

Irradiation Studies on single HBT Test Structures

Benjamin Weinläder 06.03.2024 HighRR Seminar

Radiation Environment in HEP

- Example: Atlas Inner Tracker
 - Simulations for the HL-LHC upgrade after $4000 fb^{-1}$
 - 4 3.8 3.6 3.4 in the outermost layer [cm⁻²] 01 ₉₁01 ATLAS Simulation Internal 10¹⁶ FLUKA Simulation $L_{int} = 4000 \text{ fb}^{-1}$ Total Neutrons Other particles Si1MeV_{n_eq} fluence 20 30 60 70 40 50 AtlasPublic Radius [cm]

05/03/2024

Ō

Radiation Damage

- Slowly, over time
 - Accumulation of defects/ trapped charge
 - Shift of transistor properties
 - Increase of leakage current

- Directly visible effect
 - Latch-up: Short, thus thermal destruction
 - Upset: Bit flips, errors in the digital part
 - Gate rupture: Destruction
 of the gate isolation

Ō

Si

Primary Knock on Atom (PKA)

- Displacement of a lattice atom
 - Impact energy $\gtrsim 25 eV$ (depending on direction)
 - Recoils knock out additional atoms + energy transfer via ionization

Primary Knock on Atom

• Point defects

٢

- 1. Vacancies \rightarrow empty lattice sites
- 2. Interstitials \rightarrow atoms outside the regular lattice
- 3. Frenkel defects \rightarrow combining both
- Clusters
 - Aggregation of point defects
 - \circ \quad Typically at the end of a recoil track
 - Scattering cross-section increases with decreasing energy

Electric Properties of Defects

• Recombination-generation center

- Capture or emit charge carriers
 - Increase of leakage current at junctions
 - Shift in a transistor threshold voltage

• Trapping center

- Capture charge carriers and re-emits them with time delay
 Generates timing-jitter on signals
- Change of charge density
 - Change of the effective resistivity

Increased hole density at the oxide surface → recombinationgeneration center

Annealing

- Position of most lattice defects are not fixed
 - At certain temperatures defects become mobile
 - \circ Possibility to recombine with the respective counterpart increases
 - \rightarrow Depends on temperature and time

IMPURITY IN INTERSTITIAL SITE SILICON ATOMS MPURITY ON SUBSTITUTIONAL SITE VACANCY DOI: 10.1007/978-3-540-71679-2

٢

 \odot

HighRR Seminar - Benjamin Weinläder

Non Ionizing Energy Loss hypotheses

- Radiation damage depends on the incident particle type and energy
 - Differences are smoothed due to secondary interactions
- Radiation damage ↔ Non Ionizing Energy Loss (NIEL)
 - *NIEL* ~ D(E) ← Displacement damage function

٢

 \mathbf{O}

• Normalized to 1 MeV Neutrons: $D_n(1 MeV) = 95 MeVmb$

10

05/03/2024

 \bigcirc

Gummel Poon Representation

M

500 gain

Current

05/03/2024

Expected radiation damage

- Ionization:
 - Trapped charge emitter-base spacer oxide
 - \rightarrow Forming a generation-recombination center
 - \rightarrow Additional recombination/ leakage current
 - \rightarrow Increase in I_b
 - \rightarrow Especially dominate for low V_{be} as

06/03/2024

Expected radiation damage

- Non-Ionizing:
 - Defects in the base region
 - $\rightarrow\,$ Also forming generation-recombination centers

base is particularly

prone as only very

small currents flow

- \rightarrow Lifetime τ of minority charge is reduced
- $\rightarrow I_b \sim 1/\tau$ increase
- Change of charge density
- → Resistivity change in n-type silicon (emitter and collector region)
- \rightarrow Resistance increases
- \rightarrow Overall decrease of I_c

Institut Jožef Stefan

Neutron irradiation

Irradiation at the Reactor Infrastructure Centre in Ljubljana

Research TRIGA reactor

HighRR Seminar - Benjamin Weinläder

Neutron irradiation

 $|\bullet|$

 \mathbf{O}

• Irradiation at the **Reactor Infrastructure Centre** in **Ljubljana**

Setup

٢

 \mathbf{O}

- Irradiated samples are glued and wire bonded on a test PCB
 - Stored in the freezer to minimize annealing Ο
- HBT is powered via 2 Source Measure Units (SMUs)
 - Voltage is applied while currents are measured Ο
- All measurements are done within a climate chamber at $T = -15^{\circ}C$

