Marginean,¹⁶ C. Marino,²⁵ C.P. Marino,²³ A. Martin,⁶⁰ M. Martin,²⁴ V. Martin,²⁰ M. Martínez,³ T. Maruyama,⁵⁵ P. Mastrandrea,⁵¹ T. Masubuchi,⁵⁵ H. Matsunaga,⁵⁵ M.E. Mattson,⁵⁸ R. Mazini,³³ P. Mazzanti,⁵ K.S. McFarland,⁴⁹ P. McIntyre,⁵³ R. McNulty,²⁹ A. Mehta,²⁹ P. Mehtala,²² S. Menzemer,¹¹ A. Menzione,⁴⁶ P. Merkel,⁴⁸ C. Mesropian,⁵⁰ A. Messina,⁵¹ T. Miao,¹⁶ N. Miladinovic,⁶ J. Miles,³² R. Miller,³⁵ C. Mills,¹⁰ M. Milnik,²⁵ A. Mitra,¹ G. Mitselmakher,¹⁷ A. Mivamoto,²⁶ S. Moed,¹⁹ N. Moggi,⁵ B. Mohr,⁸

A counting experiment

$$A(t) = \frac{N(B_{\rm s}^0 \to D_{\rm s}^- \pi^+, t) - N(\overline{B}_{\rm s}^0 \to D_{\rm s}^- \pi^+, t)}{N(B_{\rm s}^0 \to D_{\rm s}^- \pi^+, t) + N(\overline{B}_{\rm s}^0 \to D_{\rm s}^- \pi^+, t)},$$

Importance of PID, proper time resolution, flavour tagging

Loop back to the models

arXiv:1904.10954 one example out of the billion out there.

22

Let's us add complexity - $B_s \rightarrow J/\Psi (\rightarrow \mu + \mu +) \Phi (K + K -)$

Mixture of CP odd and CP even eigenstates

None negligible difference between the heavy and the light state of your the B_s mesons $\Delta\Gamma_s$

$$\frac{\mathrm{d}^4 \Gamma(B_s^0 \to J/\psi K^+ K^-)}{\mathrm{d}t \,\mathrm{d}\Omega} \propto \sum_{k=1}^{10} h_k(t) f_k(\Omega).$$

 $+ c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t)],$

Fermilab paved the path of B_s physics

Time dependent angular analysis

We will come back to the to angular analyses in the second lecture

It's just a counting experiment

$$A_{CP}(t) = \frac{\Gamma(\bar{B}_{s}^{0} \to J/\psi KK) - \Gamma(B_{s}^{0} \to J/\psi KK)}{\Gamma(\bar{B}_{s}^{0} \to J/\psi KK) + \Gamma(B_{s}^{0} \to J/\psi KK)} = \eta_{f} \cdot \sin \phi_{s}^{obs} \cdot \sin(\Delta m_{s}t)$$

• CP eigenvalue of the final state $\eta_{f} = (-1)^{L}$

• A mixture of *CP*-even & *CP*-odd components \rightarrow angular analysis

between the LHC three collaborations

An example of NP interpretations

$$C_{B_q} e^{2i\phi_{B_q}} = \frac{\langle B_q | H_q^2}{\langle B_q | H_q^2}$$

Let us first consider MFV models and update our results presented in Ref. [11, 12]. In practice, the most convenient strategy in this case is to fit the shift in the Inami-Lim topquark function entering B_d , B_s and K^0 mixing. We fit for this shift using the experimental measurements of Δm_d , Δm_s and ϵ_K , after determining the parameters of the CKM matrix with the universal unitarity triangle analysis [17].⁷ We obtain the following lower bounds at 95% probability:

> $\Lambda > 5.5 \,\mathrm{TeV} \quad (\mathrm{small} \tan \beta),$ $\Lambda > 5.1 \,\mathrm{TeV} \quad (\mathrm{large} \, \tan \beta) \,.$

https://arxiv.org/pdf/0707.0636

(14)

FIG. 7: Summary of the 95% probability lower bound on the NP scale Λ for strongly-interacting NP in NMFV (left) and general NP (right) scenarios.

