#### UNIVERSITY of WASHINGTON

# PPDDEER

A next generation rare pion decay experiment

Quentin Buat (University of Washington) — Nov 14, 2023

### The SM of Particle Physics



### **Fundamental interactions**



Known forces in Nature and their associated energy scale

Explore the gap between EW and Gravity scales

Look for feeble interactions below the EW scale

### The direct approach Collide particles at the highest possible energy



### What else can we do?

Consider "well-defined" SM quantities and measure them very precisely

High energy particles can have an impact at lower energy through quantum effects

Precision measurements require large datasets: opportunity to discover feeble interactions

 $e^+$ 



### **Rare Pion Decays**

#### **Probing weak universality**

- Charged currents in the SM are mediated by the exchange of a W boson between left-handed fermions and right-handed anti-fermions
  - The coupling is the same for all fermions



$$G_F^{(\beta)} \sim g^2 V_{ij} / M_w^2 \sim G_F^{(\mu)} V_{ij}$$

Lepton Flavour Universality

$$\left[G_{F}^{(\beta)}\right]_{e} / \left[G_{F}^{(\beta)}\right]_{\mu} = 1$$

Cabbibo Universality  $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$ 

PIONEER will test both!



$$R_{e/\mu} = \frac{\Gamma(\pi \to e\nu(\gamma))}{\Gamma(\pi \to \mu\nu(\gamma))}$$

$$R_{e/\mu} = \frac{m_e^2}{m_\mu^2} \left(\frac{m_\pi^2 - m_e^2}{m_\pi^2 - m_\mu^2}\right)^2 \times \left[1 + \text{EW corrections}\right] = 1.23524(015) \times 10^{-4}$$

The  $\pi \rightarrow ev$  branching ratio is so small that for a while it was excluded  $BR(\pi \rightarrow \mu \nu) \approx 0.9998770$ , meaning ~1 out of every 10<sup>4</sup> pions decay to an electron

#### Lokanathan and Steinberger (1955):

Range telescope at Columbia Nevis cyclotron:  $R_{e/\mu} < 1.2 \times 10^{-4}$  (90% CL)

#### Anderson and Lattes (1957):

Magnetic spectrometer at Chicago cyclotron:  $R_{e/\mu} < 1.3 \times 10^{-5}$  (90% CL)

$$R_{e/\mu} = \frac{\Gamma(\pi \to e\nu(\gamma))}{\Gamma(\pi \to \mu\nu(\gamma))}$$

$$R_{e/\mu} = \frac{m_e^2}{m_\mu^2} \left(\frac{m_\pi^2 - m_e^2}{m_\pi^2 - m_\mu^2}\right)^2 \times \left[1 + \text{EW corrections}\right] = 1.23524(015) \times 10^{-4}$$

Causing a lot of confusion...

#### Theory of the Fermi Interaction

R. P. FEYNMAN AND M. GELL-MANN California Institute of Technology, Pasadena, California (Received September 16, 1957)

PR 109, 193 (1958)

In any event one would expect a decay into  $e + \bar{\nu}$  also. The ratio of the rates of the two processes can be calculated without knowledge of the character of the closed loops. It is  $(m_e/m_{\mu})^2(1-m_{\mu}^2/m_{\pi}^2)^{-2}=13.6\times10^{-5}$ . Experimentally<sup>16</sup> no  $\pi \rightarrow e + \nu$  have been found, indicating that the ratio is less than  $10^{-5}$ . This is a very serious discrepancy. The authors have no idea on how it can be resolved.

#### **DISCOVERY!**

At a small lab that opened 4 years prior on the outskirts of Geneva, Switzerland



CERN circa 1958

 $R_{e/\mu} = \frac{\Gamma(\pi \to e\nu(\gamma))}{\Gamma(\pi \to \mu\nu(\gamma))}$ 

#### ELECTRON DECAY OF THE PION

T. Fazzini, G. Fidecaro, A. W. Merrison, H. Paul, and A. V. Tollestrup<sup>\*</sup> CERN, Geneva, Switzerland (Received September 12, 1958)



FIG. 1. Experimental layout, and (inset) typical  $\pi-\mu-e$  and  $\pi-e$  pulse.

