Introduction Theory Application Results Summary

Fast Linearized Track Fitting on Parallel Hardware for Track Triggers

Joachim Zinßer

Physikalisches Institut Heidelberg

6th February 2024

Joachim Zinßer

- Introduction Theory Application
- Results
- Summary

The High Luminosity LHC – Scientific Aims

- Explore the *Electroweak Symmetry Breaking*.
- Measure properties of the *Higgs Boson.*
- Measure parameters of the *Standard Model* with high precision.
- Try to look *beyond* the Standard Model.
- Flavor Physics.
- Study of *Heavy Ion Collisions*. [ATLAS 2018, p. 9,10]

The ATLAS detector observing a Higgs Boson decay into bottom quarks [?].

Joachim Zinßer

Introduction Theory Application Results

ATLAS - Phase II Upgrade

- Detectors degrade due to radiation.
- Opportunity for Upgrade: Installation of the new *Inner Tracker* silicon detector.
- Upgrades of the calorimeters and spectrometers.
- Increase in collisions per crossing from ≈ 40 to ≈ 200
 - \rightarrow Necessity to filter interesting events more efficiently
 - \rightarrow Trigger system Update

Sketch of the Inner Tracker (ITk) [Moening 2019, p. 5]

Joachim Zinßer

- Introduction Theory Application Results
- Summary

Summary of ATLAS-TDAQ Dataflow

- sharp corners: Trigger
- round corners: Data Acquisition
- clean lines: Hardware
- broken lines: Software
- transparent: Discontinued

The Event Filter

Track Triggers Joachim Zinßer

Fast Linearized Track Fitting on

Parallel Hardware for

Introduction Theory Application Results Summary

- Refines trigger objects from the Level-0 Trigger.
- Uses offline-like algorithms that scale linearly with luminosity.
- Required tracking rate: 1 MHz regional, 150 kHz global.
- Implementation 3 options: CPU only, heterogeneous CPU-GPU, CPU + HW accelerators.
- Decision based on:
 - technical complexity
 - estimated performance
 - opportunities for improvement
 - associated risks

Joachim Zinßer

Introduction Theory

Application Results

Motivation for Hardware Track-Fitting

- High pileup conditions (200 interactions / bunch crossing) [ATLAS 2018, p. 39].
- Analyze up to 13 detector layers simultaneously [?, p. 15,23].
 → Very easy to parallelize hardware.
- High frequency 1 MHz Level-0 trigger rate [ATLAS 2018, p. 13]. \rightarrow Custom hardware can be the fastest.
- Custom hardware is expensive to develop but cheap to produce.
- Custom hardware saves energy-costs.

Joachim Zinßer

Introduction Theory

- Goal: Estimate the helix-trajectory for a group of hits in the *Inner Tracker* detector.
- Calculates a linear approximation of the five helix parameters.
- Identifies viable track-candidates via the goodness of their fits.

The Goal of the Track Fitter

A close-up view perpendicular to the beam direction of an ATLAS event [ATLAS 2017].

Joachim Zinßer

Introduction Theory Application Results Summary

- Data Preparation
 Track Finding
- 3 Track Fitting
- Quality Assessment
- **5** Vertex Reconstruction

Possibly repeat steps 2 – 5.

Principle Steps of Track Reconstruction

Firmware Diagram of HTT's Pattern Recognition Board.

Track Fitting

Track Triggers Joachim Zinßer

Fast Linearized Track Fitting on Parallel

Hardware for

Introduction Theory Application Results Summary

Use *n* measured values m_n to find a set of parameters $p_i^{\text{fit}}(\vec{m})$ so that:

$$\sum_{i} \left(p_{i}^{ ext{fit}} - p_{i}^{ ext{true}}
ight)^{2}
ightarrow ext{Minimum}$$

Usually p_i^{true} are unknown. Compare the track model \vec{f} with the measurement \vec{m} :

$$\left(\vec{f}\left(\vec{p^{\mathrm{fit}}}\right) - \vec{m}\right)^{\mathrm{T}} \mathrm{V}^{-1} \left(\vec{f}\left(\vec{p^{\mathrm{fit}}}\right) - \vec{m}\right) \rightarrow \mathrm{Minimum}$$

Joachim Zinßer

Theory Application Results Summary

Model: Charged Particle in Homogeneous B-Field

- A homogeneous magnetic field $\vec{B}||\vec{z}$.
- Lorentz Force of a particle with mass *m* and charge *q* is $\vec{F} = q \left(\vec{v} \times \vec{B} \right)$
- Neglect energy-loss of the particle.
- Solve differential equation \rightarrow
 - No change of v_z .
 - Rotation in x-y-plane \vec{v}_{T} .
- Integrate the solution \vec{v} to get the helix-trajectory \vec{x} .