$sin 2\beta \& \Phi_s$

Typically dominated by a few "Golden modes"

Y measurements have somewhat of a "commune spirit"

How to measure \mathbf{Y} ? $\gamma \equiv \varphi_3 \equiv \arg\left(-\frac{1}{2}\right)$

It's all about interferences !

$$\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} \simeq \arg\left(\rho + i\eta\right)$$

< Beautiful Mont-Blanc analogy >

CONF-2024-004

There is a myriad of techniques to measure this angle

B decay	D decay	Ref.	Dataset	Status since
				Ref. [14]
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^{\pm} h'^{\mp}$	[35]	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ h^- \pi^+ \pi^-$	[19]	Run 1&2	\mathbf{New}
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^\pm \pi^\mp \pi^+ \pi^-$	[36]	Run 1&2	As before
$B^\pm o Dh^\pm$	$D ightarrow h^{\pm} h'^{\mp} \pi^0$	[37]	Run 1&2	As before
$B^\pm o Dh^\pm$	$D ightarrow K_{ m S}^0 h^+ h^-$	[38]	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow K_{ m S}^0 K^{\pm} \pi^{\mp}$	[39]	Run 1&2	As before
$B^{\pm} ightarrow D^{*}h^{\pm}$	$D \to h^{\pm} h'^{\mp} \ (\mathrm{PR})$	[35]	Run 1&2	As before
$B^{\pm} ightarrow D^{*}h^{\pm}$	$D \rightarrow K_{ m S}^0 h^+ h^- ~({ m PR})$	[20]	Run 1&2	\mathbf{New}
$B^{\pm} ightarrow D^{*}h^{\pm}$	$D \to K^0_{ m S} h^+ h^- ~({ m FR})$	[21]	Run 1&2	\mathbf{New}
$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow h^{\pm} h'^{\mp}$	$[22]^{\dagger}$	Run 1&2	Updated
$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^\pm \pi^\mp \pi^+ \pi^-$	$[22]^{\dagger}$	Run 1&2	Updated
$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow K_{ m S}^0 h^+ h^-$	$[22]^{\dagger}$	Run 1&2	\mathbf{New}
$B^\pm \to D h^\pm \pi^+ \pi^-$	$D ightarrow h^{\pm} h'^{\mp}$	[40]	Run 1	As before
$B^0 \to DK^{*0}$	$D ightarrow h^{\pm} h'^{\mp}$	[23]	Run 1&2	Updated
$B^0 \to DK^{*0}$	$D \to h^\pm \pi^\mp \pi^+ \pi^-$	[23]	Run 1&2	Updated
$B^0 \to DK^{*0}$	$D ightarrow K_{ m S}^0 h^+ h^-$	[24]	Run 1&2	Updated
$B^0 ightarrow D^{\mp} \pi^{\pm}$	$D^+ \to K^- \pi^+ \pi^+$	[41]	Run 1	As before
$B^0_s ightarrow D^{\mp}_s K^{\pm}$	$D_s^+ ightarrow h^+ h^- \pi^+$	$[25,42]^\dagger$	Run 1&2	Updated
$B^0_s \rightarrow D^\mp_s K^\pm \pi^+ \pi^-$	$D_s^+ \to h^+ h^- \pi^+$	[43]	Run 1&2	As before
	~~ · · / `			~

ADS, GLW, BPGGSZ, etc.

Which interference are we talking about ?

31

We can write down the amplitudes

 $\mathcal{A}(B^{-}) = \mathcal{A}_B(\mathcal{A}_{D^0} + r_B e^{i(\delta_B - \gamma)} \mathcal{A}_{\bar{D^0}})$ $\mathcal{A}(B^+) = \mathcal{A}_B(\mathcal{A}_{D^0} + r_B e^{i(\delta_B + \gamma)} \mathcal{A}_{D^0})$