Vbe

Decoupling capacities on PCB induce these wiggles

Base current I_b

٢

 \bigcirc

- As expected: clear increase of the base current
 - \circ More dominate at low V_{be}
- Chip 'epi_16' clear outlier
 - Could be sensor-to-sensor variation

Reference measurement before irradiation would help a lot

Collector current I_c

- No significant dependency visible
 - Overall slight decrease after irradiation, but no direct relation
 - Most probably dominated by chip-to-chip variations

Ō

Findings:

٢

 \bigcirc

- HBT can be still operated after irradiated with a large dose (2e15 n_{eq}/cm²)
 - But the base current will increase significantly
 - Need to be considered already in the circuit design

Current gain $\beta = \frac{I_c}{I_b}$

05/03/2024

Problems:

٢

 \bigcirc

- Reference measurements are missing to account for chip-tochip variations
- Single Transistors are very vulnerable
 - Several were destroyed while testing
 - \rightarrow Limiting the statistics

05/03/2024

Proton irradiation

Irradiation at the Helmholtz-Instituts für Strahlen- und Kernphysik in Bonn Isochron-Zyklotron

05/03/2024

HighRR Seminar - Benjamin Weinläder

Setup

 $|\mathbf{0}$

 \mathbf{O}

- ~2h down time after irradiation
- 3-4h beam setup at each start-up

Measure same chip in between of irradiation steps

HighRR Seminar - Benjamin Weinläder

Setup

 $|\bullet|$

 \mathbf{O}

- 3 samples were measured
 - \circ Up to 1.1*e*15 n_{eq}/cm^2
 - \circ With ~5 steps in between

Problems:

- Due to the long cables
 no Gummel-Poon plots could be produced
- Temperature was not really stable

- New measurement configuration:
 - Fixed value $I_b = 30nA$
 - Again β decreases with increasing dose
 - \rightarrow *I_c* also decreases

Each curve is measured directly after an irradiation step

Ō

- For now: β is less temperate dependent
 - Most prominent dependencies from I_b and I_c cancel out
- Large chip-to-chip variation even before irradiation
- Steep performance decrease at low fluences

Ō

- For now: β is less temperate dependent
 - Most prominent dependencies from I_b and I_c cancel out
- Large chip-to-chip variation even before irradiation
- Steep performance decrease at low fluences

٢

Neutrons vs Protons

- Proton seem to have an larger effect already at lower fluences
 - Additional Ionization damage
 - → Influence should be minimal, since the HBT was not powered during irradiation
- Chip-to-chip variations have an huge influence
- Even after a large dose all samples are still working

٢

 \bigcirc

Neutrons vs Protons

- Proton seem to have an larger effect already at lower fluences
 - Additional Ionization damage
 - → Influence should be minimal, since the HBT was not powered during irradiation
- Chip-to-chip variations have an huge influence
- Even after a large dose all samples are still working

٢

 \bigcirc

Lessons learned

Neutron irradiation

- Normally only possible to irradiate bare chips
 - \rightarrow Reference measurement not easy
 - Need to deal with chip-to-chip variations
- In principle, an in-situ measurement at the **TRIGA Mark II** research reactor in Mainz would be possible
 - Large effort needed, to bring a setup close to the reactor

()

Lessons learned

Proton irradiation

- Measuring in between irradiation steps offers a lot potential
 - Having a large distance between measuring equipment and a fragile test structure can induce some problems
 - A better/ more stable temperature control would help a lot
 - The cyclotron needs a long time to power on, 3-4h until everything is setup
 - For next time: also irradiate while the device is powered
 - Was not done to reduce the risk of total failure of the samples

In general:

Single transistor test structures are fragile

What else can be done?

- There was no further investigation of the proton irradiated samples
 - \circ Still stored in Bonn
- Annealing studies
 - Repeating the measurement after different annealing times
- The Samples also hold some test sensors
 - First results for a bandgap and a digital-to-analog circuit are already produced

٢

References

- John Cressler, Radiation Effects in SiGe Technology. 2013, DOI: 10.1109/TNS.2013.2248167
- Gerhard Lutz, Semiconductor Radiation Detectors. 2007, DOI: 10.1007/978-3-540-71679-2
- Michael Moll, Radiation damage in silicon particle detectors: Microscopic defects and macroscopic properties. 1999, Hamburg
- Xiang-Ti Meng et al., Effects of neutron irradiation on SiGe HBT and Si BJT devices. 2003, DOI: 10.1023/A:1022977828563
- Vinayakprasanna N. Hegde et al., Reliability studies on bipolar transistors under different particles radiation. 2023, DOI: /10.1016/j.sse.2023.108671