Joachim Zinßer

Introduction Theory Application Results Summary

The Helix-Track

$$\vec{x}(t) = \left(\begin{array}{c} r\sin\left(\omega_B t + \psi_0\right) + x_0\\ r\cos\left(\omega_B t + \psi_0\right) + y_0\\ v_z t + z_0\end{array}\right)$$

With the

- cyclotron-frequency $\omega_B = \frac{qB}{\gamma m}$
- radius $r = \frac{v_z}{\omega_B}$
- rotational velocity $v_{\rm T} = \sqrt{v_{\rm x}^2 + v_{\rm y}^2}$ and the
- translation $\vec{x_0}$.

The Helix Trajectory

A helix [?].

Introductio

Theory

Applicatio

Results

Summary

The Helix Trajectory

The detector does not resolve the time-development of the track.

$$\vec{x} = \begin{pmatrix} x_0 + r(\cos(\psi_0 - \psi) - \cos\psi_0) \\ y_0 + r(\sin(\psi_0 - \psi) - \sin\psi_0) \\ z_0 + \frac{r\psi}{\tan\theta} \end{pmatrix}; \text{ with } \psi = \omega_B t \text{ and } \psi = 0 \text{ at } \vec{x} = \vec{x}_0.$$

Projections of the helix in the x-y-plane and a z-plane [Kolanoski 2017, p. 393]

Joachim Zinßer

- Introductior
- Theory Application Results
- Summary

- With concentric barrel-detectors ψ_i , r_i and z_i are measured.
- Five parameters can be estimated (example):
 - The curvature $\kappa = -\frac{\operatorname{sig}(q)}{r}$.
 - The angle ψ_0 .
 - The distance d_0 .
 - The inclination θ of the track against \vec{z} .
 - The z coordinate.

Track Parameters of a Helix

Sketch of the origin in the *r*- ψ -plane [Kolanoski 2017, p. 399].

- The origin of the helix cannot be reconstructed. But it is assumed to be the nearest point to the center in the *r*- ψ -plane.
- Therefore, $x_0 = d_0 \cos \psi_0$ and $y_0 = d_0 \sin \psi_0$.

Linearization of the Track Model

• Helix Projects to a circle $y = y_0 + \sqrt{r^2 - (x - x_0)^2}$.

Fast Linearized Track Fitting on

Parallel Hardware for Track Triggers

loachim Zinßer

Theory

- Taylor for large radii $y = (y_0 + r \frac{x_0}{2r^2}) + \frac{x_0}{r_-}x \frac{1}{2r}x^2 +$
- Approximation of the Track $y = a + bx + cx^2$ that has three functions *a*, *b* and *c* of the parameters x_0 , y_0 and r.
- With data *y_i* at the positions *x_i* linear fit of *a*, *b* and *c* is possible.

Track Fitting Workflow

Offline preparation:

Fast Linearized Track Fitting on

Parallel Hardware for Track Triggers

Application

- 1 Perform helix fit on all possible tracks.
- **2** Estimate goodness of the fit (χ^2 -method).
- **3** Linearize the fit and the χ^2 for small variations in the data.
- **4** Combine similar patterns into sectors to save storage space.
- **5** Save those constants \vec{S}_i , h_i , \vec{C}_j , and q_j in a database.

In the Track Fitter:

- **1** Retrieve the constants.
- 2 Calculate the goodness of a track candidate \vec{x} with $\chi^2 = \sum_{i=0}^{l} \left(\vec{S}_i \cdot \vec{x} + h_i \right)^2$.

③ For good tracks, calculate the helix parameters $p_j = \vec{C}_j \cdot \vec{x} + q_j$.