8 g: Strong phase difference accounts for al enknown QCD phases

Parameter	$\geq 32\%~{\rm CL}$	half width	$\geq 5\%~{\rm CL}$	half width	δ_{32}	δ_5
λ	0.2221 ± 0.0021 0.2221 ± 0.0041					
A	0.782 - 0.888	0.053	0.758 - 0.906	0.074	10	3
$ar{ ho}$	0.09 - 0.29	0.10	0.04 - 0.37	0.16	29	6
$ar\eta$	0.22 - 0.32	0.05	0.21 - 0.42	0.11	58	21
$J \; (10^{-5})$	2.0 - 2.9	0.5	1.9 - 3.5	0.8	38	11
$\sin 2lpha$	-0.88 - 0.04	0.46	-0.95 - 0.33	0.64	27	12
${ m sin}2eta$	0.50 - 0.67	0.09	0.47 - 0.81	0.17	50	19
α	89° - 121°	16°	80° - 126°	23°	27	12
eta	15.0° - 21.0°	3.0°	$14.0^{\circ} - 27.0^{\circ}$	6.5°	59	25
$\gamma = \delta$	42° - 74°	16°	34° - 82°	24°	16	0
$\sin \theta_{12}$	0.2221 ± 0.0	0021	0.2221 ± 0.0	0	0	
$\sin\theta_{13} \ (10^{-3})$	2.70 - 4.03	0.67	2.49 - 4.38	0.95	17	8
$\sin\theta_{23} (10^{-3})$	38.4 - 43.2	2.4	38.0 - 43.6	2.8	0	0
$ V_{ud} $	0.97504 ± 0.0	00049	0.97504 ± 0.0	00094	0	0
$ V_{us} $	0.2221 ± 0.0	0021	0.2221 ± 0.0	0042	0	0
$ V_{ub} $ (10 ⁻³)	2.70 - 3.71	0.51	2.45 - 4.38	0.96	37	7
$ V_{cd} $	0.2220 ± 0.0	0021	0.2220 ± 0.0	0042	0	0
$ V_{cs} $	0.97414 ± 0.0	00049	0.97414 ± 0.000	13	4	
$ V_{cb} $ (10 ⁻³)	38.7 - 43.2	2.3	38.1 - 43.6	2.8	4	0
$ V_{td} $ (10 ⁻³)	7.2 - 9.2	1.0	6.6 - 9.6	1.5	23	6
$ V_{ts} $ (10 ⁻³)	38.0 - 42.7	2.4	37.4 - 43.1	2.9	8	3
$ V_{tb} $	0.99907 - 0.99926	$9 imes 10^{-5}$	0.99905 - 0.99928	11×10^{-5}	10	8
$\Delta m_s \ ({\rm ps}^{-1})$	15.5 - 33.7	9.1	15.0 - 41.3	13.1	0	3
$BR(K_{\rm L}^0 \to \pi^0 \nu \bar{\nu}) \ (10^{-1}$	¹) 1.2 - 2.6	0.7	1.1 - 3.8	1.4	50	13
$BR(K^+ \to \pi^+ \nu \bar{\nu}) (10^-$	$^{11})$ 6.6 - 9.5	1.5	5.4 - 10.4	2.5	35	14
$BR(B^+ \to \tau^+ \nu_\tau) \ (10^{-5}$) 4.6 - 12.4	3.9	3.6 - 21.0	8.7	49	13
$\mathrm{BR}(B^+ \to \mu^+ \nu_\mu) \ (10^{-7}$) 1.8 - 4.9	1.6	1.4 - 8.3	3.5	48	10
$f_{B_d}\sqrt{B_d}$ (MeV)	194 - 246	26	185 - 272	44	33	12
B_K	> 0.72	-	> 0.55			10
m_t (GeV)	124 - 406	141	102 - 550	224	6	5

Belle, PRL 94 (2005) 091601

ADS technique

$\mathcal{A}_{DK} = 0.88^{+0.77}_{-0.62}(\text{stat}) \pm 0.06(\text{syst}),$ $\mathcal{A}_{D\pi} = 0.30^{+0.29}_{-0.25}(\text{stat}) \pm 0.06(\text{syst}),$