~ 40  $\pi \rightarrow e\nu$  events





Best measurement from PIENU at TRIUMF tested charged LFU at  $O(10^{-3})$ 

 $R_{e/\mu}$ [Exp.] = 1.23270(230) × 10<sup>-4</sup>  $R_{e/\mu}$ [SM] = 1.23524(015) × 10<sup>-4</sup>

To match the precision of the SM prediction

PIONEER aims to measure  $R_{e/\mu}$  to 0.01% precision

15-fold improvement over the current world best

EFT analysis (JHEP. **2013**, 46 (2013)) BSM constraints: Up to ~330 TeV (pseudo scalar) ~5.5 TeV (axial currents)

### **Rare Pion Decays**

#### **Probing weak universality**

- Charged currents in the SM are mediated by the exchange of a W boson between left-handed fermions
  - The coupling is the same for all fermions



$$G_F^{(\beta)} \sim g^2 V_{ij} / M_w^2 \sim G_F^{(\mu)} V_{ij}$$

Lepton Flavour Universality

$$\left[G_{F}^{(\beta)}\right]_{e} / \left[G_{F}^{(\beta)}\right]_{\mu} = 1$$

Cabbibo Universality  $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$ 

# Rare Pion Decays Testing CKM Unitarity

| $ V_{ud} $ | $\left V_{us} ight $ | $\left V_{ub} ight $ |   | $0.97370 \pm 0.00014$ | $0.2245\pm0.0008$   | $0.00382 \pm 0.00024$ ] |  |
|------------|----------------------|----------------------|---|-----------------------|---------------------|-------------------------|--|
| $ V_{cd} $ | $ V_{cs} $           | $\left V_{cb} ight $ | = | $0.221 \pm 0.004$     | $0.987 \pm 0.011$   | $0.0410 \pm 0.0014$     |  |
| $ V_{td} $ | $ V_{ts} $           | $ V_{tb} $           |   | $0.0080\pm0.0003$     | $0.0388 \pm 0.0011$ | $1.013\pm0.030$         |  |

$$|V_{ud}|^2 + |V_{us}|^2 + |Vub|^2 = 1$$

Since  $|V_{ub}| \ll |V_{us}|$ , the third term can be neglected and the first row can be studied in a 2D plane

 $\sim 3\sigma$  tension in the first-row of CKM unitarity test

Often referred to as the Cabbibo Angle Anomaly (or CAA)



### Rare Pion Decays Testing CKM Unitarity





$$R_{\pi\beta} = \frac{\Gamma(\pi^+ \to \pi^0 e^+ \nu_e)}{\Gamma(\pi^+ \to \text{all})}$$

Pion beta decay provides the theoretically cleanest determination of  $|V_{ud}|$ 

Current best measurement from PIBETA at PSI  $R_{\pi\beta}^{Exp} = 1.036(0.006) \times 10^{-8}$ 

PIONEER aims to measure  $R_{\pi\beta}$  to 0.06% precision

Ten-fold improvement over current world best

Constraint on  $|V_{ud}|$  comparable to super-allowed beta decay

### **Rare Pion Decays**

#### **Direct searches for new physics**

- Collecting very large samples of rare pion decay
  - Search for new weakly coupled particle in the MeV range
  - Popular models involve sterile neutrinos or axion-like particles



J. Dror review at 2022 Rare Pion Decays Workshop indico contribution



### **Introducing PIONEER** Outline

- Phase I measurement strategy
- PSI Pion beam line
- Detector developments
- Simulation studies



#### Phase I measurement strategy



The pion stops in the target and decay

#### Phase I measurement strategy



The pion stops in the target and decay

#### Phase I measurement strategy



#### Phase I measurement strategy







#### Guiding principles to the design of the experiment:

- 1. Collect very large datasets of rare pion decays (2e8  $\pi^+ \rightarrow e^+ \nu_e$  during Phase I)
- 2. Tail must be less than 1% of total signal  $\rightarrow$  Shower containment in the calorimeter
- 3. Tail must be measured with a precision of  $1\% \rightarrow$  Event identification in the active target