Full Scale Requirements

Requirements of the baseline Hardware Track Trigger as part of the Event Filter System [Camplani 2023]:

- 48 Hardware Track Trigger (HTT) units with twelve Pattern Recognition Mezzanines (PRM) each.
- Each PRM holds 375 MB [p. 8] of fit constants, equivalent to 600 thousand sectors.
- Each PRM contains four Track-Fitters (TF) on its FPGA.
- Each TF calculates the χ^2 of track candidates at a rate of $714\,{\rm MHz}$ [p. 9].
- Each TF calculates the helix parameters of a track at a rate of 57 MHz [p. 9].
- To achieve these rates, the TF must operate at a clock rate of at least 200 MHz [p. 15].
- Hardware trigger latency must be $10 \,\mu s$ or less [p. 2].

 $\to \chi^2$ rate of about $1.65\,{\rm THz},$ fit rate of about $131\,{\rm GHz},$ and about 350 million sectors in total.

Track Fitting on Parallel Hardware for Track Triggers

Fast Linearized

Joachim Zinßer

Introduction Theory Application Results Summary

Joachim Zinßer

Introduction Theory Application Results

Why is this algorithm well suited for parallel hardware?

- Regions, Sectors, and individual tracks can be processed independently.
- The computations use exclusively multiply-accumulate operations.

Joachim Zinßer

Introduction Theory Application Results FPGA

- Architecture based on logic gates.
- More power efficient than GPU.
- Extremely fast at logic and basic arithmetic.
- Developers with HDL-skills necessary for best results.
- Maximum customizability.

Comparison: FPGA – GPU GPU

- Architecture based on parallel processors.
- More power efficient than CPU.
- Very fast if job and device fit perfectly.
- Can be programmed with common languages.
- Options are limited by the architecture.

Joachim Zinßer

- Introduction Theory Application Results
- Summary

Intel Stratix 10 FPGA [Intel Website]

- 3960 Digital Signal Processors
- $8600 \,\mathrm{Gflop}\,\mathrm{s}^{-1}$
- 16 GB HBM 2
- $512 \,\mathrm{Gbit}\,\mathrm{s}^{-1}$
- PCle 3.0
- \$9000 today

Nvidia Tesla T4 [GPU Database]

- 2560 Cores (Shading Units)
- $8141 \, {\rm G flop \, s^{-1}}$
- 16 GB GDDR6
- $320 \,\mathrm{Gbit}\,\mathrm{s}^{-1}$
- PCle 3.0x16
- € 1790 today

Nvidia RTX A6000 [GPU Database]

- 10752 Cores (Shading Units)
- $38\,710\,{
 m G flop}\,{
 m s}^{-1}$
- 48 GB GDDR6
- $768 \,\mathrm{Gbit}\,\mathrm{s}^{-1}$
- PCIe 4.0x16
- \$4649 at launch

19/30

Comparison FPGA - GPU

Joachim Zinßer

Introduction Theory Application Results

Summary

The FPGA Track Fitter Implementation

- TD Decodes possible tracks from the pattern. Distributes the matched patterns into four channels.
- TCA Aligns the tracks with their corresponding χ^2 constants.
- CHI2 Performs the goodness-test.
 - ctrl. Funnels the output of four CHI2 into a single channel.
- TCA Aligns the tracks with their corresponding fit constants.
 - PC Calculates the helix parameters.

Joachim Zinßer

Introduction Theory Application

.....

The GPU Track Fitter Implementation

Joachim Zinßer

Introduction Theory Application Results

Numerical precision of the Track-Fitter

The GPU and the reference software operate with the same numerical precision.

Results

Joachim Zinßer

Introductio Theory Applicatior

Results

Summary

Resolution of the other Parameters

Parameter	Reconstructed	Limit
Transversal Momentum $\frac{q}{p_{T}}$	$6.036(67){\rm PeV^{-1}}$	$4 \mathrm{PeV}^{-1}$
Distance d_0	$875.1(30)\mu{ m m}$	$4\mu m$
Angle ϕ	$3.473(23)\mathrm{mrad}$	$4\mathrm{mrad}$
Distance z_0	$2.663(20){ m mm}$	$31\mu m$
Pseudorapidity η	$5.004(38)\mathrm{mm}$	$4 \mathrm{m}\eta$

Latency of the Track-Fitter

Introduction Theory Application **Results** Summary

Fast Linearized Track Fitting on Parallel

Hardware for Track Triggers

Joachim Zinßer

The latency of the FPGA-TF is $2.1\,\mu s$ the latency of the GPU-TF ranges from $450\,\mu s$ to tens of seconds.