Here, both $B \rightarrow Dh$ peak at 0 when correctly identified

Example of a very spectacular asymmetry

LHCb, JHEP 04 (2021) 081

Just drawing a line does not do justice to this work

Putting everything together

LHCb-CONF-2024-004

	γ	$r_{B^\pm}^{DK^\pm}$	$\delta^{DK^\pm}_{B^\pm}$	$r_{B^{\pm}}^{D\pi^{\pm}}$	$\delta^{D\pi^\pm}_{B^\pm}$	$r_D^{K\pi}$	$\delta_D^{K\pi}$	x	y	q/p	ϕ	$a^{\rm d}_{K^+K^-}$	$a^{ m d}_{\pi^+\pi^-}$
γ	1.00	0.36	0.62	-0.02	0.19	-	-	-	-	-	-	-	
$r_{B^{\pm}}^{DK^{\pm}}$		1.00	0.21	-	0.07	-0.04	-0.10	0.02	-0.08	-	-	-	
$\delta^{DK^{\pm}}_{B^{\pm}}$			1.00	-0.04	0.18	-0.11	-0.39	0.06	-0.32	-	-0.01	-	
$r_{B^{\pm}}^{D\pi^{\pm}}$				1.00	0.57	0.04	0.02	-	0.01	-	-	-	
$\delta_{B^{\pm}}^{D\pi^{\pm}}$					1.00	0.01	-0.13	0.02	-0.11	-	-	-	
$r_D^{K\pi}$						1.00	0.29	0.18	-0.07	-0.04	0.01	-	
$\delta_D^{K\pi}$							1.00	-0.05	0.84	-	0.04	-0.02	-0.02
x								1.00	0.22	-0.09	0.09	0.01	
y									1.00	-0.04	0.04	-0.01	-0.01
q/p										1.00	0.72	0.11	0.10
ϕ											1.00	-0.04	-0.04
$a^{\mathrm{d}}_{\kappa^+\kappa^-}$												1.00	0.8'
$a^{\mathrm{d}}_{\pi^+\pi^-}$													1.00
$a^{\mathrm{d}}_{K^+\pi^-}$													

Consistent analyses

An other example of a direct CP violation measurement

Part of the Kn puzzle expressed via this sum rule

 $A_{CP}(K^{+}\pi^{-}) + A_{CP}(K^{0}\pi^{+}) \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{0}}{\tau_{+}} = A_{CP}(K^{+}\pi^{0}) \frac{2\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{0}}{\tau_{+}} + A_{CP}(K^{0}\pi^{0}) \frac{2\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} = A_{CP}(K^{0}\pi^{0}) \frac{2\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{0}}{\tau_{+}} + A_{CP}(K^{0}\pi^{0}) \frac{2\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} = A_{CP}(K^{0}\pi^{0}) \frac{2\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{0}}{\tau_{+}} + A_{CP}(K^{0}\pi^{0}) \frac{2\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{0}}{\tau_{+}} + A_{CP}(K^{0}\pi^{0}) \frac{2\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{0}\pi^{0})} \frac{\tau_{0}}{\tau_{+}} + A_{CP}(K^{0}\pi^{0}) \frac{\tau_{0}}{\mathcal{B}(K^{0}\pi^{0})} \frac{\tau_{0}}{\mathcal{B}(K^{0}\pi^{0})} \frac{\tau_{0}}{\tau_{+}} + A_{CP}(K^{0}\pi^{0}) \frac{\tau_{0}}{\mathcal{B}(K^{0}\pi^{0})} \frac{\tau_{0}}{\mathcal{B}(K^{0}\pi^{0})} \frac{\tau_{0}}{\tau_{+}} + A_{CP}(K^{0}\pi^{0}) \frac{\tau_{0}}{\mathcal{B}(K^{0}\pi^{0})} \frac{\tau_{0}}{\mathcal{B}(K^{0}\pi^{0})} \frac{\tau_{0}}{\tau_{+}} + A_{CP}(K^{0}\pi^{0}) \frac{\tau_{0}}{\tau_{+}} + A_{CP}(K^{0}\pi^{0}) \frac{\tau_{0}}{\mathcal{B}(K^{0}\pi^{0})} \frac{\tau_{0}}{\tau_{+}} + A_{CP}(K^{0}\pi^{0}) \frac{\tau_{0}}{\tau_{+}} + A_{CP}(K^{0}\pi^{0$

$$A_{CP}(t) = \frac{\Gamma_{\bar{B}_{(s)}^0 \to f}(t) - \Gamma_{B_{(s)}^0 \to f}(t)}{\Gamma_{\bar{B}_{(s)}^0 \to f}(t) + \Gamma_{B_{(s)}^0 \to f}(t)} = \frac{-C_f \cos(\Delta m_{d(s)}t) + S_f \sin(\Delta m_{d(s)}t)}{\cosh\left(\frac{\Delta\Gamma_{d(s)}}{2}t\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_{d(s)}}{2}t\right)},$$

