
Zstd:

A new compression algorithm

for CVMFS

Laura Promberger

CernVM Workshop 2024

Performance Analysis: Finding

Bottlenecks

“We found that, by parallelizing the data decompression, we

can improve performance on multiple-processes / multiple-

data scenarios” (Aug 22)

https://indico.cern.ch/event/1180962/contributions/4960898

https://indico.cern.ch/event/1180962/contributions/4960898

What is zstd?

• Zstandard (zstd) developed by Facebook/Meta

• Exists since 2016

• BSD license

• Offers lots of compression levels to trade-off compression

ratio vs speed vs memory footprint

• Compression ratio as zlib default but significantly faster

• Can achieve high compression ratios as lzma

What is zstd? II

Compressor name Ratio Compression Decompress.

zstd 1.5.6 -1 2.887 510 MB/s ~5x faster 1580 MB/s ~4x faster

zlib 1.2.11 -1 2.743 95 MB/s 400 MB/s

brotli 1.0.9 -0 2.702 395 MB/s 430 MB/s

zstd 1.5.6 --fast=1 2.437 545 MB/s 1890 MB/s

zstd 1.5.6 --fast=3 2.239 650 MB/s 2000 MB/s

quicklz 1.5.0 -1 2.238 525 MB/s 750 MB/s

lzo1x 2.10 -1 2.106 650 MB/s 825 MB/s

lz4 1.9.4 2.101 700 MB/s 4000 MB/s

lzf 3.6 -1 2.077 420 MB/s 830 MB/s

snappy 1.1.9 2.073 530 MB/s 1660 MB/s

https://github.com/facebook/zstd#benchmarks (Sept 14, 2024)

https://github.com/facebook/zstd

Handling of files and metadata in CVMFS

 Content-Addressable Storage

(CAS) stored in Merkle Tree

 Similar structure to git

 Root catalog as entry-point to

discover and access the entire

repository

 Files

 Chunked

 Compressed

 Hashed --> CAS

 Metadata

 “Catalogs”

 Contains hashes to all reachable

files

 Stored in sqlite

 “Magic” extended attributes

 Some stored, some calculated on

the fly

DownloadManager

CVMFS Client

https://cvmfs.readthedocs.io/en/stable/_images/fuse.svg

(14 Sept 2024, modified)

https://cvmfs.readthedocs.io/en/stable/_images/fuse.svg

Was has happened since then….

1) Performance improvements for downloads

• “parallel decomp” for FUSE threads

• Needs sophisticated communication via queues

• Ongoing performance engineering

• Many core machines with heavy download load significantly benefit

• Still open to find good default config for small machines

Was has happened since then….

2) Zstd as new compression algorithm

• Introducing Compressor/Decompressor class

• Significant refactoring

• Works for existing algorithms: zlib, copy

• Pilot PR

• Hard-coded replacement of all zlib with zstd

Pilot PR: Setup

• Around 10 GB

• Common HEP software

• Single platform: el9

• Number of files: 58798

• 2 large files:

• alice_2.data: 983M

• atlas_1.data: 4.1G

• Note: cms.cern.ch folder contains only:

• cms.cern.ch/el9_amd64_gcc13/cms/cms/

Pilot PR: Publishing

Files:

Bytes uploaded

Compression

Ratio

Catalog:

Bytes uploaded

Average run time

(sec)

devel (May 10) 5187828757 2.01 5539259 70

WIP - new

(De)Compressor

5187828757 2.01 5523806 82

Zstd (level 3) 5060130589 2.06 4842697 22

14% smaller

3.7x faster
3.2x

faster

Pilot PR: Client

Still lots to do…

… and we need your feedback…

… about forward-backward compatibility

Questions - Design choices

• Mix & match of compression algorithms in a single

respository is possible

• Old clients will fail on zstd-compressed files

• As long as catalogs are zlib compressed old clients can read repo

• Duo-publishing of zlib and zstd compressed files?

• Support for old and new clients for fastest performance

• Manifest would have a root catalog for each compression algo

• Increases storage usage for S0/S1 by max. 2x

Questions - Design choices II

• As long as catalogs are zlib compressed, old S1 can work

with new zstd files

• How likely will you quickly upgrade the S1 to the new client?

Questions - Services

• Vendor and version locking: cvmfs_fschk

• Cvmfs_fschk checks the local client cache for data integrity.

For this it recompresses the data and compares the hashes

to the hashes found in the repo.

• Requires bit-for-bit equivalence

• Used for detection of bit rot in the local cache

• Questions for site maintainers

• Is this still needed as a must-have?

• How much bit rot do you see?

Questions – Services II

• New service needed? Movement service zlib → zstd

• Interest to update old files repos to use zstd?

• “Normal publishing”

• From legacy bulk chunk removal we know that locking the

entire repo does not work for most cases → needs too much

time

• Use remote publishers and the lease mechanism?

Questions?

	Slide 1: Zstd: A new compression algorithm for CVMFS
	Slide 2: Performance Analysis: Finding Bottlenecks
	Slide 3: What is zstd?
	Slide 4: What is zstd? II
	Slide 5: Handling of files and metadata in CVMFS
	Slide 6
	Slide 7
	Slide 8: CVMFS Client
	Slide 9
	Slide 10: Was has happened since then….
	Slide 11: Was has happened since then….
	Slide 12: Pilot PR: Setup
	Slide 13: Pilot PR: Publishing
	Slide 14: Pilot PR: Client
	Slide 15: Still lots to do…
	Slide 16: Questions - Design choices
	Slide 17: Questions - Design choices II
	Slide 18: Questions - Services
	Slide 19: Questions – Services II
	Slide 20: Questions?

