
CernVM-FS & Varnish

CernVM-FS & HTTP Caching

CernVM-FS
- Clients have read-only access to FS
- Clients get notified of FS changes
- Client = HPC cluster to laptop

Caching
- Reverse Proxy (Squid)

CERN
- Place of birth of the Web
- Culture around “Distributed computing”

Squid (1996) one of the forward proxies of
reference

- Primary goal is to be feature full
- Designed to supports multiple protocols
- Very versatile, able to do reverse

proxy
- Designed for single CPU architectures
- Somewhat inefficient virtual memory

management
- Squid dev team has low bandwidth to

improve it (vulnerabilities stay unfixed
for years)

Varnish (2006) created as a reverse
proxy to optimize infrastructure and reduce
costs

- Focused on caching proxy features
- Designed for an optimized handling of

HTTP traffic
- Primary goal is to be efficient and

secure
- Designed for high parallelism and

workload isolation
- Efficient memory management
- Varnish has a community improving it in

and out of Varnish Software

Varnish, born to replace Squid

https://www.theregister.com/2023/10/13/squid_proxy_bugs_remain_unfixed/

Squid VS Varnish in
practice (1)

VG Multimedia (2006)
- From: 12 Squid instances

~100% CPU usage
~150ms average latency

- To: 3 Varnish servers
~10% CPU usage (-90%)
~30ms average latency (-80%)

First deployment of Varnish Cache
in production

On Virtual memory management design by Poul-Henning Kamp, Varnish Architect

“You're Doing It Wrong. Think you've mastered the art of server performance? Think again.”

https://queue.acm.org/detail.cfm?id=1814327

https://queue.acm.org/detail.cfm?id=1814327

Squid VS Varnish in
practice (2)

Aller Internett (2011)
- 20ms -> 4ms average (-80%)
- 99th percentile improved
- Smoothes reads
- Reliable streaming

Reduced average latency and
average CPU usage is very
significant

Reducing outliers is critical

Article about the move from Squid to Varnish (Norwegian only)

“Mye raskere digi.no med friprog-rakett”

https://www.digi.no/artikler/mye-raskere-digi-no-med-friprog-rakett/284924

https://www.digi.no/artikler/mye-raskere-digi-no-med-friprog-rakett/284924

Varnish Enterprise built for
performance

Intel (2024)
- Varnish Enterprise testing
- 1.2 Tbps Data Rate,
- 1.18 Gbps/Watt Efficiency

- World’s Fastest Delivery
- High & Stable Throughput
- Energy efficiency

Intel White Paper testing Varnish Enterprise

“Varnish Enterprise Shows Up To 1.2 Tbps Data Rate, Up To 1.18 Gbps/Watt Efficiency³

https://cdrdv2-public.intel.com/788717/Varnish_23_WP_091523_REV02.pdf

https://cdrdv2-public.intel.com/788717/Varnish_23_WP_091523_REV02.pdf

Varnish Cache
Open source project: https://varnish-cache.org/

- Finely grained caching policy
- Differentiate easily mutable and

immutable data
- Manage precise lifecycle in cache

- In-memory and on-disk storage available
- Advanced load-balancing capabilities
- HTTPS client support through a TLS proxy

(such as Hitch)

Varnish Enterprise
Commercial product from Varnish Software:
https://www.varnish-software.com/ - Built for high-
performance workloads

- Massive Storage Engine (MSE4)
- Store objects persistently on local disk(s)
- Runtime disk management inc fault tolerance
- Hybrid storage for indexes (NVMes) and data

(HDDs)
- Policy based data placement and metering
- Automatically adjust cache size according to

memory consumption
- Slicer allows subdivision of payloads

- Efficiently request and serve fragments of
objects instead of whole objects

- Native TLS support both for serving and backend
requests

Varnish Enterprise & Cache

https://varnish-cache.org/
https://www.varnish-software.com/community/hitch/
https://www.varnish-software.com/

Varnish Software provides a set of
packages:

- Repositories available for all
major distributions

- Docker images available

Varnish provides very extensive and flexible
configuration options through the Varnish
Configuration Language aka VCL

Varnish Cache easy setup

Varnish Cache available on most
distributions

- Distributions have specific versions
available

- Backward compatibility not
guaranteed between Varnish Cache
versions

Ubuntu 22.04 Varnish Cache 6.6.1

Debian 12 Varnish Cache 7.7.1

RHEL8 / Alma Linux 8 /

Rocky Linux 8

Varnish Cache 6.0.13

https://www.varnish-software.com/developers/tutorials/installing-varnish-red-hat-enterprise-linux/
https://www.varnish-software.com/developers/tutorials/running-varnish-docker/

CernVM-FS + Varnish
For HTTP Caching

Join our hands-on breakout session on
Wednesday morning and get your own
reverse proxy caching system up and
running!

Large scale data processing with CVMFS
CVMFS Workshop, September 2024

Matt Harvey
HPC Production Engineer

11

JUMP TRADING

• Privately-owned proprietary trading firm

• Applying cutting-edge research to global financial markets

• World-wide operations

• offices across US, EU, Asia, Pacific

12

HPC at Jump

Jump’s Research Environment
(HPC / “The Grid”)

• The platform where we develop and optimize

trading strategies

• Technologically competitive with some of the

largest publicly known research systems in the

world

• Thousands of servers

• Hundreds of petabytes of storage

• Fast network interconnects

• Keeps growing: more hardware every year

• Sophisticated data-intensive and compute-

intensive research workflows

Fabric logical diagram
Image Credit: Olli-Pekka Lehto

Data Archive

• Realtime-updated repository
time-series market data

• Contains raw data and
derivative products for end-
users

Ten Years of Archive Growth

1

10

100

1000

Archive Growth - PB

Doubling ~2 years, currently growing at ~1.5PB/week

substantial day-on-day volatility

Data Archive Requirements

• Able to run existing work-loads unmodified

• POSIX filesystem presentation

• Decoupled from HPC fabric / filesystems

• Accessible outside of HPC environment, across clusters

• Able to accommodate >100x growth in capability

• capacity, bandwidth

• Be temperature-aware

• Non-requirements:

• Read-write mounts on compute nodes

• Concurrent writes on the same file

• Global consistency and file locking

17

The Tiered Archive

• Cloud object storage

• Unbounded scalability

• Globally accessible

• CVMFS presentation on client machines

• POSIX presentation

The Tiered Archive

• Client

• Latency O(1-10ms),

• Bandwidth O(100Gbps)/node 1TB/s tot

• much data reuse

The Tiered Archive

• Client

• Latency O(1-10ms),

• Bandwidth O(100Gbps)/node 1TB/s tot

• extensive data reuse

• Cloud object storage

• Latency O(0.1-1s)

• Bandwidth O(100Gbps) tot

• $/access

The Tiered Archive

• Client

• Latency O(1-10ms),

• Bandwidth O(100Gbps)/node 1TB/s tot

• extensive data reuse

• Cloud object storage

• Latency O(0.1-1s)

• Bandwidth O(100Gbps) tot

• $/access

Requires effective caching

between cloud and consumer

Cache hierarchy

• Uses several tiers of Varnish HTTP caches

22

Varnish

Varnish

Varnish

Varnish

Varnish

Varnish

Cache hierarchy

• HPC: nodes and ‘edge’ varnish servers all connected to IB

• Performance biased

23

Varnish

Varnish

Varnish

High performance NVME storage

Infiniband and Ethernet networking

30+ GiB/s per server

1-2MiB requests – byte-ranged

Scales horizontally

No CVMFS client data cache!

Cache hierarchy

• Edge varnish servers connected to data-centre ethernet

24

Varnish

Varnish

Varnish

Connected to

data-centre

ethernet

@ 100Gbps

Cache hierarchy

• Core varnish caches connected to data-centre ethernet

• Capacity biased

25

Varnish

Varnish

Varnish

Varnish

Varnish

Varnish

SSD and HDD storage

Ethernet networking

6MiB requests SSD

24MiB requests to HDD

Scales horizontally

Cache hierarchy

• Core varnish servers connected to circuit link to cloud

26

Varnish

Varnish

Varnish

Varnish

Varnish

Varnish

Cache hierarchy

• Multiple clusters can use the core varnish tier

• Each cluster with its own set of edge caches

27

Varnish

Varnish

Varnish

Cluster 1

Cluster 2

Cluster 3

Sharding over Caches

• Shard to avoid duplication of objects across edge caches

• Rendezvous hashing:

• For each cache instance:

• hash key(URL + chunk offset + cache name) -> cache instance

• Order hashes, try cache instance in corresponding order

28

Sharding over Caches

• Shard to avoid duplication of objects across edge caches

• Rendezvous hashing:

• For each cache instance:

• hash key(URL + chunk offset + cache name) -> cache instance

• Order hashes, try cache instance in corresponding order

• Allows graceful failover

• no thundering herd, cascade failure

• Traffic spread over remaining N-1 caches

• invalidates ~1/N of each cache’s contents

29

Sharding over caches

30

Varnish features

31

Varnish Configuration Language (VCL)

• Programmable handling of all requests

• Fast – compiled

• Use to:

• Route requests appropriate caches and cloud buckets

• Prefetch data on a cache miss

• Sign cloud requests

Varnish features

32

Varnish Configuration Language (VCL)

• Programmable handling of all requests

• Fast – compiled

• Use to:

• Route requests appropriate caches and cloud buckets

• Prefetch data on a cache miss

• Sign cloud requests

Slicer

• Divide up requests into partial requests on aligned byte ranges

• Manages partial objects in the MSE cache to minimize prefetching

• Coalesces reply handling for concurrent fetches an object

Varnish features

33

Varnish Configuration Language (VCL)

• Programmable handling of all requests

• Fast – compiled

• Use to:

• Route requests appropriate caches and cloud buckets

• Prefetch data on a cache miss

• Sign cloud requests

Slicer

• Divide up requests into partial requests on aligned byte ranges

• Manages partial objects in the MSE cache to minimize refetching

• Coalesces reply handling for concurrent fetches an object

• MSE

• High performance storage engine that manages the in-memory and on-disk caches

• Fault tolerance – disks can be brought in and out of service without stopping varnish

Optimising the first read

• The first read hits a cold cache hierarchy

• Read back from cloud storage

• High latency

• Cost

• Prefill the core varnish tier

• Separate request – can’t efficiently do write-through of arbitrary PUTs

• Prefilling logic in VCL

34

Avoiding cache invalidation

• CVMFS has direct mapping from filepath -> object key (external data)

• Changing a file requires cache invalidation

• Expensive, difficult, race-prone

• Solution:

• Object key = path/.filename.<content shasum>

• Add file path/filename to CVMFS as:

• File: path/.filename.<content shasum>

• Symlink: path/filename -> .filename.<content shasum>

• Changing a file -> new dot file, flipped symlink (atomic)

35

Observability

36

Observability

• End-to-end view of system performance

• Quicky detect and isolate defective services

• Tag all HTTP requests made by CVMFS

• Add custom metadata – user, batch job id, etc

• Ingest Varnish logs into time-series database

• Hard: O(10^4) requests/sec per server

• Export all CVMFS statistics and latencies

37

Observability – Client Performance

38

Observability – Client Performance

39

Observability – Cache instance performance

40

Observability – end-to-end performance

41

Note the effect of

prefetching

Thank you!

Questions?

mharvey@jumptrading.com

42