### **Introducing PIONEER** Outline

- Phase I measurement strategy
- PSI Pion beam line
- Detector developments
  - Calorimeter
  - Active target
- Simulation studies





#### Guiding principles to the design of the experiment:

- 1. Collect very large datasets of rare pion decays (2e8  $\pi^+ \rightarrow e^+ \nu_e$  during Phase I)
- 2. Tail must be less than 1% of total signal  $\rightarrow$  Shower containment in the calorimeter
- 3. Tail must be measured with a precision of  $1\% \rightarrow$  Event identification in the active target



Guiding principles to the design of the experiment:

- **1.** Collect very large datasets of rare pion decays (2e8  $\pi^+ \rightarrow e^+ \nu_e$  during Phase I)
- 2. Tail must be less than 1% of total signal  $\rightarrow$  Shower containment in the calorimeter
- 3. Tail must be measured with a precision of  $1\% \rightarrow$  Event identification in the active target

### **Pion Beamline at PSI**



### **Pion Beamline at PSI**

- Specifications:
  - Rate: O(10<sup>7</sup> Hz)
  - Momentum p=55-70 MeV/c
  - $E \times B$  separation of  $\pi$  from  $\mu$  and e
  - Tight beam spot (< 2 cm<sup>2</sup>) and small divergence
  - Narrow momentum bite (dp/p <2%) to stop π+ in 3±0.5mm silicon target

#### 2022 test beam study

| Beamline Position | $p_{\pi}~({ m MeV}/c)$ | $\pi^+$ Rate X | 10 <sup>6</sup> Hz |
|-------------------|------------------------|----------------|--------------------|
| QSB43             | 55                     | 6.3            | -                  |
| CALO Center       | 55                     | 1.0            |                    |
| QSB43             | 75                     | 61.5           | -                  |
| CALO Center       | 75                     | 11.1           | _                  |



### **Introducing PIONEER** Outline

- Phase I measurement strategy
- PSI Pion beam line
- Detector developments
- Simulation studies



### **Two recent Pion Decay Experiments**

3π

Csl

12 X<sub>0</sub>

#### PIENU

**PEN/PIBETA** 

DURE

PEN detector 2009-10

MWPC<sup>.</sup>



- Experiment at TRIUMF
- Nal slow, but excellent resolution
- Single large crystal not uniform enough (material and effective "depth")
- Small solid angle



- Experiment at PSI
- Large acceptance but calorimeter depth of 12X<sub>0</sub> too small to resolve tail under the π-μ-e spectrum.

Both experiments took data a while ago but have (known) challenges to overcome before final results



#### Guiding principles to the design of the experiment:

1. Collect very large datasets of rare pion decays (2e8  $\pi^+ \rightarrow e^+ \nu_e$  during Phase I)

#### 2. Tail must be less than 1% of total signal $\rightarrow$ Shower containment in the calorimeter

3. Tail must be measured with a precision of  $1\% \rightarrow$  Event identification in the active target



#### Guiding principles to the design of the experiment:

1. Collect very large datasets of rare pion decays (2e8  $\pi^+ \rightarrow e^+ \nu_e$  during Phase I)

#### 2. Tail must be less than 1% of total signal $\rightarrow$ Shower containment in the calorimeter

3. Tail must be measured with a precision of  $1\% \rightarrow$  Event identification in the active target



#### Guiding principles to the design of the experiment:

- 1. Collect very large datasets of rare pion decays (2e8  $\pi^+ \rightarrow e^+ \nu_e$  during Phase I)
- 2. Tail must be less than 1% of total signal  $\rightarrow$  Shower containment in the calorimeter
- 3. Tail must be measured with a precision of  $1\% \rightarrow$  Event identification in the active target

### **Calorimeter Developments**

#### Liquid Xenon Prototype

- Series of prototypes leading to a large 100L, 28X<sub>0</sub> cylinder
  - Measure resolution for 70 MeV
     positrons
  - Check and correct simulations
- Build expertise with LXe handling
- Bonus: prototype could set stringent limits on µ→eeeee (arXiv:2306.15631)





