

Sensitivity and detector design simulation studies

Antoine Chauvin

chauvin@physi.uni-heidelberg.de

21/02/2024

Bundesministerium

und Forschung

Outline

-Dark matter overview

-Dark matter detection with DARWIN

-Darwin simulation pipeline

-WIMP sensitivity studies

Dark matter overview

Rotation curve

First hint: 1933 →movement of Coma cluster galaxies

1960: galaxies rotation curves→ observed curve indicates missing mass

Antoine Chauvin

Dark matter overview

Current observations: about 5 times more dark matter than visible matter

Antoine Chauvin

Dark matter detection

21/02/2024

Dark matter detection

21/02/2024

Dark matter detection

21/02/2024

Dark matter detection with DARWIN

WIMP direct detection

21/02/2024

Weakly interaction massive particle (WIMP):

- Arised naturally from certain beyond the standard model theories
- Production in WIMP model naturally leads to 25% DM of the total energy content of the universe.

Interaction→ elastic nuclear scattering of WIMP with Xenon nucleus

Mass range: 1 to 10⁵ GeV

Antoine Chauvin

Nuclear recoil (NR)

Limits and sensitivity of direct detection

Estimated sensitivity of future experiments

DARWIN Goal→ most sensitive direct detection experiment

Small cross section→ need to reduce background

Other possible science channel

DARWIN design

DARWIN: Future experiment \rightarrow R&D phase 50t liquid Xenon Time Projection Chamber Main challenge \rightarrow background reduction:

- Xenon: good self shielding, low internal background, good scintillation and ionization yield
- Improved Xenon purification system
- Detector material choice→ reduce radioactivity
- External muon shield
- Internal neutron shield

 $12/4^{\circ}$

Detection principle

Dual phase xenon TPC

Energy deposit (background and signal):

- Primary scintillation \rightarrow S1 signal
- Ionization electrons: drift and proportional scintillation in the gas phase of the TPC→ S2 signal

Interaction position:

- xy from S2 pattern
- z from S1-S2 time delay

S1/S2 ratio: ER/NR discrimination (background rejection)

DARWIN simulation pipeline

Motivation

- -DARWIN is a future detector currently in the design phase \rightarrow Input are needed to make detector design choice (electrode design, photodetectors, important parameters)
- -Modular simulation framework: allow for easily testing different design choice
- -Sensitivity: used as a tool to study impact of design choice and background reduction one the capacity of DARWIN to detect a WIMP signal

Simulation pipeline

Antoine Chauvin

Geant4

Simulation of the passage of particle trough matter

Two current uses for DARWIN:

- Simulate energy deposit:
 - Recoil energy, interaction type, position→mainly used for neutrons
- Optical simulation:
 - Propagation of S1 and S2 photons
 - Generation of Light Collection
 Efficiency maps (used for speed up)

Light collection efficiency

Propagation of photons uniformly generated in the DARWIN TPC LCE map→ position dependent fraction of photons hitting PMTs Used to speed up S1/S2

photon propagation

Tray simulation

Detector response to an energy deposit for ER and NR

Compute the S1 and S2 signal for different deposit type

Simulation steps:

- -Energy deposit: Energy, position, interaction type (ER/NR)
- -Quanta generation: number of photons and electrons
- -S1 simulation: Photons propagation using LCE maps
- -S2 simulation: Electrons drift and scintillation in the gas phase, photons propagation
- -PMTs effects

S2 electron propagation

S2 electrons scintillation

21/02/2024

Realistic field

DARWIN realistic field: simulated using COMSOL (from Vera Hiu-Sze Wu)

Electron diffusion: follow the field line, done using PyCOMEs (from Francesco Toschi)

Integrate realistic field to the simulation pipeline

Impact on sensitivity: uncertainty on the position reconstruction

Antoine Chauvin

21/02/2024

Antoine Chauvin

Red: successive position of the electron cloud

Electrons are focused between the electrodes

Antoine Chauvin

PMTs effects

Antoine Chauvin

Detector response

Corrections

Motivation for correction: Compare signal generated on different parts of the detector

$$g'_1(x, y, z) = \epsilon_{LCE}(x, y, z) \cdot \epsilon_{QE},$$

 ϵ_L : Light collection Efficiency ϵ_{QE} : Quantum Efficiency

Correction averaged over the detection volume:

$$cS1 = S1 \cdot \frac{\langle g'_1 \rangle}{g'_1(x, y, z)}.$$

 $< g'_1 >$: Mean value of g_1

S2 correction: correct for electron absorption

28/4

WIMP sensitivity studies

Background discrimination

Nuclear recoil: interaction with xenon nucleus \rightarrow background + signal

ER/NR discrimination \rightarrow cS1/cS2 ratio

Antoine Chauvin

21/02/2024

NR and ER band separation

Antoine Chauvin

21/02/2024

Isolated events

Isolated events: dark count or isolated photons→ participate to background

N4TW200 coincidence criteria: four photons in a time window of 200ms

Rejection of isolated events:from 34kHz→ 1.87 mHz

Antoine Chauvin

ER leakage

Antoine Chauvin

21/02/2024

Backgrounds

Antoine Chauvin

Re-weighting

Alea

Statistical inference package from Xenon collaboration (currently being developed)

Use templates to find sensitivity

Simulate MC toys from templates

Compute likelihood ratio functions

Find upper limit (90% CL) per toy

Find median of upper limits \rightarrow sensitivity

Repeat for each masspoint

36/4:

Baseline sensitivity

Antoine Chauvin

21/02/2024

Impact of Rn222

Antoine Chauvin

21/02/2024

Impact of the field

Antoine Chauvin

21/02/2024

Conclusion

-Dark matter: One important missing element in our comprehension of our actual universe

-DARWIN: dual phase Xenon TPC for direct dark matter detection→ Improved sensitivity to WIMP

-Development of a simulation pipeline for production of signal and background events in the DARWIN TPC

-Estimation of the DARWIN sensitivity to WIMP

-Sensitivity used as a tool for estimating detector design impact

Next Steps:

-General improvement of the simulation pipeline: position reconstruction, additional background, low field improvement

-Simulation and estimation of the impact of a realistic field

-Impact of photodetectors choice; SiPMs, other PMTs

Thank you for your attention