An important quantity to control is detector asymmetries Analyses that explore U spin symmetry

B→hh

This constitutes the first observation of time-dependent CP violation in decays of the B_s meson.

$$A_{\text{det}}^{K\pi} = A_{\text{RAW}}^{K\pi\pi} - A_{\text{RAW}}^{\overline{K}^0\pi} - A_{\text{det}}^{K^0}$$

Very fast oscillations $\Delta m_s > 15 \ ps^{-1}$ $\tau(B_s^0) \sim 1.5 \ ps$ Non-zero $\Delta \Gamma_s$

Oscillations $\Delta m \sim 0.5 \ ps^{-1}$ Lifetime $\tau(B^0) \sim 1.5 \ ps$ The same order

of magnitudes

 $D^{0} - \bar{D}^{0}$

Very slow oscillations $\Delta m \sim 10^{-3} ps^{-1}$ Very short lifetime $\tau(D^0) \sim 0.4 ps$ D^0 decays before has a chance to oscillate

Mixing in charm land

I warned you there is a lot of Jargon

 $s ext{suppressed (DCS)} imes ext{10}^{-3}) + ext{right sign (RS)} ext{$R(t) = rac{N(wrong)(t)}{N(right)(t)}}$

$$R(t) pprox r_D + \sqrt{r_D} y' rac{t}{ au} + rac{x'^2 + y'^2}{4} \left(rac{t}{ au}
ight)^2$$

(Interference) (Pure mixing)

wrong sign (WS)

Charm Mixing 2007

Belle, PRL 98 (2007) 211803

 $D^0 \rightarrow K^+K^-, \pi^+\pi^-$

41

TODAY ... first observation of nonzero mass difference of D⁰ meson mass eigenstates!

LHCb, PRL 127 (2021) 111801

Loop back to beauty !

Giving one lecture on CP Violation

- Pros: it's only ~50-40 slides.
- Cons: it's impossible to do justice to the topic.

Overall, we see a very consistent picture, if there is New Physics it must be at pretty high energies and there were to be this New Physics we would need it to carry extra sources of CP Violation

https://pdg.lbl.gov/2024/web/viewer.html?file=../reviews/rpp2024-rev-ckm-matrix.pdf

To illustrate the level of suppression required for BSM contributions, consider a class of models in which the unitarity of the CKM matrix is maintained, and the dominant BSM effects modify the neutral meson mixing amplitudes [134] by $(z_{ij}/\Lambda^2)(\overline{q}_i\gamma^{\mu}P_Lq_j)^2$, where z_{ij} is an unknown coefficient and Λ is the scale suppressing this BSM contribution (see, [135, 136]). It is only known since the first measurements of γ and α that the SM gives the leading contribution to $B^0 - \overline{B}^0$ mixing [6,137]. Nevertheless, new physics with a generic weak phase may still contribute to neutral meson mixings at a significant fraction of the SM [131, 138, 139]. The existing data imply that $\Lambda/|z_{ij}|^{1/2}$ has to exceed about 10⁴ TeV for $K^0 - \overline{K}^0$ mixing, 10³ TeV for $D^0 - \overline{D}^0$ mixing, 500 TeV for $B^0 - \overline{B}^0$ mixing, and 100 TeV for $B_s^0 - \overline{B}_s^0$ mixing [131,136]. (Some other operators are even better constrained [131].) The constraints are the strongest in the kaon sector, because the CKM suppression is the most severe. Thus, if there is new physics at the TeV scale, $|z_{ij}| \ll 1$ is required. Even if $|z_{ij}|$ are suppressed by a loop factor and $|V_{ti}^*V_{tj}|^2$ (in the down quark sector), similar to the SM, one expects percent-level effects, which may be observable in forthcoming flavor physics experiments. To constrain such extensions of the SM, many measurements irrelevant for the SM-CKM fit, such as the *CP* asymmetry in semileptonic $B_{d,s}^0$ decays, $A_{SL}^{d,s}$, are important [140]. The current world averages [24] are consistent with the SM, with experimental uncertainties far greater than those of

We take a break here for today ! Tomorrow we discuss penguins, EFTs and all the good stuff.