### **Calorimeter Alternative**

Liquid Xenon



Fast response Highly homogeneous response Detector can be reshaped

#### BUT

Expensive? Unsegmented calorimeter impacts pileup rejection

#### LYSO Crystals



Fast response High stopping power Intrinsically segmented

#### BUT

Resolution better than 4% has not been demonstrated for an array of LYSO crystals at 70 MeV

Growing long homogeneous crystals is a challenge

### **Calorimeter Developments**

#### **LYSO Test Beam studies**



- Goals:
  - LYSO resolution for 70 MeV positrons
  - Albedo modelling validation
- Ongoing prep work at UW with the in-house accelerator
  - Testing with a sharp 17.6 MeV gamma from a Li-7 source
  - Moving setup at PSI for test beam at the end of November



### **Calorimeter Developments**

#### **LYSO Test Beam studies**



Large discrepancies of the albedo effect between different simulation models





Guiding principles to the design of the experiment:

- 1. Collect very large datasets of rare pion decays (2e8  $\pi^+ \rightarrow e^+ \nu_e$  during Phase I)
- 2. Tail must be less than 1% of total signal  $\rightarrow$  Shower containment in the calorimeter
- 3. Tail must be measured with a precision of  $1\% \rightarrow$  Event identification in the active target 37

Active target ("4D") based on low-gain avalanche diode (LGAD) technology

#### **Tentative design**

- 48 layers X/Y strips: 120 µm thick
- 100 strips with 200 µm pitch covering 2x2 cm<sup>2</sup> area
- Sensors are packed in stack of two with facing HV side and rotate 90



Guiding principles to the design of the experiment:

- 1. Collect very large datasets of rare pion decays (2e8  $\pi^+ \rightarrow e^+ \nu_e$  during Phase I)
- 2. Tail must be less than 1% of total signal  $\rightarrow$  Shower containment in the calorimeter
- 3. Tail must be measured with a precision of  $1\% \rightarrow$  Event identification in the active target 38

#### Requirements

- Thick and highly segmented target to
  - stop the pion
  - tag and measure the decay chain
- Measure energy, time and position



Pattern Recognition



Energy loss of particles through silicon Device needs to accommodate large range of energy scales



Decay chain time is very different between  $\pi \rightarrow e\nu$  and  $\pi - \mu - e$  events Device needs to separate signal within 1 ns apart

### Active Target Pion Decay tagging



#### **Glossary:**

**DAR**: Decay At Rest — particle stops in material before decaying

**DIF**: Decay In Flight — particle decays before depositing all its kinetic energy

MIP: Minimum Ionizing Particle – particle at the threshold of being detectable through ionisation

(i.e. a positron through silicon)

#### Low Gain Avalanche Diodes



**Traditional silicon diode** 

Low Gain Avalanche Diode

In silicon sensors, when applying a very large electric field (300 kV/cm), electrons (and holes) acquire kinetic energy and can generate additional e/h pairs by impact ionisation → 'avalanche' effect

Obtained by implanting an appropriate acceptor or donor layer when depleted, generate a very high field

The signal amplification allows for thin sensors and very high timing resolution The gain mechanism saturates for large energy deposit

#### Low Gain Avalanche Diodes

#### **TCAD Simulations:**

- Large gain suppression effect with high input charge density
- Gain suppression reduced if input charges are spread more evenly
- Gain of LGAD produced by impact ionization in high field region of gain layer
  - Very sensitive to electric field magnitude

Critical for PIONEER's feasibility to understand the MeV-scale response of LGADs

Performing our own tests



100

х

150

Υ

50

ł

#### **Tandem Accelerator at the University of Washington**





Test beam this summer at CENPA to understand LGAD response of **MeV-scale** deposit