Joachim Zinßer

Introduction Theory Application Results Summary

Memcopy H2D
 Memcopy D2H
 Inner Sum
 Outer Sum
 Parameters
 API Blocking Time

Duration of Various GPU Activities

Joachim Zinßer

Introduction Theory Application Results

- 134 217 728 fits
- Memcopies and kernels called asynchronously
- Calculations done in individual kernel-calls
- Utilize 80 GPU Cores
- Supply track candidates in batches of 32 786

Speed Optimization of the GPU-TF

2²⁷ fits; V2 streaming over 1; Traditional kernels.

Throughput of the TF

Joachim Zinßer

Fast Linearized Track Fitting on

Parallel Hardware for Track Triggers

- Theory
- Applicatio
- Results
- Summary

- The track fitter can operate under a clock frequency of 175 MHz [Camplani 2023, p. 16] (target 200 MHz).
 - $\rightarrow \chi^2$ -rate of $1.44\,{\rm THz}$ and parameter rate of $115\,{\rm GHz}$
- The highest achieved fit rate on the T4 GPU is:
 - 5.55 MHz with respect to the total duration.
 - 90.43 MHz with respect to the sum of all GPU activities.
- With respect to the total duration, $3\times 10^6~{\rm T4~GPUs}$ necessary to achieve target rate.
- Expect about a factor of four from using the RTX but this has to be tested.

Summary and Outlook

Track Triggers Joachim Zinßer

Fast Linearized Track Fitting on

Parallel Hardware for

Introduction Theory Application Results Summary

Summary:

- The linearized track fitting algorithm has been implemented on FPGA and GPU.
- The TF has been verified to work on both types of hardware.
- The FPGA-TF performance has been evaluated in simulation.
- The GPU-TF performance has been measured.

Outlook:

- Find the last bug in the TF firmware.
- Run the algorithm on the faster A6000 GPU.
- Optimize the resource utilization and the kernel execution on GPUs.

Joachim Zinßer

Introduction

Theory

Application

Results

Summary

The ATLAS Experiment:

"Event Display from Upgrade Physics Simulated Data", CERN, 2021.

The ATLAS Collaboration:

"Performance of the ATLAS Transition Radiation Tracker in Run 1 of the LHC: tracker properties", Journal of Instrumentation, Volume 12, May 2017.

The ATLAS Collaboration:

"Technical Design Report for the Phase-II Upgrade of the ATLAS Trigger and Data Acquisition System", CERN-LHCC-2017-020, June 2018.

The ATLAS Collaboration:

"HTT ATLAS Electronics Specification for Pattern Recognition Mezzanine (PRM)", ATL-COM, DAQ-2018-039, December 2019.

The AM Design Team:

"Phase-II Associative Memory ASIC Specifications and Technical/Scientific Report", CERN-OPEN-2018-003, November 2019.

Paolo Francavilla:

"PRM HW Status", PRM Meeting, Presentation, March 2021.

Hermann Kolanoski, Norbert Wermes:

"9 Spurrekonstruktion und Impulsmessung" in "Teilchendetektoren", Springer-Verlag, Berlin und Heidelberg, 2016.

Mathias Braagaard:

"Implementation of a linearized χ^2 -Square [sic] method for the ATLAS Pattern Recognition Mezzanine", DTU Kongens Lyngby, early 2020.

1

Joachim Zinßer

Introduction

Theory

Application

Results

Summary

"Implementation of Particle Track Parameter Calculations for the ATLAS Pattern Recognition Mezzanine", DTU Kongens Lyngby, early 2020.

Veronique Boisvert, Stephanie Majewsk: "Task Force 21.9. Samples", ATLAS Twiki, February 2022.

The ATLAS Collaboration, Klaus Moening:

"Expected Tracking Performance of the ATLAS Inner Tracker at the HL-LHC", ATL-PHYSI, PUB-2019-014, March 2019.

Camplani Alessandra, Dittmeier Sebastian, et al.:

"Intel Stratix 10 FPGA Design for Track Reconstruction for the ATLAS experiment at the LHC", JINST 18 P06029, June 2023.

The Intel Corporation:

"Product Specifications: Intel Stratix 10 MX 2100 FPGA", Intel, 2017.

W1zzard, T4CFantasy, et al.:

"GPU Database - Specs", TechPowerUp, 2024.