Tandem Van de Graaf Accelerator

#### Test beam setup

1mmx1mm sensor with 50µm thickness



### Active Target LGAD gain saturation studies



- Studied sensor response at various energy from 1.8 to 5 MeV
- Expected gain increase with increasing bias voltage
- Observed large gain reduction compared to the response from a beta source
- Impact of charge localisation: angular dependency of the response

### Active Target LGAD gain saturation studies



Trying to reproduce observed behaviour in simulations

### **Introducing PIONEER** Outline

- Phase I measurement strategy
- PSI Pion beam line
- Detector developments
- Simulation studies
- Timeline of the project



### Simulation efforts

- Geant4 simulation
  - Spec the detector
  - Study sensitivity
- Precise model of the experiment
  - Dead material, electronic response, etc
  - Critical to reach the 10<sup>-4</sup> level of precision!





#### **Realistic detector geometry**





#### Prototyping the data analysis



Finding the signal in a 'sea' of backgrounds

#### Prototyping the data analysis



Finding the signal in a 'sea' of backgrounds

#### Prototyping the data analysis



This is what real data could look like

Finding the signal in a 'sea' of backgrounds

#### Prototyping the data analysis



#### Prototyping the data analysis



#### Prototyping the data analysis



### **Simulation studies** Prototyping the data analysis



#### An easy case: pion and muon decay at rest



#### A difficult case: muon decaying in flight



#### A difficult case: muon decaying in flight



#### A difficult case: muon decaying in flight



We can learn a lot about a particle travel through material from measuring its energy!

#### A difficult case: muon decaying in flight

Step 1: Precisely determining the pion stopping position



#### A difficult case: muon decaying in flight



First non pion hit  $\Delta(Z)$ 

#### A difficult case: muon decaying in flight



The instrumented active target is a fantastic tool to understand the backgrounds and achieve our target sensitivity

### **Introducing PIONEER** Outline

- Phase I measurement strategy
- PSI Pion beam line
- Detector developments
- Simulation studies
- Timeline of the project



### **Timeline of the project**

|                   | 2024      | 2025 2024                                | 2026 2025        | 2027 2026      | 2028 2027 202      | 9 2028     | 2030 2029   | 2031   | 2030  | 2032               | 2031  | 2032                 |                    |
|-------------------|-----------|------------------------------------------|------------------|----------------|--------------------|------------|-------------|--------|-------|--------------------|-------|----------------------|--------------------|
|                   | ◆ CD0     | ♦ CD1 ♦ CD0                              | ◆ CD1 / PSI :    | Shutdown 🔶 CD  | 2/PSI Shutdown / U | pgade 🔸    | CD4         | • (    | CD4   |                    |       |                      |                    |
|                   | LXe 100 L | LXe 100                                  | Active Tgt Test  | Active Tg      | t Test             | Run-1      | Run-2       | Rum-13 | Run-2 | Run-4              | Run-3 | Run-4                |                    |
|                   | R&D       | R&D                                      | R&D L            | arge Prototype | Major construction | on period  | Install     |        |       | <mark>Phy</mark> s |       | Phy <mark>s</mark> s | <mark>Phy</mark> s |
|                   |           |                                          |                  |                |                    |            |             |        |       |                    |       |                      |                    |
| Funding           |           |                                          |                  |                |                    |            |             |        |       |                    |       |                      |                    |
| Profile           |           | Operating gr                             | ants and small s | supplements    | Large purchases:   |            |             |        |       |                    |       |                      |                    |
|                   |           | Ine <sub>spe</sub> rt <sub>&amp;</sub> p | aVardioSproto    | types          | LXe procurement    |            |             |        |       |                    |       |                      |                    |
|                   |           | Project funds                            | S                |                | Photosensors and   | electronic | cs          |        |       |                    |       |                      |                    |
| Integral of green |           |                                          |                  |                | Calibration system | n          |             |        |       |                    |       |                      |                    |
| equals Project    |           |                                          |                  | ASIC dev       | All electronics    |            | LXe and ta  | nks    |       |                    |       |                      |                    |
| Request           |           | R&D: Act                                 | tive Target,     | 2nd LXe test   |                    |            | Final insta | l eng  | OPE   | RATION             | SUPPO | RT OF GROUPS         |                    |
|                   |           | LXe Prototyp                             | e and Electronic | s Elect / DAQ  |                    |            |             |        |       |                    |       |                      |                    |

- Detector R&D in calorimetry and tracking
- Simulation studies to model a high precision experiment
  - i.e. we need to understand  $\pi \rightarrow ev$  and  $\pi \rightarrow \mu v$  acceptance difference to 10<sup>-4</sup>...
- Putting an experiment together from concept to first data:
  - Civil engineering, beam optics, detector manufacturing, LXe acquisition, electronics, ...

### A growing collaboration



Proposal submitted last year at PSI



First collaboration meeting mid October at CENPA

### Conclusion

- PIONEER is a new proposal for a rare pion decays experiment at PSI
  - Stringent tests of flavour universality
  - Up to PeV scale sensitivity to BSM effects
- **Concept** of the experiment has been established and **is very promising**
- Ongoing effort to move from concept to serious prototype
  - Lots of opportunities for new collaborators to get involved!
  - Get in touch: Quentin Buat: <u>qbuat@uw.edu</u>, Chloé Malbrunot: <u>cmalbrunot@triumf.ca</u>, David Hertzog: <u>hertzog@uw.edu</u>, Doug Bryman: <u>doug@triumf.ca</u>

Unofficial logo, ongoing contest



Trigger/DAQ

### Additional slides

| Error Source                   | %    | %           |                                     |
|--------------------------------|------|-------------|-------------------------------------|
| Statistics                     | 0.19 | 0.007       |                                     |
| Tail Correction                | 0.12 | < 0.01      | (Calorimeter/ATAR)                  |
| $t_0$ Correction               | 0.05 | < 0.01      | (ATAR timing/dE/dx)                 |
| Muon DIF                       | 0.05 | 0.005       | (ATAR)                              |
| Parameter Fitting              | 0.05 | < 0.01      | $(Calorimeter/\Lambda T \Lambda R)$ |
| Selection Cuts                 | 0.04 | < 0.01      | (Calorimeter/AIAR)                  |
| Acceptance Correction          | 0.03 | 0.003       | (Calorimeter/AIAR)                  |
| Total Uncertainty <sup>*</sup> | 0.24 | $\leq$ 0.01 | (Calorimeter)                       |

To be verified by simulations and prototype measurements.

\*Pion lifetime uncertainty not

included

Newly proposed measurement at TRIUMF

# PiBetaPIONEER (Phase II)Statistics0.4%0.1%Systematics0.4%<0.1% (ATAR ( $\beta$ ), MC, Photonuclear, $\pi \rightarrow e v$ )Total0.64%0.2%

### Quotes for 70 L (220kg) LXe

- Quote from <u>CERN</u> in June (20 kg each cylinder, 3.3m<sup>3</sup> at STP)
  - **\$2.7 per gram,** high quality with certified content of  $SF_6$  below 0.01 ppm
- Xenon pricing from China (10 m<sup>3</sup> each cylinder, 4 pieces in total)
  - Xenon price is 10 times less than the same time last year and at a historically low level
  - <u>Wuhan Iron and Steel Corporation</u> can offer **\$1.8 per gram\***. They have supplied Xenon to SJTU, Columbia, and UCSD. They have sufficient Xenon in stock for shipping right now.
  - <u>Fuhaicryo</u> offered \$1.62 per gram\*. They have also sold to the US previously. They have sufficient Xenon in stock for shipping right now.
  - Price slightly increased from the last time we reported to the collaboration (Wuhan \$1.62/g, Fuhaicryo \$1.38/g)
- Xenon pricing from domestic suppliers
  - Praxair/Linde (US) **\$12.35 per gram\*** 2023, **\$16.15 per gram\*** in 2024
  - <u>Airgas/Air Liquide</u> can't even provide a quote for Xenon due to being in Force Majeure with Xenon supply in the next 4-5 months, the previous informal quote was \$18 per gram\*

\*Shipping and custom duties excluded. Estimated cost of shipping is in the order \$10k-20k

